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Abstract The authors derive a formula for the volume of a compact domain in a symmetric

space from normal sections through a special submanifold in the symmetric space. This

formula generalizes the volume of classical domains as tubes or domains given as motions

along the submanifold. Finally, some stereological considerations regarding this formula

are provided.
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1 Introduction

It is usual to find in the literature expressions for the volume of a domain, from normal

sections of the domain through to a given submanifold. For instance, when the domain is a

tube around a submanifold M in a Riemannian manifold N , the precise expression of its volume

is well-known when N is a rank 1 symmetric space and M is a compatible (curvature-adapted)

submanifold (see [5]). The volume of the tube is also known for generic rank k symmetric

spaces, when M is a special totally geodesic submanifold of the symmetric space (see [12]).

Additionally, an older formula for the volume of some domains in R
3 was given by Pappus and

is commonly known as Guldin’s theorem. This theorem gives the volume of a solid generated by

a motion of a plane set along the circle described by its center of mass. The formula has been

generalized for domains obtained as motions along a curve in some rank 1 symmetric spaces

(see [6, 4]), and domains obtained as motions along a submanifold in a space form (see [3]).

Applied stereology, however, uses the estimation of volume from a systematic set of planes

(the estimation of volume from Cavalieri’s principle) and the estimation of volume using lines

through a fixed point (see [1]).

In this work, we give an expression for the volume of domains in a symmetric space from

normal sections through special submanifolds (see Theorem 4.1). This formula generalizes the

known expressions for the volume of tubes and domains given as motions in some symmetric

spaces. Moreover, in the last section we particularize the formula for surfaces in R
3 and we ob-

tain a result (see Corollary 5.1) from which we deduce some basic formulae of known estimators

in applied stereology.
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2 General Results about Symmetric Spaces

Let N = G/K be an n-dimensional symmetric space, (g, τ) be the orthogonal symmetric

Lie algebra associated with N and

p = {X ∈ g | τ(X) = −X}.

Let ∆ be the root system with respect to a maximal abelian subspace h in p. The subspace

pα = {X ∈ p | (adY )2X = −α2(Y )X, ∀Y ∈ h}, α ∈ ∆ (2.1)

is called the root space for α. Here we note that, in case where N is non-compact, these roots

imply
√
−1 multiplies of the usual roots.

Elements of pα are called root vectors for α and h is interpreted as the root space for 0.

Let ∆+ be the set of all positive roots with respect to some lexicographic ordering of h.

Then we have

p = h ⊕
∑

α∈∆+

pα, (2.2)

which is called the root space decomposition with respect to h. Without loss of generality, given

X ∈ h, we assume that

0 = α1(X) = · · · = αq(X) < αq+1(X) ≤ · · · ≤ αn(X), (2.3)

where q is the rank of the symmetric space N . From now on, p will be identified with the

tangent space TpN for each p ∈ N .

3 A Special Class of Submanifolds in Symmetric Spaces

Let M be an s-dimensional submanifold in the symmetric space N . If, for each x ∈ M ,

T⊥
x M is a Lie triple system in TxN ≡ p, then we shall say that M has a Lie triple systematic

normal bundle. In this case, there exists a totally geodesic submanifold M ′
x of N such that

TxM ′
x = T⊥

x M (see [10, p. 237], [9, p. 224]). Note that every totally geodesic submanifold can

be translated by an element of G so as to contain 0.

Moreover, if, for each ξ(6= 0) ∈ T⊥
x M , there exists a maximal abelian subspace h in p

containing ξ such that

T⊥
x M = (h ∩ T⊥

x M) ⊕
∑

α∈∆+

(pα ∩ T⊥
x M), (3.1)

then we shall say that M has a root decomposable normal bundle.

Remark 3.1 M has a root decomposable normal bundle if and only if the operator R( · , v)v

leaves TxM invariant (x is the base point of v) (see [11]). Therefore, if M is a curvature-adapted

submanifold of N , it has a root decomposable normal bundle.

Suppose that M has a Lie triple systematic normal bundle. Then, since for each x ∈ M ,

M ′
x is totally geodesic in N , it will be a Riemannian symmetric space. We will therefore have

the following root space decomposition

TxM ′
x = T⊥

x M = h′ ⊕
∑

α′∈∆′

+

p′α′ (3.2)
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with respect to a maximal Abelian subspace h′ of TxM ′
x.

Remark 3.2 If M has a root decomposable and a Lie triple systematic normal bundle, the

decompositions given in (3.1) and (3.2) are equivalent in the sense that h∩ T⊥
x M is a maximal

Abelian subspace of T⊥
x M and pα ∩T⊥

x M is a root space of M ′
x with respect to h∩T⊥

x M ; that

is, a root α ∈ ∆+ restricted to T⊥
x M corresponds to a root α′ ∈ ∆′

+.

From now on, M will denote a submanifold of N which has a root decomposable and a Lie

triple systematic normal bundle, such that ∀x ∈ M , M ′
x is a rank 1 symmetric space; that is,

dim(h ∩ T⊥
x M) = 1.

Remark 3.3 All submanifolds in a real space form satisfy the conditions imposed above

(see [11]).

Notation Given a vector X ∈ h ∩ T⊥
x M , the roots of M ′

x are supposed to be ordered as

0 = α′
1(X) < α′

2(X) ≤ · · · ≤ α′
n−s(X), (3.3)

where each α′
i corresponds to a root αj restricted to T⊥

x M .

The remaining positive roots αj of N , which are not included in (3.3), will be denoted as

β1(X), · · · , βs(X) with β1(X) = · · · = βq−1(X) = 0. (3.4)

4 Volume of Domains in the Symmetric Space N

Since, for each x ∈ M there exists a totally geodesic submanifold M ′
x of N such that

TxM ⊕ TxM ′
x = TxN , we will consider compact domains D in N such that, for each x ∈ M ,

there exists a diffeomorphism

φ :
⋃

x∈M

Dx → D, (4.1)

where Dx = D ∩ M ′
x and, for each (x, z) ∈ M × Dx, φ(x, z) = expx(tNz), where Nz is the

unitary vector at x ∈ M , tangent to the minimal geodesic of M ′
x from x to z, and t is the

distance from x to z (note that the distance from x to z in N coincides with this distance in

M ′
x).

Remark 4.1 Particular examples of domains that are expressed as (4.1) are tubes around

the submanifold M (see [12]) and domains given as motions along M (see [3]).

Our aim is to obtain a new expression for the volume of D from the diffeomorphism in (4.1).

Let ω denote the volume element of D (that is, the volume element of the symmetric space

N), dx that of M and dz that of Dx (that is, dz is the volume element of the totally geodesic

submanifold M ′
x).

Furthermore, since we have supposed that M ′
x is a rank 1 symmetric space, there will exist

only one unitary vector in h∩T⊥
x M . Therefore the roots in (3.3) and (3.4) will be constants α′

i

and βj , respectively, with respect to this unitary vector. Hence, for every β ∈ R, sβ : R → R

will denote the solution to the equation s′′ + βs = 0 with the initial conditions s(0) = 0 and

s′(0) = 1; and cβ = s′β ; i.e.,

sβ(s) =



























sin(s
√

β)√
β

, β > 0,

s, β = 0,

sinh(s
√

β)√
β

, β < 0.

(4.2)
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Theorem 4.1 Let M be a submanifold of N as before and let k1, · · · , ks denote the eigen-

values of the Weingarten map of M with respect to the unitary vector in h ∩ T⊥
x M . Then,

Vol(D) =

∫

D

ω =

∫

M

∫

Dx

s
∏

i=1

(cβi
(t) − sβi

(t)ki) dzdx. (4.3)

Proof Let {e1, · · · , es} and {e′1, . . . , e′n−s} be the orthonormal basis of TxM and TzDx =

τt(T
⊥
x M), respectively, which are root vectors associated to the roots in (3.3) and (3.4), respec-

tively. (τt denotes the parallel transport along the minimal geodesic γz from x to z.)

Vol(D) =

∫

D

ω =

∫

M

∫

Dx

φ∗ω, (4.4)

φ∗ω = |φ∗e1 ∧ · · · ∧ φ∗es ∧ φ∗e
′
1 ∧ · · · ∧ φ∗e

′
n−s|dzdx. (4.5)

For 1 ≤ a ≤ s, let ca be a curve in M with c′a(0) = ea. Then φ∗(x,z)(ea) = Ya(t), where Ya

is the Jacobi field along γz(t) = expx(tNz) such that Ya(0) = ea and Y ′
a(0) = ∇ea

Nz. Since

Nz ∈ T⊥
x M = TxM ′

x and M ′
x is a rank 1 symmetric space we may suppose that Nz = e′1, that

is, the unique unitary vector in the maximal Abelian subspace h ∩ T⊥
x M . Then, the Jacobi

fields Ya are given by

Ya(t) = τt

(

cβa
(t)ea +

s
∑

i=1

sβi
(t)(∇ea

Nz)
T
i +

n−s
∑

j=2

sα′

j
(t)(∇ea

Nz)
⊥
j

)

, (4.6)

where (∇ea
Nz)

T
i denotes the component of ∇ea

Nz tangent to M at x in the direction of ei and

(∇ea
Nz)

⊥
j denotes the component of ∇ea

Nz orthogonal to M at x in the direction of e′j .

On the other hand, from (4.1), {φ∗e
′
1, · · · , φ∗e

′
n−s} will be an orthonormal basis of TzDx;

so

φ∗ω = |Y1(t) ∧ · · · ∧ Ys(t) ∧ φ∗e
′
1 ∧ · · · ∧ φ∗e

′
n−s|dzdx. (4.7)

Now, bearing in mind that {φ∗e
′
1, · · · , φ∗e

′
n−s} are normal to M , the exterior multiplication

of φ∗e
′
1 ∧ · · · ∧ φ∗e

′
n−s by (∇ea

Nz)
⊥ will be zero. Moreover, (∇ea

Nz)
T = −LNz

ea, where LNz

denotes the Weingarten map of M at x in the direction of Nz. Then, from (4.5) and (4.6) we

have

φ∗ω =
∣

∣

∣

(

cβ1
(t)τte1 −

s
∑

i=1

sβi
(t)τt(LNz

e1)i

)

∧ · · · ∧
(

cβ1
(t)τtes −

s
∑

i=1

sβi
(t)τt(LNz

es)i

)

∧φ∗e
′
1 ∧ · · · ∧ φ∗e

′
n−s

∣

∣

∣
dzdx. (4.8)

Now, if we consider an orthonormal basis {e1, · · · , es} given by eigenvectors of the Wein-

garten map; i.e., LNz
ei = kiei (i = 1, · · · , s), using the properties of the wedge product and the

fact that the transformation matrix A from {e1, · · · , es} to {e1, · · · , es} is orthogonal (det A

=1) we obtain, from (4.8) and (4.4), the result.

Remark 4.2 Equation (4.3) generalizes the volumes of tubes around totally geodesic

submanifolds M obtained in [12] and the volumes of domains in space forms given as motions

along M (see [6, 3]).
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5 Volume of Domains in R
3: Stereological Implications

Let S be a regular orientable surface in R
3 and D a domain in R

3 which satisfies (4.1). In

this case Dx are domains in R and, from Theorem 4.1, we obtain

Corollary 5.1 The volume of the domain D is given by

Vol (D) =

∫

S

Length(Dx)σ − 2

∫

S

H
(

∫

Dx

tdt
)

σ +

∫

S

K
(

∫

Dx

t2dt
)

σ, (5.1)

where σ is the area element of S, dt is the line element of R and H and K denote the mean

and Gauss curvatures of S, respectively. (Only the sign in the second term (−2
∫

S
H(

∫

Dx
tdt)σ)

depends on the choice of the normal vector to S.)

Properties 5.1 (1) Suppose that S is flat. Then H = 0 and K = 0, and

Vol (D) =

∫

S

Length(Dx)σ, (5.2)

which is the basic formula for the ‘fakir’ estimator of the volume (see [2]).

(2) Suppose that S = S2(r) is a sphere of radius r in R
3. Then H = 1

r
and K = 1

r2 . Now,

we consider the local parametrization of S given by the spherical coordinates and we obtain

Vol (D) = r2

∫ 2π

0

∫ π

0

(Length(Dx)) sin(φ)dφdθ − 2r

∫ 2π

0

∫ π

0

(

∫

Dx

tdt
)

sin(φ)dφdθ

+

∫ 2π

0

∫ π

0

(

∫

Dx

t2dt
)

sin(φ)dφdθ. (5.3)

Now, supposing that the diffeomorphism defined in (4.1) exists for each sphere S2(r) when

r tends to zero, we obtain, by taking limits in the above formula, that

Vol(D) =

∫ 2π

0

∫ π

0

(

∫

Dx

t2dt
)

sin(φ)dφdθ, (5.4)

which is the basic formula for the ‘nucleator’ estimator of volume (see [8]).

(3) Now, we consider that S = P (r) is a tubular surface of radius r around a unit speed

curve β : [a, b] −→ R
3. We consider the parametrization of S given by

X(u, v) = β(u) + r cos(v)n(u) + r sin(v)b(u), u ∈ [a, b], v ∈ [0, 2π), (5.5)

where n(u) and b(u) are the normal and binormal vectors to β(u). Let κ(u) denote the curvature

of β(u). Then, using the Frenet formulas, we have that the principal curvatures of S are

k1 =
−1

r
and k2 =

κ(u) cos(v)

1 − rκ(u) cos(v)
, (5.6)

‖Xu × Xv‖ = r(1 − rκ(u) cos(v)). (5.7)

Then

Vol(D) = r

∫ b

a

∫ 2π

0

(1 − rκ(u) cos(v))(Length(Dx))dvdu

+

∫ b

a

∫ 2π

0

(

∫

Dx

tdt
)

dvdu − 2r

∫ b

a

∫ 2π

0

κ(u) cos(v)
(

∫

Dx

tdt
)

dvdu

−
∫ b

a

∫ 2π

0

κ(u) cos(v)
(

∫

Dx

t2dt
)

dvdu. (5.8)
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Now, supposing that the diffeomorphism defined in (4.1) exists for each tubular surface P (r)

when r tends to zero, we obtain, by taking limits in the above formula, that

Vol (D) =

∫ b

a

(

∫ 2π

0

∫

Dx

tdtdv
)

du −
∫ b

a

(

∫ 2π

0

∫

Dx

cos(v)t2dtdv
)

κ(u)du. (5.9)

If Pu is the plane orthogonal to β(u) and Du denotes the intersection Pu ∩ D, using polar

coordinates in Pu centered at β(u), we have that

Area(Du) =

∫ 2π

0

∫

Dx

tdtdv (5.10)

and, on the other hand,

M(n(u))⊥(Du) = −
∫ 2π

0

∫

Dx

cos(v)t2dtdv (5.11)

is the moment of Du with respect to the line in Pu orthogonal to n(u); so formula (5.3) coincides

with formula (5.1) of [7].

(4) When Dx = [0, r] for all p ∈ S, we have

Vol (D) = rArea(S) − r2

∫

S

Hσ +
r3

3

∫

S

Kσ, (5.12)

which is a well-known formula for the volume of half-tubes related to a classical formula by

Steiner that was proved in 1840 (see [5]).

References

[1] Baddeley, A. and Jensen, E. B. V., Stereology for Statisticians, Chapman & Hall/CRC, Boca Raton, 2005.

[2] Cruz-Orive, L. M., Stereology of single objects, J. Microsc., 186, 1997, 93–107.

[3] Domingo-Juan, M. C. and Miquel, V., Pappus type theorems for motions along a submanifold, Differential

Geom. Appl., 21, 2004, 229–251.

[4] Domingo-Juan, M. C. and Miquel, V., On the volume of a domain obtained by a holomorphic motion,
Ann. Global Anal. Geom., 26, 2004, 253–269.

[5] Gray, A., Tubes, Birkhäusser, Basel, 2003.
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