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Exact Vacuum Solutions to the Einstein Equation
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Abstract In this paper, the author presents a framework for getting a series of exact

vacuum solutions to the Einstein equation. This procedure of resolution is based on a

canonical form of the metric. According to this procedure, the Einstein equation can be

reduced to some 2-dimensional Laplace-like equations or rotation and divergence equations,

which are much convenient for the resolution.
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1 Introduction

The Einstein equation

Gµν
def
= Rµν − 1

2
gµνR = κTµν (1.1)

is a highly nonlinear system of partial differential equations satisfied by the metric gµν , where
Rµν stands for the Ricci tensor and R the scalar curvature of the spacetime manifold defined
respectively by

Rµν = ∂αΓα
µν − ∂µΓα

να + Γα
µνΓβ

αβ − Γα
µβΓβ

να, (1.2)

R = gµνRµν , (1.3)

in which Γα
µν is the Christoffel symbol given by

Γα
µν =

1

2
gαβ(∂µgβν + ∂νgµβ − ∂βgµν), (1.4)

Tµν is the energy-momentum tensor of matter, and the Greek indexes go from 0 to 3 or from
t, z, x to y. In the vacuum domain we have

Tµν ≡ 0. (1.5)

To get the exact vacuum solution of the Einstein equation is an arduous work (see [1,
2]). The conventional method of resolution is to analyze the symmetry of the metric, i.e.,
analyze the Killing vectors of the spacetime. Almost all the well-known solutions such as
the Friedmann-Robertson-Walker metric, Bianchi universe, Lemaitre-de Sitter universe, as well
as Schwarzschild metric and Kerr metric, Taub-NUT solution (see [2–4]), are based on the
symmetry of spacetime.

Obviously, a good choice for the coordinate system of the spacetime manifold should be
very helpful for analyzing the Einstein equation. The traditional choices are the Gaussian
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coordinate system or the harmonic coordinate system (see [5]). The former gives locally the
following metric

gµν =









1 0 0 0
0 g11 g12 g13

0 g21 g22 g23

0 g31 g32 g33









, (1.6)

while the latter satisfies the following coordinate condition

gαβΓµ
αβ = 0. (1.7)

However (1.6) and (1.7) are more convenient only for some theoretical analysis rather than for
practical resolution.

Fortunately, the problem can be much simplified for the spacetime with a null gradient field.
Under some natural assumptions we found that the metric of such spacetime can be transformed
into the following canonical form (see [6])

gµν =









u v p q

v 0 0 0

p 0 −a 0

q 0 0 −b









(1.8)

with
det(gµν) = −v2ab (1.9)

and the inverse

gµν =





















0 v−1 0 0

v−1 −uab + p2b + q2a

v2ab

p

va

q

vb

0
p

va
−a−1 0

0
q

vb
0 −b−1





















, (1.10)

where u, v, p, q, a, b are smooth functions of the coordinates (t, z, x, y).
The canonical form (1.8) is an Alibaba’s conjuration for solving the Einstein equation. In

what follows, we will show how to use this metric to solve the vacuum Einstein equation.

2 Procedure of Resolution

For the canonical metric (1.8), computing the Einstein tensor Gµν , we get

Gzz = −1

2

[( ∂b

b∂z
+

∂a

a∂z

) ∂v

v∂z
+

1

2

( ∂a

a∂z

)2

+
1

2

( ∂b

b∂z

)2

− ∂2a

a∂z2
− ∂2b

b∂z2

]

. (2.1)

If ∂z(ab) 6= 0, solving Gzz = 0 with respect to v, we get

v = V exp
[

∫

( ∂2a

a∂z2
+

∂2b

b∂z2
− 1

2

( ∂a

a∂z

)2

− 1

2

( ∂b

b∂z

)2)( ∂b

b∂z
+

∂a

a∂z

)

−1

dz
]

, (2.2)

where V = V (t, x, y) is a function to be determined.
In order that the following recursive procedure goes on, for the exact solutions, we must

adopt an ansatz for a and b to make (2.2) integrable. Different ansatz leads to different family
of solutions. In what follows we take the separating variable ansatz as a representative example
to show how the procedure works, that is, we assume

a = L(t, x, y)K(t, z)2, b = N(t, x, y)K(t, z)2, (2.3)
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where ∂zK 6= 0.
Substituting (2.3) into (2.2), we see that

v = V ∂zK. (2.4)

By using (2.3) and (2.4), we have

Gzx = − 1

2V

( ∂2
zp

∂zK
− ∂2

zK∂zp

(∂zK)2
− 2p

∂zK

K2
+ 2∂xV

∂zK

K

)

. (2.5)

Solving Gzx = 0 with respect to p, we get

p = PK2 +
∂V

∂x
K +

A

K
, (2.6)

where P, A are functions of t, x, y to be determined.
Similarly, we have

Gzy = − 1

2V

( ∂2
zq

∂zK
− ∂2

zK∂zq

(∂zK)2
− 2q

∂zK

K2
+ 2∂yV

∂zK

K

)

. (2.7)

Solving Gzy = 0 with respect to q, we get

q = −QK2 +
∂V

∂y
K +

B

K
, (2.8)

where Q, B are functions of t, x, y to be determined.
Substituting (2.3), (2.4), (2.6) and (2.8) into Gxy = 0, we get

∂xQ − ∂yP = −P
∂yL

L
+ Q

∂xN

N
, (2.9)

A = B = 0. (2.10)

By Gxx = 0 or Gyy = 0, we obtain

∂xP

L
+

∂yQ

N
− P

2L

(∂xL

L
+

∂xN

N

)

− Q

2N

(∂yL

L
+

∂yN

N

)

= −1

2

(∂tL

L
− ∂tN

N

)

. (2.11)

Therefore, by taking (P, Q) as a vector in subspace (x, y), (2.9) and (2.11) provide the corre-
sponding covariant rotation and divergence equations respectively.

By Gtz = 0, we get

u = −
(P 2

L
+

Q2

N

)

K2 + 2∂t(V K) + WV K + U +
α

V K
, (2.12)

where α is a function independent of z to be determined. U(t, x, y) and W (t, x, y) satisfy

∆V =
U + |∇V |2

V
− SV (2.13)

with

S =
1

4

( (∂xN)2

LN2
+

(∂yL)2

L2N
+

∂xL∂xN

L2N
+

∂yL∂yN

LN2
− 2

LN
(∂2

xN + ∂2

yL)
)

, (2.14)

∂xP

L
− ∂yQ

N
− P

2L

(∂xL

L
− ∂xN

N

)

− Q

2N

(∂yL

L
− ∂yN

N

)

+
1

2

(∂tL

L
+

∂tN

N

)

= W +
2

V

(

∂tV +
1

L
P∂xV − 1

N
Q∂yV

)

, (2.15)
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in which the covariant Laplace and gradient operators of a scalar in the subspace (x, y) are
defined respectively by

∆ =
1

L
∂2

x +
1

N
∂2

y +
1

2

(

− ∂xL

L2
+

∂xN

LN

)

∂x +
1

2

(∂yL

LN
− ∂yN

N2

)

∂y, (2.16)

∇ =
( 1√

L
∂x,

1√
N

∂y

)

. (2.17)

By Gtx = Gty = 0, we find α = α(t). We should point out that Gtx = Gty = 0 also provides
two linear Laplace-like equations of P and Q, which are consequences of (2.9) and (2.11).

For Gtt = 0, a direct calculation leads to

∆U = −3Wα + 2∂tα

V 2
, (2.18)

∆W = − 2

V 2

(

WU + ∂tU +
1

L
P∂xU − 1

N
Q∂yU

)

. (2.19)

Thus, we can take U, V, W, P, Q, α as the unknown functions satisfying the almost
linear partial differential equations (2.18), (2.13), (2.19), (2.9), (2.11) and (2.15), while take
K(t, z), L(t, x, y), N(t, x, y) as the functions determined by coordinates, boundary conditions
and initial conditions. The effects of the equations (2.18), (2.13) and (2.19) are quite similar to
the Ernst equation (see [7, 8]).

Furthermore, we can simplify the metric by setting r = K as a new coordinate to replace z
as follows. The line element of the spacetime is then given by

ds2 = udt2 + 2dt(vdz + pdx + qdy) − (adx2 + bdy2)

= (u − 2V ∂tK)dt2 + 2V dtdK + 2dt(pdx + qdy) − (adx2 + bdy2)

= u dt2 + 2V dtdr + 2dt(pdx + qdy) − (adx2 + bdy2), (2.20)

where

u = −
(P 2

L
+

Q2

N

)

r2 + (2∂tV + WV )r + U +
α

V r
. (2.21)

Thus, in the new coordinate system (t, r, x, y), the metric becomes

gµν =















u V Pr2 + ∂xV r −Qr2 + ∂yV r

V 0 0 0

Pr2 + ∂xV r 0 −Lr2 0

−Qr2 + ∂yV r 0 0 −Nr2















. (2.22)

Similarly, if we take ρ = V K as a new coordinate to replace z, then in the new coordinate
system (t, ρ, x, y), the metric becomes

gµν =























−
(P 2

L
+

Q2

N

) ρ2

V 2
+ Wρ + U + α

ρ
1

P

V 2
ρ2 − Q

V 2
ρ2

1 0 0 0

P

V 2
ρ2 0 − L

V 2
ρ2 0

− Q

V 2
ρ2 0 0 − N

V 2
ρ2























. (2.23)

The above procedure can provide a family of solutions depending on 4 coordinates, which
is relatively complicated. However, for some special cases including more symmetries, the
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procedure can be much simpler. For instance, if we consider the static case with the following
ansatz

a = b = a(x, y), p = q = 0, u = u(x, y), v = v(x, y), (2.24)

then the solutions can be explicitly obtained. In fact, for this case, Gtx, Gty, Gzz , Gzx and
Gzy vanish automatically. By Gxx + Gyy = 0, we get

(∂2

x + ∂2

y)v = 0, (2.25)

that is to say, v(x, y) is a 2-dimensional harmonic function, which can be easily generated by
means of complex analytic function f(x + yi).

Moreover, by Gxx − Gyy = Gxy = Gtt = 0 and (2.25), we get

(∂2

x + ∂2

y)a =
1

a
(|∂xa|2 + |∂ya|2) +

a

2v2
(|∂xv|2 + |∂yv|2), (2.26)

(∂2

x + ∂2

y)u =
1

v
(∂xu∂xv + ∂yu∂yv) − u

v2
(|∂xv|2 + |∂yv|2). (2.27)

The solution of (2.26) consistent with Gxx = Gxy = Gyy = 0 is given by

a =
λ√
v
(|∂xv|2 + |∂yv|2), (2.28)

where λ is a constant.
(2.27) is a linear equation of u. Let u = vw. We get

(∂2

x + ∂2

y)w = −1

v
(∂xw∂xv + ∂yw∂yv). (2.29)

For any given v, the solution of (2.29) can be easily determined by an appropriate boundary
condition. Here we provide the analytic solution related to v, which is given by

u = v[m + n ln v + (k + j ln v)v], (2.30)

where j, k, m, n are constants, v is the conjugate harmonic function of v, namely,

v = ℜ(f(x + yi)), v = ℑ(f(x + yi)), (2.31)

or

v = ℑ(f(x + yi)), v = ℜ(f(x + yi)). (2.32)

For other ansatz of the metric, the recursive resolution procedure is basically along the same
line, that is,

Gzz → (Gzx, Gzy) → (Gxy, Gxx, Gyy, Gtz) → (Gtx, Gty) → Gtt. (2.33)

3 Examples

Example 3.1 For the case (2.24)–(2.30), if we take the complex function as

f =
Z

R
− R

Z
, (3.1)

where Z = x + yi and R is a real number, we have

v = ℜ(f) =
x(x2 + y2 − R2)

R(x2 + y2)
, v = ℑ(f) =

y(x2 + y2 + R2)

R(x2 + y2)
. (3.2)
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Substituting (3.2) into (2.28) and (2.30), we get

a =
λ(x4 + 2x2y2 + 2R2x2 + y4 + R4 − 2R2y2)

R
√

x(x2 + y2 − R2)(x2 + y2)3R
, (3.3)

u =
x(x2 + y2 − R2)

R(x2 + y2)

(

m + n ln v + (k + j ln v)
y(x2 + y2 + R2)

R(x2 + y2)

)

. (3.4)

This is a more complicated version than that presented in [9].

Example 3.2 For the stationary case of metric (2.22), if we take the following ansatz

L = 1, N = sin2 x, U = 0, (3.5)

then S = 1 in (2.13) and we can get

W = 0, P = m sin x, Q = k sin2 x, V = n sin x tanβ x

2
, (3.6)

where k, m, n, β are constants.
If we take k = α, m = β = 0, n = 1 in (3.6), under a suitable coordinate transformation,

from (3.5) and (3.6) we can get a clear and normal form of metric (2.22) as follows

gµν =

























α

r sin x
sin x r cosx 0

sin x − r

r − R
sin2 x 0

√

r

r − R
r sin2 x

r cosx 0 −r2 0

0

√

r

r − R
r sin2 x 0 −r2 sin2 x

























, (3.7)

where α, R are constants. In this case, the corresponding spacetime has a torus structure.

Example 3.3 For the dynamic case of metric (2.22), if we take the following ansatz

L = 1, N = sin2 x, P = Q = ∂yV = 0, (3.8)

then we can get

W = − 2

f
f ′(t), U = kf2, α = mf3, (3.9)

V =
f sin x

2β
√

βn

(

β tan−β x

2
+ kn tanβ x

2

)

, (3.10)

or

V =
f sin x

2β
√

βn

(

nβ tan−β x

2
+ k tanβ x

2

)

, (3.11)

where k, m and nβ > 0 are constants, and f(t) is an arbitrary function of t.
In particular, setting k = 1, β = 1

2
, n = 2 and

f = 1 + ε sin(ωt), (3.12)

using (3.11), we get

V = (1 + ε sin(ωt)) sin x
(

√

tan
x

2
+

√

tan−1
x

2

)

. (3.13)
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Then metric (2.23) becomes

gµν = diag

{(

f2 + m
ρ

f3 − 2

f
f ′ρ 1

1 0

)

, − ρ2

V 2
, − ρ2

V 2
sin2 x

}

. (3.14)

Here ε is a constant, (t, ρ, x, y) are the coordinates. This metric provides a rigorous model for
the study of the behavior of gravitational waves.

Example 3.4 For the periodic case of metric (2.22), if we take the following ansatz

L = 1, N = sin2 x, V = 1, (3.15)

then we can get

U = 1, W = 0, α = −2m, (3.16)

P = f cos(y − h), Q = f cosx sin x sin(y − h), (3.17)

where m is a constant, and f(t), h(t) are arbitrary functions of t. This metric provides a
strange rotary gravity.

Set f = 0 and make a coordinate transformation t = τ − r − 2m ln(r − 2m), x = θ, y = ϕ.
Then metric (2.22) becomes the normal Schwarzschild metric in system (τ, r, θ, ϕ):

gµν = diag
{

1 − 2m

r
, −
(

1 − 2m

r

)

−1

, −r2, −r2 sin2 θ
}

. (3.18)

Example 3.5 For metric (2.22), if we take L = N = 1, then we have the following solutions
with axial symmetry

gtt =
(

k − 4βm

ρr
(kρβ + ρ−β)−1

)

f2, (3.19)

gtr =
ρf

2β
(kρβ + ρ−β), (3.20)

gtx =
xrf

2ρβ
[(kρβ − ρ−β)β + kρβ + ρ−β], (3.21)

gty =
yrf

2ρβ
[(kρβ − ρ−β)β + kρβ + ρ−β], (3.22)

gxx = gyy = −r2 (3.23)

or

gµν =

















−k2r2f2 +
2

f
f ′(t)r − 2

r
mf−3 1 −kyr2f2 −kxr2f2

1 0 0 0

−kyr2f2 0 −ρ2r2f2 0

−kxr2f2 0 0 −ρ2r2f2

















, (3.24)

where k, m, β are constants, ρ =
√

x2 + y2, f(t) is an arbitrary function, and (t, r, x, y) are
the coordinates.

For the cases without axial symmetry, we can get solutions as follows:

gµν =

















4k2 − r2n2 − 2
m

k cosh (2x) r
k cosh (2x) 2k sinh (2x) r −nr2

k cosh (2x) 0 0 0

2k sinh (2x) r 0 −r2 0

−nr2 0 0 −r2

















, (3.25)
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where k, m, n are constants.

4 Conclusion

All the examples mentioned above contain some black holes, i.e., the corresponding Riemann
tensor Rµναβ has singularities, so they are not trivial solutions. These solutions show that the
canonical metric is really convenient and powerful for solving the vacuum Einstein equation,
and the procedure of resolution is quite straightforward.

There are some exact solutions collected in the books like (see [10, 11]). Most of them can be
transformed into the canonical form (1.8). Some authors have realized the convenience of this
kind of form related to the light cone, and the Robinson-Trautman type solutions are simple
cases of (1.8). However these authors seem to pay attention mainly to using some advanced
mathematical tools to certain special cases.

The main characters of our procedure is that:
( I ) It presents a more general framework for getting exact vacuum solutions to the Einstein

equation, which covers most of the known results.
( II ) The procedure of resolution shows that the Einstein equation for metric (1.8) is an

underdetermined system, so that we should take the components a, b as given functions deter-
mined by coordinate conditions and boundary or initial conditions.

(III) When we take a, b as given functions, the other components are decoupling variables in
the system of equations in some sense, so we can use the recursive method to solve the Einstein
equation.

(IV) The ansatz (2.3) or (2.24) is natural and necessary for getting exact solutions. As to
the numerical solution, instead of this ansatz, we should input the appropriate values of a, b
as boundary or initial conditions to determine other components.
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