On Hilbert Coefficients of Filtrations**

Yan GU* Guangjun ZHU* Zhongming TANG*

Abstract Let \mathcal{F} be a Hilbert filtration with respect to a Cohen-Macaulay module M. When $G(\mathcal{F}, M)$ and $F_K(\mathcal{F}, M)$ have almost maximal depths, the Hilbert coefficients $g_i(\mathcal{F}, M)$ is calculated. In the general case, an upper bound for $g_2(\mathcal{F}, M)$ is also given.

Keywords Hilbert coefficients, Fiber cones, Depth 2000 MR Subject Classification 13D40, 13H15, 13C14

1 Introduction

Let (R, \mathfrak{m}) be a Noetherian local ring with infinite residue field, M a finitely generated R-module of dimension d>0 and $\mathcal{F}=\{I_n\}_{n\geq 0}$ a Hilbert filtration with respect to M. Let K be an \mathfrak{m} -primary ideal of R such that $I_{n+1}\subseteq KI_n$ for all $n\geq 0$. Let $H_K(\mathcal{F},M,n)=\lambda(M/KI_nM)$ be the Hilbert-Samuel function of \mathcal{F} with respect to M and K, and $P_K(\mathcal{F},M,n)$ the corresponding polynomial. Then

$$P_K(\mathcal{F}, M, n) = g_0(\mathcal{F}, M) \binom{n + d - 1}{d} - g_1(\mathcal{F}, M) \binom{n + d - 2}{d - 1} + \dots + (-1)^d g_d(\mathcal{F}, M).$$

In this paper, we are interested in the properties of these Hilbert coefficients $g_i(\mathcal{F}, M)$.

Generalizing Huneke's fundamental lemma in [8], Huckaba [6] gave a d-dimensional extension where an integer $w_n(J, I)$ was introduced. When (R, \mathfrak{m}) is Cohen-Macaulay of dimension d and depth $G(I) \geq d-1$, it is proved in [6] (cf. [5]) that

$$e_i(I) = \sum_{n=i-1}^{\infty} {n \choose i-1} \lambda(I^{n+1}/JI^n), \quad i = 1, \dots, d,$$

hold for any m-primary ideal I and any minimal reduction J of I. Motivated by [6], we define a similar integer $w_n(J, K, \mathcal{F}, M)$ for a filtration. Then, the difference between $P_K(\mathcal{F}, M, n)$ and $H_K(\mathcal{F}, M, n)$ can be presented by $w_n(J, K, \mathcal{F}, M)$. The main result in Section 3 states that if M is Cohen-Macaulay, depth $G(\mathcal{F}, M) \geq d - 1$ and depth $F_K(\mathcal{F}, M) \geq d - 1$, then

$$g_i(\mathcal{F}, M) = \sum_{n=i-1}^{\infty} \binom{n}{i-1} \lambda(KI_{n+1}M/JKI_nM) + (-1)^i \lambda(M/KM), \quad i = 1, \dots, d.$$

Manuscript received March 13, 2006. Published online September 13, 2007.

^{*}Department of Mathematics, Suzhou University, Suzhou 215006, Jiangsu, China.

E-mail: gysz1980@yahoo.com.cn zhuguangjun@suda.edu.cn zmtang@suda.edu.cn

^{**}Project supported by the National Natural Science Foundation of China (No. 10371085).

For the second Hilbert coefficient $e_2(I)$ of an \mathfrak{m} -primary ideal of a Cohen-Macaulay local ring (R,\mathfrak{m}) , it is shown in [3] that $e_2(I) \leq \sum_{n=1}^{\infty} n\lambda(I^{n+1}/JI^n)$ where J is a minimal reduction of I. In Section 4, we give a similar upper bound for $g_2(\mathcal{F}, M)$:

$$g_2(\mathcal{F}, M) \le \sum_{n=1}^{\infty} n\lambda(KI_{n+1}M/JKI_nM) + \lambda(M/KM).$$

2 Preliminaries

Let (R, \mathfrak{m}) be a Noetherian local ring with infinite residue field. We say that $\mathcal{F} = \{I_n\}_{n\geq 0}$ is a filtration if $I_0 = R \supseteq I_1 \supseteq I_2 \supseteq \cdots$ is a chain of ideals of R such that $I_1 \neq R$ and $I_m I_n \subseteq I_{m+n}$ for all m, n. For any filtration $\mathcal{F} = \{I_n\}_{n\geq 0}$, let

$$R(\mathcal{F}) = \bigoplus_{n \ge 0} I_n$$
 and $G(\mathcal{F}) = \bigoplus_{n \ge 0} I_n / I_{n+1}$

be the Rees ring and associated graded ring of \mathcal{F} . \mathcal{F} is said to be a Hilbert filtration if I_1 is mprimary and $R(\mathcal{F})$ is a finitely generated module over the Rees algebra $R(I_1)$, i.e., $I_1I_n=I_{n+1}$ for large n. Further, let M be a finitely generated R-module. We say that \mathcal{F} is a Hilbert filtration with respect to M if $\lambda(M/I_1M) < \infty$ and $I_1I_nM = I_{n+1}M$ for large n.

Throughout the paper, let (R, \mathfrak{m}) be a Noetherian local ring with infinite residue field, M a finitely generated R-module of dimension d > 0 and \mathcal{F} a Hilbert filtration with respect to M. Let K be an \mathfrak{m} -primary ideal of R such that $I_{n+1} \subseteq KI_n$ for all $n \geq 0$.

Let

$$F_K(\mathcal{F}) = \bigoplus_{n \ge 0} I_n / K I_n$$

be the fiber cone of \mathcal{F} with respect to K. Set

$$G(\mathcal{F},M) = \bigoplus_{n \geq 0} I_n M / I_{n+1} M \quad \text{and} \quad F_K(\mathcal{F},M) = \bigoplus_{n \geq 0} I_n M / K I_n M.$$

Then $G(\mathcal{F}, M)$ is a finitely generated $G(\mathcal{F})$ -module and $F_K(\mathcal{F}, M)$ is a finitely generated $F_K(\mathcal{F})$ -module.

Let $H(\mathcal{F}, M, n) = \lambda(M/I_n M)$ be the Hilbert-Samuel function of \mathcal{F} with respect to M and $P(\mathcal{F}, M, n)$ the corresponding polynomial. We have

$$P(\mathcal{F}, M, n) = e_0(\mathcal{F}, M) \binom{n+d-1}{d} - e_1(\mathcal{F}, M) \binom{n+d-2}{d-1} + \dots + (-1)^d e_d(\mathcal{F}, M).$$

Then

$$g_0(\mathcal{F}, M) = e_0(\mathcal{F}, M).$$

Note that

$$H_K(\mathcal{F}, M, n) = H(\mathcal{F}, M, n) + \lambda (I_n M / K I_n M).$$

As, for large n, $\lambda(I_nM/KI_nM)$ is a polynomial in n of degree d-1, we can write, for large n, that

$$\lambda(I_n M/K I_n M) = f_0(\mathcal{F}, M) \binom{n+d-2}{d-1} - f_1(\mathcal{F}, M) \binom{n+d-3}{d-2} + \dots + (-1)^{d-1} f_{d-1}(\mathcal{F}, M).$$

Then

$$g_i(\mathcal{F}, M) = e_i(\mathcal{F}, M) - f_{i-1}(\mathcal{F}, M), \quad i = 1, \dots, d.$$

An ideal $J \subseteq I_1$ is said to be a reduction of \mathcal{F} with respect to M if there exists an integer r > 0 such that $JI_nM = I_{n+1}M$ for all $n \geq r$. By the following lemma, minimal reductions exist.

Lemma 2.1 (See [11, Lemma 1]) There exist $x_1, \dots, x_d \in I_1$ such that (x_1, \dots, x_d) is a minimal reduction of \mathcal{F} with respect to M and $e_0(\mathcal{F}, M) = e_0((x_1, \dots, x_d), M)$.

Therefore, if M is Cohen-Macaulay, then $e_0(\mathcal{F}, M) = \lambda(M/(x_1, \dots, x_d)M)$.

Let $x \in I_1 \setminus I_2$ and x^* the initial form of x in $G(\mathcal{F})$. x^* is said to be superficial for $G(\mathcal{F}, M)$ if there exists an integer c > 0 such that $(I_{n+1}M : x) \cap I_cM = I_nM$ for all n > c. Similarly, for any $x \in I_1 \setminus KI_1$, let x^0 the initial form of x in $F_K(\mathcal{F})$, x^0 is said to be superficial for $F_K(\mathcal{F}, M)$ if there exists an integer c > 0 such that $(KI_{n+1}M : x) \cap I_cM = KI_nM$ for all n > c. Superficial sequences are defined inductively.

Suppose that x^0 is superficial for $F_K(\mathcal{F}, M)$. Let "-" denote modulo (x). Thus,

$$\overline{\mathcal{F}} = \mathcal{F}/(x) = \{I_n + (x)/(x)\}_{n \ge 0}, \quad \overline{J} = J/(x), \quad \overline{K} = K/(x), \quad \overline{M} = M/xM.$$

Since

$$H_{\overline{K}}(\overline{\mathcal{F}}, \overline{M}, n+1) = H_K(\mathcal{F}, M, n+1) - H_K(\mathcal{F}, M, n) + \lambda((KI_{n+1}M : x)/KI_nM),$$

it follows that

$$g_i(\overline{\mathcal{F}}, \overline{M}) = g_i(\mathcal{F}, M), \quad i = 0, 1, \dots, d - 1.$$

The following proposition can be shown by similar arguments as in [9] (see [2]), we omit its proof.

Proposition 2.1 There exist $x_1, \dots, x_d \in I_1 \setminus KI_1$ such that $J = (x_1, \dots, x_d)$ is a minimal reduction of \mathcal{F} with respect to M, and x_1^*, \dots, x_d^* (x_1^0, \dots, x_d^0) is a superficial sequence for $G(\mathcal{F}, M)$ $(F_K(\mathcal{F}, M))$.

Furthermore, if depth $G(\mathcal{F}, M) \geq k$ and depth $F_K(\mathcal{F}, M) \geq k$ for an integer k > 0, then one may choose the above x_1, \dots, x_d such that x_1^*, \dots, x_k^* is a regular $G(\mathcal{F}, M)$ -sequence and x_1^0, \dots, x_k^0 is a regular $F_K(\mathcal{F}, M)$ -sequence. In this case, for all $n \geq 0$,

$$(KI_{n+1}M + (x_1, \dots, x_{i-1})M) : x_i = KI_nM + (x_1, \dots, x_{i-1})M, \quad i = 1, 2, \dots, k.$$

3 Formulas for Hilbert Coefficients

In this section, we present some formulas for the Hilbert coefficients $g_i(\mathcal{F}, M)$.

If $f: \mathbb{Z} \to \mathbb{Z}$ is a function, let Δ denote the first difference function defined by $\Delta[f(n)] = f(n) - f(n-1)$, and let Δ^i be defined by $\Delta^i[f(n)] = \Delta^{i-1}[\Delta[f(n)]]$. By convention, $\Delta^0[f(n)] = f(n)$.

Definition 3.1 Let $J = (x_1, \dots, x_d)$ be a minimal reduction of \mathcal{F} with respect to M where x_1, \dots, x_d are chosen as in Proposition 2.1, $J_i = (x_1, \dots, x_i)$, $i = 0, \dots, d$ with $J_0 = 0$. For any

integer $n \ge 0$, an integer $w_n(J, K, \mathcal{F}, M)$ is defined as follows. If d = 1, put $w_n(J, K, \mathcal{F}, M) = 0$. When d > 1, set

$$w_{n}(J, K, \mathcal{F}, M) = \Delta^{d-1} \left[\lambda \left(\frac{KI_{n+1}M : x_{1}}{KI_{n}M} \right) \right] - \lambda \left(\frac{KI_{n+1}M : x_{1}}{JKI_{n}M : x_{1}} \right)$$

$$+ \Delta^{d-2} \left[\lambda \left(\frac{(KI_{n+1}M + J_{1}M) : x_{2}}{KI_{n}M + J_{1}M} \right) \right] - \lambda \left(\frac{(KI_{n+1}M + J_{1}M) : x_{2}}{(JKI_{n}M + J_{1}M) : x_{2}} \right)$$

$$+ \cdots$$

$$+ \Delta \left[\lambda \left(\frac{(KI_{n+1}M + J_{d-2}M) : x_{d-1}}{KI_{n}M + J_{d-2}M} \right) \right] - \lambda \left(\frac{(KI_{n+1}M + J_{d-2}M) : x_{d-1}}{(JKI_{n}M + J_{d-2}M) : x_{d-1}} \right),$$

where $I_n = R$ for n < 0.

Remark 3.1 Let "-" denote modulo (x_1) . Then, it is easy to see that (see [6]),

$$w_n(J, K, \mathcal{F}, M) = w_n(\overline{J}, \overline{K}, \overline{\mathcal{F}}, \overline{M}) + \Delta^{d-1} \left[\lambda \left(\frac{KI_{n+1}M : x_1}{KI_nM} \right) \right] - \lambda \left(\frac{KI_{n+1}M : x_1}{JKI_nM : x_1} \right).$$

Theorem 3.1 Suppose that M is Cohen-Macaulay. Let J be as in Proposition 2.1. Then for all n > 0,

$$\lambda(KI_{n+1}M/JKI_nM) + w_n(J, K, \mathcal{F}, M) = \Delta^d[P_K(\mathcal{F}, M, n+1) - H_K(\mathcal{F}, M, n+1)].$$

Proof Since M is Cohen-Macaulay, we see that x_1, \dots, x_d is an M-sequence. Then the same argument as in the proof of [6, Theorem 2.4] can be applied. We omit the details.

When M = R, the following result is the Lemma 3.1 of [9] which is the fiber cone version of Huneke's fundamental lemma (see [8]).

Corollary 3.1 Suppose that M is Cohen-Macaulay of dimension 2. Let J be as in Proposition 2.1. Then, for all $n \geq 1$,

$$\Delta^{2}[P_{K}(\mathcal{F}, M, n+1) - H_{K}(\mathcal{F}, M, n+1)] = \lambda \left(\frac{KI_{n+1}M}{JKI_{n}M}\right) - \lambda \left(\frac{KI_{n}M : J}{KI_{n-1}M}\right).$$

Proof Let $n \geq 1$. Note that

$$w_n(J, K, \mathcal{F}, M) = \Delta \left[\lambda \left(\frac{KI_{n+1}M : x_1}{KI_nM} \right) \right] - \lambda \left(\frac{KI_{n+1}M : x_1}{JKI_nM : x_1} \right)$$
$$= \lambda \left(\frac{JKI_nM : x_1}{KI_nM} \right) - \lambda \left(\frac{KI_nM : x_1}{KI_{n-1}M} \right).$$

Then, by Theorem 3.1, it is enough to show that

$$\frac{KI_nM:x_1}{KI_nM:J} \cong \frac{JKI_nM:x_1}{KI_nM}.$$

Let f be the homomorphism from $KI_nM: x_1$ to $\frac{JKI_nM:x_1}{KI_nM}$ which is induced by the multiplication by x_2 . Then $Ker(f) = KI_nM: J$, hence, it remains to show that

$$JKI_nM : x_1 = x_2(KI_nM : x_1) + KI_nM.$$

Let $y \in JKI_nM : x_1$. Then $x_1y = x_1y_1 + x_2y_2$ for some $y_1, y_2 \in KI_nM$. As x_1, x_2 is an M-sequence, there is $y' \in M$ such that $y - y_1 = x_2y'$ and $y_2 = x_1y'$. Then $y' \in KI_nM : x_1$ and $y \in x_2(KI_nM : x_1) + KI_nM$. The result follows.

Theorem 3.2 Assume that M is Cohen-Macaulay, depth $G(\mathcal{F}, M) \geq d-1$ and depth $F_K(\mathcal{F}, M) \geq d-1$. Let J be as in Proposition 2.1. Then $w_n(J, K, \mathcal{F}, M) = 0$ for $n \geq d-1$, and, for $n \leq d-2$,

$$w_n(J, K, \mathcal{F}, M) = (-1)^{n+1} {d-1 \choose n+1} \lambda(M/KM).$$

Proof If d = 1, it is trivial. Let $d \ge 2$. By Proposition 2.1,

$$(KI_{n+1}M + J_{i-1}M) : x_i = KI_nM + J_{i-1}M, \quad i = 1, \dots, d-1, \ n \ge 0.$$

As $KI_nM + J_{i-1}M \subseteq (JKI_nM + J_{i-1}M) : x_i \subseteq (KI_{n+1}M + J_{i-1}M) : x_i$, we have also $(JKI_nM + J_{i-1}M) : x_i = (KI_{n+1}M + J_{i-1}M) : x_i$. It follows that

$$w_{n}(J, K, \mathcal{F}, M) = \Delta^{d-1} \left[\lambda \left(\frac{KI_{n+1}M : x_{1}}{KI_{n}M} \right) \right] + \Delta^{d-2} \left[\lambda \left(\frac{(KI_{n+1}M + J_{1}M) : x_{2}}{KI_{n}M + J_{1}M} \right) \right] + \dots + \Delta \left[\lambda \left(\frac{(KI_{n+1}M + J_{d-2}M) : x_{d-1}}{KI_{n}M + J_{d-2}M} \right) \right].$$

Let $f(n) = \lambda(\frac{KI_{n+1}M:x_1}{KI_nM})$. Then f(n) = 0 for $n \ge 0$ and $f(n) = \lambda(M/KM)$ for all n < 0. Thus

$$\begin{split} \Delta^{d-1} \Big[\lambda \Big(\frac{KI_{n+1}M : x_1}{KI_nM} \Big) \Big] &= \Delta [\Delta^{d-2}[f(n)]] \\ &= \Delta \Big[\sum_{i=0}^{d-2} (-1)^i \binom{d-2}{i} f(n-i) \Big] \\ &= \sum_{i=0}^{d-2} (-1)^i \binom{d-2}{i} \Delta [f(n-i)]. \end{split}$$

It follows that, if $n \ge d - 1$ then

$$\Delta^{d-1} \left[\lambda \left(\frac{K I_{n+1} M : x_1}{K I_n M} \right) \right] = 0,$$

and if $n \leq d-2$ then

$$\Delta^{d-1} \left[\lambda \left(\frac{KI_{n+1}M : x_1}{KI_nM} \right) \right] = (-1)^{n+1} \binom{d-2}{n} \lambda (M/KM).$$

Similarly, we have that, if $n \geq d-2$, then

$$\Delta^{d-2} \left[\lambda \left(\frac{(KI_{n+1}M + J_1M) : x_2}{KI_nM + J_1M} \right) \right] = 0,$$

and if $n \leq d-3$, then

$$\Delta^{d-1} \left[\lambda \left(\frac{(KI_{n+1}M + J_1M) : x_2}{KI_nM + J_1M} \right) \right] = (-1)^{n+1} \binom{d-3}{n} \lambda (M/KM),$$

and so on. It turns out that $w_n(J, K, \mathcal{F}, M) = 0$ for $n \geq d - 1$, and, for $n \leq d - 2$,

$$w_n(J, K, \mathcal{F}, M) = (-1)^{n+1} \lambda(M/KM) \sum_{j=n}^{d-2} {j \choose n}.$$

But it can be shown by using induction on d that

$$\sum_{j=n}^{d-2} \binom{j}{n} = \binom{d-1}{n+1},$$

the result follows.

We will need the following lemma whose proof is easy (see [6]).

Lemma 3.1 Let $f: \mathbb{Z} \to \mathbb{Z}$ be a function such that f(n) = 0 for all $n \gg 0$. Then the following statements hold:

(1) For $0 < k \le d$ and $0 < j \le d$,

$$\sum_{n=k}^{\infty} \binom{n}{k} \Delta^{j}[f(n+1)] = -\sum_{n=k-1}^{\infty} (-1)^{i} \binom{n}{k-1} \Delta^{j-1}[f(n+1)].$$

(2) If f(n) = c for all $n \le 0$, then

$$\sum_{n=0}^{\infty} \Delta^{j} [f(n+1)] = \begin{cases} -c, & j=1, \\ 0, & 1 < j \le d. \end{cases}$$

(3) Suppose that f(n) has the form

$$f(n) = a_0 \binom{n+d-1}{d} + a_1 \binom{n+d-2}{d-1} + \dots + a_d.$$

Then $\Delta^{d-i}[f(0)] = a_i$.

Proposition 3.1

$$\sum_{n=i-1}^{\infty} {n \choose i-1} \Delta^d [P_K(\mathcal{F}, M, n+1) - H_K(\mathcal{F}, M, n+1)]$$

$$= \begin{cases} g_i(\mathcal{F}, M), & 1 \le i < d, \\ g_i(\mathcal{F}, M) + (-1)^{i-1} \lambda(M/KM), & i = d. \end{cases}$$

Proof Let $f(n) = P_K(\mathcal{F}, M, n) - H_K(\mathcal{F}, M, n)$. Then f(n) = 0 for all $n \gg 0$. Let i be an integer such that $1 \leq i \leq d$. Then, by Lemma 3.1(1),

$$\begin{split} \sum_{n=i-1}^{\infty} \binom{n}{i-1} \Delta^d [f(n+1)] &= (-1)^{i-1} \sum_{n=0}^{\infty} \Delta^{d-i+1} [f(n+1)] \\ &= (-1)^{i-1} \Delta^{d-i} \Big[\sum_{n=0}^{\infty} \Delta [f(n+1)] \Big] \\ &= (-1)^i \Delta^{d-i} [f(0)] \\ &= (-1)^i \Delta^{d-i} [P_K(\mathcal{F}, M, 0)] - (-1)^i \Delta^{d-i} [H_K(\mathcal{F}, M, 0)]. \end{split}$$

But $\Delta^{d-i}[P_K(\mathcal{F}, M, 0)] = (-1)^i g_i(\mathcal{F}, M)$ by Lemma 3.1(3), $\Delta^{d-i}[H_K(\mathcal{F}, M, 0)] = 0$ for i < d, and $H_K(\mathcal{F}, M, 0) = \lambda(M/KM)$. Then the result follows.

Corollary 3.2 Suppose that M is Cohen-Macaulay. Let J be as in Proposition 2.1. Then

$$g_1(\mathcal{F}, M) \le \sum_{n=0}^{\infty} \lambda(KI_{n+1}M/JKI_nM) - \lambda(M/KM).$$

Proof Let d = 1. Then, by Proposition 3.1,

$$g_1(\mathcal{F}, M) = -\lambda(M/KM) + \sum_{n=0}^{\infty} \Delta[P_K(\mathcal{F}, M, n+1) - H_K(\mathcal{F}, M, n+1)].$$

In virtue of Theorem 3.1, we have

$$\Delta[P_K(\mathcal{F}, M, n+1) - H_K(\mathcal{F}, M, n+1)] = \lambda(KI_{n+1}M/JKI_nM).$$

Hence, in this case,

$$g_1(\mathcal{F}, M) = \sum_{n=0}^{\infty} \lambda(KI_{n+1}M/JKI_nM) - \lambda(M/KM).$$

Now let $d \ge 2$. Then, by Proposition 3.1 and Theorem 3.1,

$$g_1(\mathcal{F}, M) = \sum_{n=0}^{\infty} \Delta^d [P_K(\mathcal{F}, M, n+1) - H_K(\mathcal{F}, M, n+1)]$$
$$= \sum_{n=0}^{\infty} \lambda(KI_{n+1}M/JKI_nM) + \sum_{n=0}^{\infty} w_n(J, K, \mathcal{F}, M).$$

Thus it is enough to show that

$$\sum_{n=0}^{\infty} w_n(J, K, \mathcal{F}, M) \le -\lambda(M/KM).$$

By the definition of $w_n(J, K, \mathcal{F}, M)$, it is easy to see that

$$\begin{split} \sum_{n=0}^{\infty} w_n(J,K,\mathcal{F},M) &\leq \sum_{n=0}^{\infty} \Delta^{d-1} \Big[\lambda \Big(\frac{KI_{n+1}M:x_1}{KI_nM} \Big) \Big] \\ &+ \sum_{n=0}^{\infty} \Delta^{d-2} \Big[\lambda \Big(\frac{(KI_{n+1}M+J_1M):x_2}{KI_nM+J_1M} \Big) \Big] \\ &+ \cdots \\ &+ \sum_{n=0}^{\infty} \Delta \Big[\lambda \Big(\frac{(KI_{n+1}M+J_{d-2}M):x_{d-1}}{KI_nM+J_{d-2}M} \Big) \Big]. \end{split}$$

According to Lemma 3.1(2), we have

$$\sum_{n=0}^{\infty} \Delta^{d-j} \left[\lambda \left(\frac{(KI_{n+1}M + J_{j-1}M) : x_j}{KI_nM + J_{i-1}M} \right) \right] = 0$$

for $j \leq d-2$, and

$$\sum_{m=0}^{\infty} \Delta[\lambda(\frac{(KI_{n+1}M + J_{d-2}M) : x_{d-1}}{KI_nM + J_{d-2}M})] = -\lambda(M/KM).$$

The result follows.

Now, we can prove the main result of this section.

Theorem 3.3 Assume that M is Cohen-Macaulay, depth $G(\mathcal{F}, M) \geq d-1$ and depth $F_K(\mathcal{F}, M) \geq d-1$. Let J be as in Proposition 2.1. Then

$$g_i(\mathcal{F}, M) = \sum_{n=i-1}^{\infty} \binom{n}{i-1} \lambda(KI_{n+1}M/JKI_nM) + (-1)^i \lambda(M/KM), \quad 1 \le i \le d.$$

Proof Firstly, notice that

$$\begin{split} & \sum_{n=i-1}^{\infty} \binom{n}{i-1} \lambda(KI_{n+1}M/JKI_nM) + \sum_{n=i-1}^{\infty} \binom{n}{i-1} w_n(J,K,\mathcal{F},M) \\ & = \begin{cases} g_i(\mathcal{F},M), & 1 \leq i < d, \\ g_i(\mathcal{F},M) + (-1)^i \lambda(M/KM), & i = d \end{cases} \end{split}$$

by Theorem 3.1 and Proposition 3.1. Then it is enough to show that

$$\sum_{n=i-1}^{\infty} \binom{n}{i-1} w_n(J, K, \mathcal{F}, M) = (-1)^{i-1} \lambda(M/KM)$$

for i < d, and

$$\sum_{n=d-1}^{\infty} \binom{n}{d-1} w_n(J, K, \mathcal{F}, M) = 0.$$

From Theorem 3.2, we have that $w_n(J, K, \mathcal{F}, M) = 0$ for $n \geq d-1$, and $w_n(J, K, \mathcal{F}, M) = (-1)^{n+1} \binom{d-1}{n+1} \lambda(M/KM)$ for $n \leq d-2$. It follows that

$$\sum_{n=d-1}^{\infty} \binom{n}{d-1} w_n(J, K, \mathcal{F}, M) = 0,$$

and for i < d,

$$\sum_{n=i-1}^{\infty} \binom{n}{i-1} w_n(J, K, \mathcal{F}, M) = \sum_{n=i-1}^{d-2} \binom{n}{i-1} w_n(J, K, \mathcal{F}, M)$$
$$= \lambda(M/KM) \sum_{n=i-1}^{d-2} (-1)^{n+1} \binom{n}{i-1} \binom{d-1}{n+1}.$$

But it can be shown by using induction on d that

$$\sum_{n=i-1}^{d-2} (-1)^{n+1} \binom{n}{i-1} \binom{d-1}{n+1} = (-1)^i.$$

The theorem follows.

From Theorem 3.3, we have the following

Corollary 3.3 Assume that M is Cohen-Macaulay, depth $G(\mathcal{F}, M) \geq d-1$ and depth $F_K(\mathcal{F}, M) \geq d-1$. Then the following two statements are true:

(1)
$$g_i(\mathcal{F}, M) \ge (-1)^i \lambda(M/KM), i = 1, \dots, d;$$

(2) If $g_i(\mathcal{F}, M) = (-1)^i \lambda(M/KM)$ for some $i \geq 1$, then $g_j(\mathcal{F}, M) = (-1)^j \lambda(M/KM)$ for $j = i, \dots, d$.

4 The Second Hilbert Coefficient

In this section, we will give an upper bound for $g_2(\mathcal{F}, M)$. As is done in [3], we need to reduce the dimension of the module.

Let us generalize the definition of $g_i(\mathcal{F}, M)$ to the case i > d by using the same arguments as in [5].

Write

$$P_K(\mathcal{F}, M, n) = g_0'(\mathcal{F}, M) \binom{n+d}{d} - g_1'(\mathcal{F}, M) \binom{n+d-1}{d-1} + \dots + (-1)^d g_d'(\mathcal{F}, M).$$

Then

$$g'_0(\mathcal{F}, M) = g_0(\mathcal{F}, M)$$
 and $g'_i(\mathcal{F}, M) = g_i(\mathcal{F}, M) + g_{i-1}(\mathcal{F}, M)$, $i = 1, \dots, d$.

Let $P_{\mathcal{F}}(M,z) = \sum_{n=0}^{\infty} H_K(\mathcal{F},M,n)z^n$ be the Hilbert series of \mathcal{F} with respect to M and K. Then there exists a unique polynomial $f_{\mathcal{F}}(M,z) \in \mathbb{Z}[z]$ such that

$$P_{\mathcal{F}}(M,z) = \frac{f_{\mathcal{F}}(M,z)}{(1-z)^{d+1}}.$$

It turns out that

$$g_i'(\mathcal{F}, M) = \frac{\Delta^i[f_{\mathcal{F}}(M, 1)]}{i!}, \quad i = 0, 1, \dots, d.$$

For any i > d, set

$$g'_i(\mathcal{F}, M) = \frac{\Delta^i[f_{\mathcal{F}}(M, 1)]}{i!}.$$

Let

$$f_{\mathcal{F}}(M,z) = \sum_{n=0}^{s} a_n z^n.$$

Then

$$g'_i(\mathcal{F}, M) = \sum_{n=i}^{s} \binom{n}{i} a_n, \quad i = 0, 1, \dots$$

(see [5]).

An argument similar to that of Proposition 1.5 of [5] can be used to get the following

Proposition 4.1 Let J be as in Proposition 2.1 with x_1 being regular. Let "—" denote modulo (x_1) . Then

$$g'_d(\mathcal{F}, M) = g'_d(\overline{\mathcal{F}}, \overline{M}) - \sum_{n=0}^{\infty} (-1)^d \lambda((KI_{n+1}M : x_1)/KI_nM).$$

When M has dimension one, we can calculate $g'_2(\mathcal{F}, M)$.

Lemma 4.1 Suppose that M is Cohen-Macaulay of dimension one. Then

$$g_2'(\mathcal{F}, M) = \sum_{n=0}^{\infty} (n+1)\lambda(KI_{n+1}M/JKI_nM).$$

Proof From

$$\sum_{n=0}^{\infty} \lambda(M/KI_n M) z^n = \frac{f_{\mathcal{F}}(M, z)}{(1-z)^2} = \frac{\sum_{n=0}^{s} a_n z^n}{(1-z)^2},$$

we get that

$$a_0 = \lambda(M/KM),$$

 $a_1 = \lambda(M/KI_1M) - 2\lambda(M/KM),$
 $a_n = \lambda(M/KI_nM) - 2\lambda(M/KI_{n-1}M) + \lambda(M/KI_{n-2}M), \quad n = 2, \dots, s,$

and for $n \ge s + 1$,

$$\lambda(M/KI_nM) - 2\lambda(M/KI_{n-1}M) + \lambda(M/KI_{n-2}M) = 0.$$

Let $n \geq 2$. Note that

$$\lambda(M/KI_nM) - 2\lambda(M/KI_{n-1}M) + \lambda(M/KI_{n-2}M) = \lambda\left(\frac{KI_{n-1}M}{KI_nM}\right) - \lambda\left(\frac{KI_{n-2}M}{KI_{n-1}M}\right).$$

Thus

$$a_n = \lambda(KI_{n-1}M/KI_nM) - \lambda(KI_{n-2}M/KI_{n-1}M), \quad n = 2, \dots, s,$$

and for $n \ge s + 1$,

$$\lambda(KI_{n-1}M/KI_nM) = \lambda(KI_{n-2}M/KI_{n-1}M).$$

Set

$$\rho_n = \lambda(KI_{n+1}M/JKI_nM) = \lambda(KI_{n+1}M/x_1KI_nM).$$

Then

$$\lambda(KI_nM/KI_{n+1}M)$$

$$= \lambda(M/x_1M) + \lambda(x_1M/x_1KI_nM) - \lambda(KI_{n+1}M/x_1KI_nM) - \lambda(M/KI_nM)$$

$$= \lambda(M/x_1M) - \lambda(KI_{n+1}M/x_1KI_nM)$$

$$= g'_0(\mathcal{F}, M) - \rho_n.$$

It follows that

$$a_n = \rho_{n-2} - \rho_{n-1}, \quad n = 2, \dots, s \quad \text{and} \quad \rho_{n-2} = \rho_{n-1}, \quad n > s.$$

Hence

$$g_0'(\mathcal{F}, M) = \sum_{n=0}^s a_n = a_0 + a_1 + \sum_{n=2}^s (\rho_{n-2} - \rho_{n-1}) = a_0 + a_1 + \rho_0 - \rho_{s-1}.$$

But

$$a_0 + a_1 + \rho_0 = \lambda(M/x_1KM) - \lambda(M/KM)$$

$$= \lambda(KM/x_1KM)$$

$$= \lambda(M/KM) - \lambda(x_1M/x_1KM) + \lambda(KM/x_1KM)$$

$$= \lambda(M/KM) + \lambda(KM/x_1M)$$

$$= \lambda(M/x_1M)$$

$$= g'_0(\mathcal{F}, M),$$

so $\rho_{s-1} = 0$. Hence $\rho_n = 0$ for all $n \ge s - 1$. Thus

$$g_2'(\mathcal{F}, M) = \sum_{n=2}^{s} {n \choose 2} a_n = \sum_{n=2}^{s} {n \choose 2} (\rho_{n-2} - \rho_{n-1})$$

$$= \rho_0 + \sum_{n=1}^{s-2} \left({n+2 \choose 2} - {n+1 \choose 2} \right) \rho_n$$

$$= \sum_{n=0}^{s-2} (n+1)\rho_n = \sum_{n=0}^{\infty} (n+1)\rho_n$$

$$= \sum_{n=1}^{\infty} (n+1)\lambda (KI_{n+1}M/JKI_nM).$$

Now we show the main theorem of this section.

Theorem 4.1 Suppose that $d \geq 2$ and M is Cohen-Macaulay. Let J be as in Proposition 2.1. Then

$$g_2(\mathcal{F}, M) \le \sum_{n=1}^{\infty} n\lambda(KI_{n+1}M/JKI_nM) + \lambda(M/KM).$$

Proof Let "—" denote modulo (x_1, \dots, x_{d-2}) and "—" denote modulo (x_1, \dots, x_{d-1}) . Then $g_2(\mathcal{F}, M) = g_2(\overline{\mathcal{F}}, \overline{M}), \ g_1(\overline{\mathcal{F}}, \overline{M}) = g_1(\widetilde{\mathcal{F}}, \widetilde{M}), \ \text{and by Proposition 4.1, } g'_2(\overline{\mathcal{F}}, \overline{M}) \leq g'_2(\widetilde{\mathcal{F}}, \widetilde{M})$. In virtue of Theorem 3.3 and Lemma 4.1, we have

$$g_{1}(\widetilde{\mathcal{F}}, \widetilde{M}) = \sum_{n=0}^{\infty} \lambda(\widetilde{K}\widetilde{I}_{n+1}\widetilde{M}/\widetilde{J}\widetilde{K}\widetilde{I}_{n}\widetilde{M}) - \lambda(\widetilde{M}/\widetilde{K}\widetilde{M})$$

$$= \sum_{n=0}^{\infty} \lambda(\widetilde{K}\widetilde{I}_{n+1}\widetilde{M}/\widetilde{J}\widetilde{K}\widetilde{I}_{n}\widetilde{M}) - \lambda(M/KM),$$

$$g'_{2}(\widetilde{\mathcal{F}}, \widetilde{M}) = \sum_{n=0}^{\infty} (n+1)\lambda(\widetilde{K}\widetilde{I}_{n+1}\widetilde{M}/\widetilde{J}\widetilde{K}\widetilde{I}_{n}\widetilde{M}).$$

Therefore,

$$g_{2}(\mathcal{F}, M) = g'_{2}(\overline{\mathcal{F}}, \overline{M}) - g_{1}(\overline{\mathcal{F}}, \overline{M})$$

$$\leq g'_{2}(\widetilde{\mathcal{F}}, \widetilde{M}) - g_{1}(\widetilde{\mathcal{F}}, \widetilde{M})$$

$$= \sum_{n=1}^{\infty} n\lambda(\widetilde{K}\widetilde{I}_{n+1}\widetilde{M}/\widetilde{J}\widetilde{K}\widetilde{I}_{n}\widetilde{M}) + \lambda(M/KM)$$

$$\leq \sum_{n=0}^{\infty} (n+1)\lambda(KI_{n+1}M/JKI_{n}M) + \lambda(M/KM).$$

References

- [1] Bruns, W. and Herzog, J., Cohen-Macaulay Rings, Cambridge Univ. Press, Cambridge, 1993, 150.
- [2] Cortadellas, T., Fiber cones with almost maximal depth, Comm. Algebra, 33, 2005, 953–963.
- [3] Corso, A., Polini, C. and Rossi, M. E., Depth of associated graded rings via Hilbert coefficients of ideals, J. Pure Appl. Algebra, 201, 2005, 126–141.
- [4] Elias, J., Rossi, M. E. and Valla, G., On the coefficients of the Hilbert polynomial, J. Pure Appl. Algebra, 108, 1996, 35–60.
- [5] Guerrieri, A. and Rossi, M. E., Hilbert coefficients of Hilbert filtration, J. Algebra, 199, 1998, 40–61.
- [6] Huckaba, S., A d-dimensional extension of a lemma of Huneke's and formulas for the Hilbert coefficients, Proc. Amer. Math. Soc., 124, 1996, 1393–1401.
- [7] Huckaba, S. and Marley, T., Hilbert coefficients and the depths of associated graded ring, J. London Math. Soc., 56(2), 1997, 64-76.
- [8] Huneke, C., Hilbert functions and symbolic powers, Michigan Math. J., 34, 1987, 293-318.
- [9] Jayanthan, A. V. and Verma, J. K., Hilbert coefficients and depths of fiber cones, J. Pure Appl. Algebra, 201, 2005, 97–115.
- [10] Jayanthan, A. V. and Verma, J. K., Fiber cones of ideals with almost minimal multiplicity, Nagoya Math. J., 177, 2005, 155–179.
- [11] Jayanthan, A. V., Singh, B. and Verma, J. K., Hilbert coefficients and depths of form rings, Comm. Algebra, 32, 2004, 1445–1452.
- [12] Puthenpurakal, T. J., Hilbert coefficients of a Cohen-Macaulay module, J. Algebra, 264, 2003, 82–97.
- [13] Valabrega, P. and Valla, G., Form rings and regular sequence, Nagoya Math. J., 72, 1978, 93-101.