
Chin. Ann. Math.

28B(5), 2007, 571–582
DOI: 10.1007/s11401-006-0014-x

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2007

Boundary Identification for a Blast Furnace∗∗
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Abstract In this paper, the authors discuss an inverse boundary problem for the axi-
symmetric steady-state heat equation, which arises in monitoring the boundary corrosion
for the blast-furnace. Measure temperature at some locations are used to identify the shape
of the corrosion boundary.

The numerical inversion is complicated and consuming since the wear-line varies during
the process and the boundary in the heat problem is not fixed. The authors suggest a
method that the unknown boundary can be represented by a given curve plus a small
perturbation, then the equation can be solved with fixed boundary, and a lot of computing
time will be saved.

A method is given to solve the inverse problem by minimizing the sum of the squared
residual at the measuring locations, in which the direct problems are solved by axi-
symmetric fundamental solution method.

The numerical results are in good agreement with test model data as well as industrial
data, even in severe corrosion case.

Keywords Inverse problem, Axi-Symmetric fundamental solution, Perturbation
method
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1 Introduction

The problem origins from iron production. Ilmenite ore consists of various titanium and

iron oxides. After several pre-processing steps the ilmenite ore is melted in a blast furnace.

Since the density of liquid titanium dioxide is less than that of liquid iron, the two substances

are separated and pure iron is obtained. The blast furnace is axi-symmetric. The sidewall is

cooled by water and the bottom of the furnace is cooled by air (see Figure 1).

The walls of the furnace are subject to both physical and chemical wear. Thus it is important

to monitor the wearing to avoid molten metal from breaking out through the furnace wall and

causing damage. So the shape of the inner wall surface must be determined. Many researches

have been made in this field (see [1–5, 8]).

Some of the pioneering work was performed in Japan by Yoshikawa et al [5], who considered

axi-symmetric configurations of blast furnaces. They attempted to incorporate the effects of the

solidified melt layer in the inverse formulation based on the use of boundary elements method for

heat conduction analysis and a shape optimization algorithm that could handle only a relatively

small number of design variables.
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Figure 1 Vertical section of the blast furnace

Sorli and Skaar [2] from Norway reported on a very exact inverse methodology that converges

quite rapidly because it utilizes an adjoint operator formulation. However, the method was

demonstrated only for very simple smooth shapes of the inner surface of the wall that were not

significantly different from the initially guessed wall surface configurations.

Dulikravich developed a new method in his recent paper (see [4]). The method was developed

for determination of wall thickness distribution in blast furnaces by utilizing external surface

measurements of temperature and heat flux and employing a Fourier series formulation of the

solution of an elastic membrane model for the evolution of the furnace wall inner surface shape.

But the measurement of heat flux is not easy to implement.

This paper will use a different method. Because the corrosion process of the inner wall is

very slow, we assume that the wear-line can be represented by a known curve plus a small

perturbation. Then we can solve the problem with the fixed boundary. It has a big advantage

to use this perturbation method. In order to get the shape of the corrosion boundary, we

have to solve an inverse problem by many times of iteration. Whatever method we use, FEM,

BEM or FSM (see [6, 7]), we all have to solve the forward problem a large number of times.

However, the boundary changes over the process. So the mesh grid must be subdivided again

and again to form new coefficient matrix during the iteration process. It dose take a lot of

time to do this. But if we use the perturbation method, the problem can be simplified. We

can transfer the original problem to a fixed boundary value problem. The coefficient matrix

will not change, and we do the decomposition only once. We just back substitute it in every

iteration. Conservatively estimate, more than 2
3 computing time can be saved.

In the last section of this paper, we report on some theoretical studies for the algorithm. By

asymptotic expanding temperate function u, we can get the error between the exact value and

the approximation value is O(ε2). The numerical results are in good agreement with both test

model data and industrial data. Even in severe corrosion case, our method can still converse

the corrosion boundary accurately.

2 Mathematical Model of Heat Conduction

The direct problem is to solve a stationary axi-symmetric heat conduction problem on a

given domain Ω, with boundary conditions. Figure 2 is an axi-symmetric vertical section of the
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furnace. In the section there are 9 thermocouples installed inside the walls, and the conductivity

of the furnace material is piecewise constant.

The equation is
1

r
· ∂

∂r

(

rk
∂u

∂r

)

+
∂

∂z

(

k
∂u

∂z

)

= 0, in Ω, (2.1)

where u is the temperature at point (r, z) ∈ Ω, where r and z are the radial and axial coordinates,

respectively. The thermal conductivity of the material, i.e., magnesia bricks, k, is considered

to be temperature dependent. In practice, k is a piecewise constant, which has nothing to do

with u.
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Figure 2 Domain and measurement locations

Equation (2.1) describes heat conduction in cylindrical coordinates when the angular direc-

tion component of the conduction is negligible. The boundary of Ω, Γ, is split into 5 segments,

as shown in Figure 2,

Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ∪ Γ5. (2.2)

The boundary conditions for the problem are as follows. On Γ1, the heat flux is zero, since

the model is rotational symmetric,

∂u

∂r
= 0, on Γ1. (2.3)

The bottom segment Γ2 is air-cooled, so we have a mixed condition. α2 is the heat transfer

coefficient between the bottom of the furnace and air, and u2 is the ambient air temperature,

−k(u)
∂u

∂z
+ α2u = α2u2, on Γ2. (2.4)

The sidewall Γ3 is water-cooled, so we have a mixed condition as well. α3 is the heat transfer

coefficient between the sidewall and water, and u3 is the ambient water temperature,

k(u)
∂u

∂n
+ α3u = α3u3, on Γ3. (2.5)

The upper boundary Γ4 is also assumed to be insulated,

∂u

∂z
= 0, on Γ4. (2.6)

At the wear-line boundary Γ5, we have a Dirichlet condition. In practice, it is the isotherm

with temperature 1450◦C, which is the melting temperature of iron,

u = f(r, z), on Γ5. (2.7)
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3 Perturbation Method

In order to solve the inverse problem of identifying the isotherm, we have to solve many

direct problems in which the boundaries are constantly changing. The corrosion of the boundary

causes some inconvenience in numerical solution which makes the process very difficult. For the

corrosion is very slow and the change of the shape of inner surface is very small. So we can use

perturbation method (see [9, 10]) to overcome this difficulty. The wear-line will be represented

by a known curve plus a small perturbation, all solution will be done on the known boundary.

The boundary value problem then can be changed from flexible boundary value problem into

problem with fixed boundary.

For instance, we consider a boundary value problem for an axi-symmetric Laplace equation














△u = 0, in Ω,

u|Γ1
= f,

(

k
∂u

∂n
+ αu

)∣

∣

∣

Γ2

= q.

(3.1)

Here the operator △ is defined as

△ =
1

r
· ∂

∂r

(

r
∂

∂r

)

+
∂

∂z

( ∂

∂z

)

,

where Γ2 is fixed boundary while Γ1 is unknown and can be represented by a given curve

Γ1 = {(r, z) | z = s(r)} plus a small perturbation,

Γ1 = {(r, z) | z = s(r) + εg(r)}.

Formally asymptotic expand u about ε as

u = u0 + εu1 + · · · ,

and take the first two terms as an approximation of u. Then the boundary condition for Γ1 can

be rewritten as
u|Γ1

= u(r, s(r) + εg(r))

= u(r, s(r)) +
∂u

∂z
(r, s(r)) · εg(r) + O(ε2)

= u|Γ1
+

∂u

∂z

∣

∣

∣

Γ1

· εg(r) + O(ε2)

= u0|Γ1
+ εu1|Γ1

+
∂u0

∂z

∣

∣

∣

Γ1

· εg(r) + O(ε2)

= f.

Comparing the coefficients of the same power of ε, we obtain

u0|Γ1
= f and u1|Γ1

= −∂u0

∂z

∣

∣

∣

Γ1

· g(r).

It is easy to change the form of the boundary condition for Γ2, and we obtain

(

k
∂u0

∂n
+ αu0

)∣

∣

∣

Γ2

= q and
(

k
∂u1

∂n
+ αu1

)∣

∣

∣

Γ2

= 0.

With the same method, we can rewrite the Neumann condition on Γ1

(

k
∂u

∂n
+ αu

)
∣

∣

∣

Γ1

= αu
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as
(

k
∂u0

∂n
+ αu0

)∣

∣

∣

Γ1

= αu

and

(

k
∂u1

∂n
+ αu1

)
∣

∣

∣

Γ1

=
s′(r)g′(r)

1 + s′2(r)
α(u − u0)

∣

∣

∣

Γ1

+
kg′(r)

√

1 + s′2(r)
· ∂u0

∂r

∣

∣

∣

Γ1

− α
∂u0

∂z
· g(r)

∣

∣

∣

∣

Γ1

.

With this perturbation method, we change problem (3.1) into two problems satisfied by u0

and u1, respectively:



















△u0 = 0, in Ω,

u0|Γ1
= f,

(

k
∂u0

∂n
+ αu0

)∣

∣

∣

Γ2

= q,

(3.2)



















△u1 = 0, in Ω,

u1|Γ1
= −∂u0

∂z
· g(r)|Γ1

,
(

k
∂u1

∂n
+ αu1

)∣

∣

∣

Γ2

= 0.

(3.3)

They are both boundary value problems with fixed boundary. However, in (3.3) the bound-

ary condition at the right hand depends on u0.

Solve problems (3.2) and (3.3), and let u = u0 + εu1 be the approximate solution for the

original problem (3.1). Here we use the fundamental solution method (see [6, 14]) to get

the numerical solution. The fundamental solution for axi-symmetric Laplace equation with

boundary condition Bu|∂Ω = q is denoted by E(X, X ′), which satisfies

△E(X, X ′) = δ(X, X ′).

We will give its specific expression in the next section. Select a set of control points, Xj /∈
Ω (1 ≤ j ≤ N), and take

uN (X, {Cj}, {Xj}) :=
N

∑

j=1

CjE(X, Xj)

as an approximation of u(X). In order to determine the coefficient vector C, we select a set of

collocation points, Yi ∈ ∂Ω (1 ≤ i ≤ M), so that the boundary condition BuN(Yi) = q(Yi) is

satisfied, i.e.,
N

∑

j=1

CjBE(Yi, X
j) = q(Yi), 1 ≤ i ≤ M.

We denote it as

HC = Q,

where H = (hij), hij = BE(Yi, X
j).

In the case that the conductivity k is a piecewise constant, the solution will be a little

different. The simplified case is that the domain is divided into two parts Ω1 and Ω2, corre-

spondingly, the boundary is split into two segments Γ1 and Γ2, and the interface is denoted
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Figure 3 Axi-symmetric fundamental solution

by Γ′. The conductivity equals k1 in Ω1 and k2 in Ω2. The problem will be solved in two

sub-domain respectively, and suppose u1 is the solution in Ω1 and u2 is the solution in Ω2.

What’s more, we should add two boundary conditions, so the problem becomes










































△u1 = 0, in Ω1,

△u2 = 0, in Ω2,

Bu1|Γ1
= g1,

Bu2|Γ2
= g2,

u1|Γ′ = u2|Γ′ ,

k1
∂u1

∂n

∣

∣

∣

Γ′

= k2
∂u2

∂n

∣

∣

∣

Γ′

.

4 Axi-Symmetric Fundamental Solution

As we mentioned before, the domain of the problem is axi-symmetric. In order to use

FSM, the axi-symmetric fundamental solution must be found. We can derive it from the 3-D

fundamental solution.

As we know, the physical meaning of the 3-D fundamental solution,

E(X, X ′) =
1

4π|X − X ′| ,

is the electric potential at point X = (x, y, z), generated by a point charge located at point X ′ =

(x′, y′, z′). In the axi-symmetric case, the electric potential generated by a circle-distributing

line charge (r0, z0) (see Figure 3) can be expressed as an integration,

E(r, z; r0, z0) =
1

4π

∫ 2π

0

1

2π
√

(r − r0 cos θ)2 + (r0 sin θ)2 + (z − z0)2
dθ =

1

4π

∫ π

0

dθ

π
√

G
, (4.1)

where G = G(r, z; r0, z0, θ) = r2 + r2
0 − 2rr0 cos(θ) + (z − z0)

2.

Substituting (4.1) into axi-symmetric Laplace equation

∆u =
∂

∂r

(

r
∂u

∂r

)

+
∂2u

∂z2 = 0
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and do numerical integration, we can find that the result of δE(r, z; r0, z0) is very approximate

to 0. So we can believe that (4.1) is an expression of axi-symmetric fundamental solution of

Laplace equation.

We calculate some numerical examples which have exact solutions to find that the results

are very satisfying. The maximal relative error is about 6×10−6. Even in the more complicated

case, where k is a piecewise constant, the maximal relative error is about 3.7 × 10−3.

Another form of axi-symmetric fundamental solution can be found in [6].

5 Inverse Problem

The unknown wear-line denoted by Γ5 will be estimated by utilizing a finite number of

measurements of temperature

Tl, l = 1, · · · , L

at given locations {Pl}L
l=1 in Ω, in combination with solving the mathematical model of heat

conduction governed by equations (2.1)–(2.7). The locations used in our studies are shown in

Figure 2, where 9 thermocouples are used for measuring.

By using perturbation method, the unknown boundary Γ5 can be represented by a given

curve plus a small perturbation

Γ5 = {r, z | z = s(r) + εg(r)}.

The inverse problem is commonly solved by minimizing the sum of the squared residual at

the measurement points,

min
L

∑

l=1

(ul − Tl)
2.

In practice, since Tl are measured, there will be measurement errors. Therefore, instead of

minimizing the pure squared sum, we minimize

Φ(Z) =

L
∑

l=1

(ul − Tl)
2 + J(Z) =

L
∑

l=1

[(u0(Pl) + εu1(Pl, Z)) − Tl]
2 + J(Z) (5.1)

with respect to the curve parameter vector of g(r), Z = (z1, · · · , zm), which are selected along

g(r) and m is the number of nodes. We can get the shape of g by interpolation with the known

value . The term J is a regulizer.

In calculations presented here J is a finite difference approximation to

β

∫ R

0

(g2(r) + g′2(r))dr, (5.2)

where β is a constant (see [11, 13]). The integration is calculated by trapezoidal integration.

6 Numerical Results

Some test cases were created to test the algorithm expressed above for solving the inverse

problem. For simplicity, the side wall Γ3 is set to be vertical to the ground (see Figure 4).

In each test, the shape of Γ5 and Γ5 are given, that is, the express of s(r), and g(r) are

known.
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Figure 4 Domain of the test

Giving value of k, α2, α3, u2, u3 and solving direct problem (2.1)–(2.7), we obtain calculating

temperature at the thermocouple locations. Then we add a random error vector to U and use

it as the measured temperature T . The range of the random error is chosen to be 0.5%.

Given a starting value vector V0, we solve the inverse problem by iteration and obtain the

curve parameter vector V . Then we can calculate the curve by interpolation and compare it

with the originally given curve s(r) and g(r).

Test 1 s(r) = 3.5 + 2.5 ×
( r

6.7

)2

, g(r) = r2 − 6.7r,

k = 10, α2 = 30, α3 = 70, u2 = 35, u3 = 33,

ε = 0.02, β = 0.005.

The maximal relative error of the wear-line is about 5 × 10−3, as shown in Figure 5.
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Figure 5 Result of Test 1

Test 2 s(r) = 3.5 + 2.5 ×
( r

6.7

)2

, g(r) =
1

2
r2 − 22.445,

k = 10, α2 = 30, α3 = 70, u2 = 35, u3 = 33,

ε = 0.02, β = 0.005.

The maximal relative error of the wear-line is about 4.6 × 10−3, as shown in Figure 6.
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Figure 6 Result of Test 2

Test 3 s(r) = 2.5 + e
r

6.7
ln(3.5), g(r) =

{

0.5832(r − 5)2 − 14.58, 0 ≤ r ≤ 5,

2(r − 5)2 − 14.58, 5 ≤ r ≤ 6.7,

k = 10, α2 = 30, α3 = 70, u2 = 35, u3 = 33,

ε = 0.02, β = 0.005.

The maximal relative error of the wear-line is about 9.6 × 10−3, as shown in Figure 7.
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Figure 7 Result of Test 3

After the tests, we present simulations of the wear-line using actual temperature measure-

ments from a blast furnace. Unlike the testing cases, the actual wear-line Γ5 can only be

expressed by a parametric curve, as

{

r = r(t) + εh(t),

z = z(t) + εl(t).
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Figure 8 Domain of the blast furnace
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Figure 9 Result of boundary
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The boundary condition u|Γ5
= f converts to

u0|Γ5
= f and u1|Γ5

= −
(∂u0

∂r
· h(t) +

∂u0

∂z
· l(t)

)
∣

∣

∣

Γ5

.

Because of the difference of material, the conductivity varies. In actual furnace, the domain

Ω is divided into two parts, and k1 = 10, k2 = 3.3 (see Figure 8). The other parameters are

α2 = 30, α3 = 70, u2 = 35, u3 = 33, and the temperature of the wear-line is 1450◦C.

Solving inverse problem, we get the calculated shape of the wear-line. As shown in Figure 9,

the difference between the calculated curve and the wear-line shape computed by FEM method

without perturbation is quite acceptable.

We then calculate the temperature at the measuring points. Comparing with the measured

temperature, the difference is partly caused by measurement error, so it is also acceptable (see

Figure 10).

7 Comment and Conclusion

Here we try to give the rationality of the perturbation method theoretically. Remember

that we expand the solution u about ε as

u = u0 + εu1 + · · ·

and take the first two terms u = u0 + εu1, as an approximation of u. Now we let v = u − u.

Then we have

∂v

∂n

∣

∣

∣

∣

Γ1

=
∂v

∂n

∣

∣

∣

∣

Γ4

=
(

k
∂v

∂n
+ α2v

)
∣

∣

∣

Γ2

=
(

k
∂v

∂n
+ α3v

)
∣

∣

∣

Γ3

= 0 (7.1)

and

v|Γ5
= u|Γ5

− (u0|Γ5
+ εu1|Γ5

)

= u0 −
(

u0|Γ5
+

(∂u0

∂z
εg(r)

)∣

∣

∣

Γ5

+ O(ε2) + ε
(

u1|Γ5
+

(∂u1

∂z
εg(r)

)∣

∣

∣

Γ5

+ O(ε2)
))

= u0 −
(

u0 + ε
(∂u0

∂z
g(r)

)
∣

∣

∣

Γ5

+ O(ε2)
)

− ε
(

−
(∂u0

∂z
g(r)

)
∣

∣

∣

Γ5

+ ε
(∂u1

∂z
g(r)

)

|Γ5
+ O(ε2)

)

= O(ε2) − ε2
(∂u1

∂z
g(r)

)∣

∣

∣

Γ5

+ O(ε3)

= O(ε2).

According to the extremum principle (see [12]), we can get from (7.1) that the extremum

value of v can not be yielded on boundary Γ1, Γ4. If it is yielded on Γ5, we can get that

|v| = O(ε2).

Suppose that the maximal value of v is obtained on Γ2 (or Γ3), we can get from the extremum

principle that
∂v

∂n
> 0, on Γ2 (or Γ3).

So we have vmax < 0 from (7.1). Therefore,

0 > vmax ≥ v|Γ5
= O(ε2), |v| ≤ O(ε2).
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In like manner, supposing the minimal value of v is obtained on Γ2 (or Γ3), we can get from

the extremum principle that
∂v

∂n
< 0, on Γ2 (or Γ3).

So we have vmin > 0 from (7.1). Therefore,

0 < vmin ≤ v|Γ5
= O(ε2), |v| ≤ O(ε2).

Thus we get |u−u| = O(ε2). The error between the true value and the approximation value

is about the magnitude of ε2, that is acceptable.

In this paper, we have discussed a method for determine a part of the boundary for a melting

furnace. The main thought is to solve the problem with a fixed boundary while the original

boundary is flexible. We use perturbation method for this purpose and prove its rationality in

both numerical and theoretical ways. Another creation is that we give a possible expression

of an axi-symmetric fundamental solution of Laplacian. We give some test cases to test the

perturbation method and the fundamental solution and the results are satisfying. We also use

this method on real furnace data, and the relative error is acceptable.
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