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1 Introduction

We consider the following semilinear elliptic boundary value problem

{

−△u = f(x, u), in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω, and f(x, t) is a Carethéodory

function on Ω × R such that











f(x, t)

t
→ a, a.e. x ∈ Ω, as t → −∞,

f(x, t)

t
→ b, a.e. x ∈ Ω, as t → ∞.

(1.2)

The existence of solutions of (1.1) is closely related to the equation

−△u = bu+ − au−, where u± = max{±u, 0}. (1.3)

Conventionally, the set

Σ := {(a, b) ∈ R
2 : −△u = bu+ − au− has nontrivial solutions}

is called the Fučik spectrum of −△.

In [1, 2, 4, 5, 8, 9] and so on, the authors studied the above problem and obtained an existence

theory of one solution. Of course, their results are closely related to the Fučik spectrum and

no information concerning nodal structure of solutions is obtained. The results in [10] allowed
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(a, b) to be independent of the Fučik spectrum and gave a positive answer for the existence of

sign-changing solutions for various resonant elliptic equations; furthermore, there is no need to

involve the Fučik spectrum in dealing with problems with jumping nonlinearities. Suggested

by the results in [10], we extend the new linking theorem, which may provide the location of

the critical point, to such a case that the functional only satisfies Cerami condition, and obtain

the same results under weaker conditions. Furthermore, we will study nonautonomous second

order quasilinear hyperbolic systems as in [11].

Let 0 < λ1 < · · · < λk < · · · denote the distinct Dirichlet eigenvalues of −△ on Ω. We

make the following assumptions. The letter c will be indiscriminately used to denote various

constants when the exact values are irrelevant.

(e0) f ∈ C(Ω × R), ∃ c > 0 and 1 < p < 2∗ = 2N
N−2 (for N = 1, 2 we take 2∗ = ∞) such that

|f(x, t)| ≤ c(1 + |u|p−1), ∀ (x, u) ∈ Ω × R.

And ∃L > 0 such that f(x, u) + Lu is increasing in u.

(e1) a, b > λk for some k ≥ 2.

(e2) 2F (x, t) ≥ λk−1t
2, ∀ (x, u) ∈ Ω × R, where F (x, t) =

∫ t

0
f(x, s)ds.

(e3) f(x, 0) = 0 and ∀x ∈ Ω, |t| ≤ r0, 2F (x, t) ≤ β0t
2 with r0 > 0, β0 ∈ (λk−1, λk).

(e4) Either f(x, t)t − 2F (x, t) ≥ H(x) ∈ L1(Ω) and

f(x, t)t − 2F (x, t) → +∞, a.e. x ∈ Ω, as |t| → ∞,

or f(x, t)t − 2F (x, t) ≤ H(x) ∈ L1(Ω) and

f(x, t)t − 2F (x, t) → −∞, a.e. x ∈ Ω, as |t| → ∞.

Remark 1.1 By assumption (e1), the point a or b may be situated across multiple eigen-

values λl (l > k). Particularly, a = b = λl (for any λl ≥ k + 1) is permitted, which means that

resonance case at infinite occurs at λl (for any λl ≥ k + 1). Assumptions (e2) and (e3) contain

the case when lim
t→0

f(x,t)
t

= λk−1, a resonant case at the origin.

Let El denote the eigenspace corresponding to λl (l ≥ 1) and Nk = E1 ∪ · · · ∪ Ek. Define

J(u) =
1

2

∫

Ω

|∇u|2dx −

∫

Ω

F (x, u)dx, u ∈ H1
0 (Ω).

Our results are the following.

Theorem 1.1 Assume that (e0)– (e4) hold. Then problem (1.1) has a sign-changing solution

u∗ with J(u∗) > 0.

Next, we consider another case of equation (1.1) which includes double resonant case, oscil-

lating and jumping nonlinearities.

f(x, t)

t
→ b±(x), a.e. x ∈ Ω, as t → ±∞. (1.4)

where λk ≤ b±(x) ≤ λk+1 (k ≥ 2).
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Theorem 1.2 Assume that (e0), (e2), (e3) and (1.4) hold. Suppose

(e5) min{b+(x), b−(x)} 6≡ λk.

(e6) ∃α > 0 such that

lim
|t|→∞

f(x, t)t − 2F (x, t)

|t|α
= β(x), a.e. x ∈ Ω,

where
∫

Ω
β(x)|w(x)|αdx 6= 0 and 0 6= w ∈ H1

0 (Ω).

Then problem (1.1) has a sign-changing solution u∗ with J(u∗) > 0.

Remark 1.2 In Theorems 1.1 and 1.2, for a special case, we may get a more precise position

of u∗. That is, if

J(u∗) = inf
u∈N⊥

k−1
,‖u‖=ρ0

J for some ρ0 > 0,

then u∗ ∈ {u ∈ H1
0 (Ω) : u ∈ N⊥

k−1, ‖u‖ = ρ0}.

Remark 1.3 Obviously, the results of Theorems 1.1 and 1.2 are independent of the Fučik

spectrum. Under our assumptions, it is not necessary to involve the idea of Fučik spectrum in

dealing with problems with jumping nonlinearities.

2 A Linking Type Theorem with Cerami Condition

Define a class of contractions of a Hilbert space E as follows:

Φ := {Γ( · , · ) ∈ C([0, 1]×E, E) : Γ(0, · ) =id; for each t ∈ [0, 1), Γ(t, · ) is a homeomorphism

of E onto itself and Γ−1( · , · ) is continuous on [0, 1) × E; there exists a x0 ∈ E such that

Γ(1, x) = x0 for each x ∈ E and that Γ(t, x) → x0 as t → 1 uniformly on bounded subsets of

E
}

.

Obviously, Γ(t, u) = (1 − t)u ∈ Φ.

Definition 2.1 A subset A of E links a closed subset B of E if A ∩ B = ∅ and, for every

Γ ∈ Φ, there is a t ∈ [0, 1] such that Γ(t, A) ∩ B 6= ∅.

There are some typical examples as those in papers [9, 10]; we only write out one of them

for our own sake.

Example 2.1 Let E = M ⊕ N , where M, N are closed subspaces with dimN < ∞. If

y0 ∈ M\{0} and 0 < ρ < R, then the sets

A := {u = v + sy0 : v ∈ N, s ≥ 0, ‖u‖ = R} ∪ {N ∩ BR},

B := M ∩ ∂Bρ

link each other in the sense of Definition 2.1.

Let E be a Hilbert space and X ⊂ E be a Banach space densely embedded in E. Assume

that E has a closed convex cone PE and P := PE ∩X has interior points in X , i.e., P =
◦

P ∪∂P

in X . We use ‖ · ‖ to denote the norm in E. We also use distE( · , · ) and distX( · , · ) to denote

the distances in E and X , respectively.
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Let J ∈ C1(E, R). We use the following notations: for a, b, c ∈ R, K = K(J) = {x ∈ E :

J ′(x) = 0}, Jb = {x ∈ E : J(x) ≤ b}, Kc = {x ∈ E : J(x) = c, J ′(x) = 0}, K([a, b]) = {x ∈

E : J(x) ∈ [a, b], J ′(x) = 0}.

In [5], a pseudo-gradient vector field W for functional J ∈ C1(E, R) is constructed. Since
‖W (u)‖

1+‖W (u)‖ ≤ 1, the following normalized negative flow σ for J is well defined for (t, u) ∈ R ×E:

d

dt
σ(t, u) = −

W (u)

1 + ‖W (u)‖
, σ(0, u) = u. (2.1)

We shall assume that

(J) K(J) ⊂ X and for all u ∈ E, J ′(u) = u − A(u), A : X → X is continuous.

Under this assumption, we have σ(t, x) ∈ X for x ∈ X and is continuous in (t, u) ∈ R × X .

With the flow σ, we call a subset A ⊂ E an invariant set if σ(t, M) ⊂ M for t ≥ 0.

We use the following concept given in [3].

Definition 2.2 Let M ⊂ X be an invariant set under σ. M is said to be an admissible

invariant set for J , if (a) M is the closure of an open set in X, i.e., M =
◦

M ∪∂M ; (b) if

un = σ(tn, v) → u in E as tn → ∞ for some v 6∈ M and u ∈ K, then un → u in X ; (c) if

un ∈ K ∩ M is such that un → u in E, then un → u in X ; (d) for any u ∈ ∂M\K, we have

σ(t, u) ∈
◦

M for t > 0.

Now, let A ⊂ X be a compact set in the X-topology such that A ∩ S 6= ∅, where S =

X\W, W = P ∪ (−P ). Let B ⊂ E\S be closed, and define

Φ∗ := {Γ ∈ Φ : Γ(t, x) : [0, 1] × X → X is continuous in the

X− topology and Γ(t, W ) ⊂ W}.

Then Γ(t, u) = (1 − t)u ∈ Φ∗.

Definition 2.3 We say that J satisfies Cerami condition, if for any sequence {un} such

that J(un) is bounded and J ′(un) → 0, we have either {un} is bounded and has a convergent

subsequence or ‖J ′(un)‖‖un‖ → ∞.

The following theorem is our main result in this section, where A and B are given as above.

Theorem 2.1 Let A link B, and let J satisfy the Cerami condition. Assume that W is an

admissible invariant set of J and that

a0 := sup
A

J ≤ b0 := inf
B

J.

Then a∗ defined below is a critical value of J :

a∗ = inf
Γ∈Φ∗

sup
Γ([0,1],A)∩S

J(u).

Furthermore, assume 0 6∈ Ka∗. Then Ka∗ ∩ S 6= ∅ if a∗ > b0, and Ka∗ ∩ B 6= ∅ if a∗ = b0.

Proof Evidently a∗ ≥ b0 since A links B. In fact, for any Γ ∈ Φ∗ we have that Γ([0, 1], A)∩

B 6= ∅, Γ([0, 1], A) ⊂ X, B ∩ X ⊂ S and Γ([0, 1], A) ∩ S 6= ∅. Then Γ([0, 1], A) ∩ B ∩ S 6= ∅.
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Therefore

sup
Γ([0,1],A)∩S

J ≥ sup
Γ([0,1],A)∩S∩B

J ≥ inf
Γ([0,1],A)∩S∩B

J ≥ inf
Γ([0,1],A)∩B

J ≥ inf
B

J = b0.

We first consider the case of a∗ > b0. By a contradiction, we assume that Ka∗ ∩ S = ∅.

Note that for any u ∈ W\{0}, the vector −J ′(u) points toward the interior of W . If J has no

critical point in the boundary of W\{0}, then Ka∗ ⊂
◦

W . By the Cerami condition, there are

ε0 > 0, δ0 > 0 such that

‖J ′(u)‖2

1 + 2‖J ′(u)‖
≥

6ε0

δ0
for u ∈ J−1[a∗ − ε0, a

∗ + ε0]\(Ka∗)δ0
,

where (Ka∗)δ0
:= {u ∈ E : distE(u, Ka∗) ≤ δ0}. By decreasing ε0, we may assume that

ε0 < a∗−b0, and K[a∗−ε0, a
∗+ε0]∩S = ∅ (otherwise, we are done). Let Y (u) = W (u)

1+‖W (u)‖ . Then

〈J ′(u), W (u)〉 ≥ 0 for all u and 〈J ′(u), W (u)〉 ≥ 3ε0

δ0

for any u ∈ J−1[a∗ − ε0, a
∗ + ε0]\(Ka∗)δ0

.

Let X0 = {u ∈ E : |J(u) − a∗| ≤ 3ε0}, X1 = {u ∈ E : |J(u) − a∗| ≤ 2ε0} and consider

η(u) =
distE(u, X2)

distE(u, X1) + distE(u, X2)
,

where X2 = E\X0. Then η(u)Y (u) is a locally Lipschitz vector field on both E and X , since

X is embedded continuously in E. We consider the following Cauchy initial value problem:

dσ(t, u)

dt
= −η(σ(t, u))Y (σ(t, u)), σ(0, u) = u ∈ X,

which has a unique continuous solution σ(t, u) in both X and E. Evidently, dJ(σ(t,u))
dt

≤ 0.

By the definition of a∗, there exists a Γ ∈ Φ∗, such that Γ([0, 1], A) ∩ S ⊂ Ja∗+ε0 . Therefore

Γ([0, 1], A) is a subset of Ja∗+ε0 ∪ W . Denote A∗ = Γ([0, 1], A). We claim that there exists a

T0 > 0 such σ(T0, A
∗) ⊂ Ja∗+ε0 ∪ W . This follows from the deformation lemma with Cerami

condition obtained in [7].

Next, for the case of a∗ = b0, please see the second part of Theorem 2.1 in [10], where we

may assume that ε2 <
ε2

1
ε3

4(1+2ε1) . We omit its proof here.

3 Proofs of Theorems 1.1 and 1.2

Let E := H1
0 (Ω) be the usual Sobolev space endowed with the inner product

〈u, v〉 =

∫

Ω

(∇u∇v + Luv)dx, u, v ∈ E,

and the associated norm ‖u‖ = 〈u, u〉
1

2 , which is equivalent to the usual norm ‖u‖H1

0
(Ω) =

(
∫

Ω
|∇u|2dx)

1

2 . Here L is the constant given in condition (e0). Let X := C1
0 (Ω) be the usual

Banach space which is densely embedded in E. The solution of (1.1) is associated with the

critical points of the following functional

J(u) =
1

2

∫

Ω

|∇u|2dx −

∫

Ω

F (x, u)dx, u ∈ H1
0 (Ω).
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By the theory of elliptic equations, K = K(J) ⊂ X . The positive cones in E and X are given,

respectively, by

PE := {u ∈ E : u(x) ≥ 0 for a.e. x ∈ Ω},

P := {u ∈ X : u(x) ≥ 0 for a.e. x ∈ Ω}.

Clearly, PE has an empty interior in E and P has a nonempty interior
◦

P in X . Therefore,

P =
◦

P ∪∂P .

We rewrite the functional J as following:

J(u) =
1

2
‖u‖2 −

∫

Ω

(1

2
Lu2 + F (x, u)

)

dx.

It is known that J ∈ C1(E, R) and that the gradient of J at u is given by

J ′(u) = u − (−△ + L)−1(f(x, u) + Lu) := u − Au,

where the operator A : E → E is continuous and compact, and A(X) ⊂ X . Particularly, by the

strong maximum principle, A|X , the restriction of A to X , is strongly order preserving, that is

u > v ⇒ A(u) ≫ A(v). Therefore, condition (J) is satisfied.

In papers [6, 7], we have proved that W = P ∪ (−P ) is an admissible invariant set of the

pseudo gradient flow σ, by assumption (e0) and the (PS) or Cerami condition.

To prove Theorem 1.1, we need some lemmas.

Lemma 3.1 Assume that (e0), (e4) and (1.3) hold. Then J satisfies the Cerami condition.

Proof The proof is standard. Assume that {un} is a sequence such that J(un)→c, J ′(un)→

0. Without loss of generality, we suppose that {‖J ′(un)‖‖un‖} is bounded (otherwise, we are

done by the definition of Cerami condition). It suffices to prove that {un} is bounded.

If {un} is unbounded, we note that, as n is large enough,

1

2
‖un‖

2 ≤ c +

∫

Ω

F (x, un) ≤ c + c

∫

Ω

|un|
p.

Then for a renamed subsequence

1 ≤ c lim
n→∞

∫

Ω

|un|p

‖un‖2
dx.

It follows that lim
n→∞

|un|
p = ∞, and lim

n→∞
|un| = ∞ in turn, on a subset of Ω with positive

measure. Combing this with (e4), we have

∣

∣

∣

∫

Ω

(1

2
f(x, un)un − F (x, un)

)

dx
∣

∣

∣
−→ ∞.

However,
∣

∣

∣
J(un) −

1

2
〈J ′(un), un〉

∣

∣

∣
=

∣

∣

∣

∫

Ω

(1

2
f(x, un)un − F (x, un)

)

dx
∣

∣

∣
< c,

a contradiction. Thus, we see that {un} is bounded.
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We rewrite J as

J(u) =
1

2
‖u‖2 −

1

2
a‖u−‖2

2 −
1

2
b‖u+‖2

2 −

∫

Ω

P (x, u)dx, u ∈ H1
0 (Ω),

where P (x, u) =
∫ u

0
p(x, t)dt; p(x, t) = f(x, t) − (bt+ − at−), and t± = max{±t, 0}.

Let El denote the eigenspace corresponding to λl (l ≥ 1) and Nk = El ∪ · · · ∪ Ek. Then we

have

Lemma 3.2 Assume (e1). Then J(u) → −∞ as ‖u‖ → ∞, u ∈ Nk.

Lemma 3.3 Assume (e2). Then J(u) ≤ 0 for all u ∈ Nk−1.

Proof This is an immediate consequence of condition (e2).

Lemma 3.4 Assume (1.2) or (1.4) and (e3). Then there exist ρ0 > 0, c0 > 0 such that

J(u) ≥ c0 for ‖u‖ = ρ0 > 0, u ∈ N⊥
k−1.

Proof of Theorem 1.1 By Lemmas 3.1–3.4, there exists R0 > ρ0 > 0 such that

a0 := sup
A

J(u) ≤ 0 < c0 ≤ b0 := inf
B

J(u),

where A := {u = v + sy0 : v ∈ Nk−1, s ≥ 0, ‖u‖ = R0}∪ {Nk−1 ∩BR0
}, with y0 ∈ Ek satisfying

‖y0‖ = 1; B := {u ∈ N⊥
k−1 : ‖u‖ = ρ0}.

Theorem 2.1 and Example 2.1 imply that there is a critical point u∗ satisfying J ′(u∗) =

0, J(u∗) = a∗ ≥ b0 > 0. Obviously, u∗ 6= 0 and either u∗ ∈ S or u∗ ∈ B. The second alternative

occurs when J(u∗) = b0 (see Remark 1.2). Both cases imply that u∗ is sign-changing.

Remark 3.1 Our condition (e4) is weaker than that of [10], where that is applied to prove

the (PS) condition. Under our condition (e4) here, J only satisfies Carami condition.

To prove Theorem 1.2, we need the following lemmas.

Lemma 3.5 Under assumptions (e0) and (e5), J(u) → −∞ for u ∈ Nk as ‖u‖ → ∞.

Please see [10] for the proofs of above Lemmas 3.2, 3.4 and 3.5.

Lemma 3.6 Assume condition (e0), (e6) and (1.4) hold. Then J satisfies the Cearmi

condition.

Proof Assume that {un} is a sequence such that J(un)→c, J ′(un)→0 and {‖J ′(un)‖‖un‖}

is bounded. We are going to prove that {un} is bounded. By a contradiction, we assume that

‖un‖ → ∞ as n → ∞. Let wn = un

‖un‖ . Then ‖wn‖ = 1 and, up to a subsequence, wn → w

weakly in E, strongly in L2(Ω) and a.e. in Ω. Moreover,

〈J ′(un), v〉 = 〈un, v〉 −

∫

Ω

f(x, un)vdx → 0,

〈wn, v〉 −

∫

Ω

f(x, un)v

‖un‖
dx → 0.

By (1.4), we see that

−△w = b+w+ − b−w−.
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Since
J(un)

‖un‖2
=

1

2
−

∫

Ω
F (x, un)dx

‖un‖2
→ 0,

we see that ∫

Ω

(b+(w+)2 + b−(w−)2)dx = 1.

It implies that w 6= 0. By the Lebesgue Theorem, we have

0 = lim
n→∞

J(un) − 1
2 〈J

′(un), un〉

‖un‖α

= lim
n→∞

∫

Ω(f(x, un)un − 2F (x, un))dx

‖un‖α

= lim
n→∞

∫

Ω

f(x, un)un − 2F (x, un)

|un|α
·
|un|α

‖un‖α
dx

=

∫

Ω

β(x)|w(x)|αdx 6= 0,

a contradiction.

Proof of Theorem 1.2 By Lemmas 3.3–3.5, there exist R0 > ρ0 > 0 such that

a0 := sup
A

J(u) ≤ 0 < c0 ≤ b0 := inf
B

J(u),

where A and B are defined as in the proof of Theorem 1.1. By Lemma 3.6, we get the conclusions

of Theorem 1.2 and Remark 1.2 as in the proof of Theorem 1.1.

Remark 3.2 Our condition (e6) here is different from that of [10], which is used to prove

the Cerami condition; furthermore, it is more intuitive.
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