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Abstract Following Jacobi’s geometrization of Lagrange’s least action principle, trajec-
tories of classical mechanics can be characterized as geodesics on the configuration space
M with respect to a suitable metric which is the conformal modification of the kinematic
metric by the factor (U + h), where U and h are the potential function and the total en-
ergy, respectively. In the special case of 3-body motions with zero angular momentum, the
global geometry of such trajectories can be reduced to that of their moduli curves, which
record the change of size and shape, in the moduli space of oriented m-triangles, whose
kinematic metric is, in fact, a Riemannian cone over the shape space M

∗ ≃ S
2( 1

2
).

In this paper, it is shown that the moduli curve of such a motion is uniquely determined
by its shape curve (which only records the change of shape) in the case of h 6= 0, while in the
special case of h = 0 it is uniquely determined up to scaling. Thus, the study of the global
geometry of such motions can be further reduced to that of the shape curves, which are
time-parametrized curves on the 2-sphere characterized by a third order ODE. Moreover,
these curves have two remarkable properties, namely the uniqueness of parametrization
and the monotonicity, that constitute a solid foundation for a systematic study of their
global geometry and naturally lead to the formulation of some pertinent problems.
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1 Introduction

1.1 Local and global characterization of 3-body trajectories

The classical 3-body problem of celestial mechanics studies the local and global geometry of

the trajectories of a 3-body system under the influence of the gravitational forces, or equivalently

a conservative system with potential energy −U , where

U =
∑

i<j

mimj

rij
(1.1)

is the Newtonian potential function. Thus, when the particles have position vectors ai =

(xi, yi, zi) with respect to an inertial frame, the trajectories are locally characterized by New-

ton’s equation

miäi =
∂U

∂ai
=
mimj

r3ij
(aj − ai) +

mimk

r3ik
(ak − ai), {i, j, k} = {1, 2, 3}, (1.2)

Manuscript received April 6, 2007. Revised May 23, 2007. Published online December 24, 2007.
∗Department of Mathematics, University of California, Berkeley, California 94720, USA.

∗∗Department of Mathematical Sciences, NTNU, Trondheim, Norway. E-mail: eldars@math.ntnu.no



2 W. Y. Hsiang and E. Straume

where rij = |aj − ai| are the mutual distances, and (m1,m2,m3), mi > 0, is the given mass

distribution, assumed to be normalized so that
∑
mi = 1. Since the above equation is of

order two, a trajectory is completely determined by the initial position and velocity of the

particles— often referred to as the deterministic doctrine of classical mechanics.

We use the following notation

I =
∑

mi|ai|2, T =
1

2

∑
mi|ȧi|2, Ω =

∑
mi(ai × ȧi) (1.3)

for the (polar) moment of inertia, kinetic energy and angular momentum, respectively. These

are the basic kinematic quantities, and their interactions with the potential function U play

a major role in the dynamics of the 3-body problem. For example, it is easy to deduce the

classical conservation laws from the system (1.2), namely the conservation of total energy

h = T − U, (1.4)

linear momentum
∑
miȧi and angular momentum Ω. As usual, the invariance of linear mo-

mentum allows us to choose the inertial reference frame with the origin at the center of mass.

Moreover, by differentiation of I twice with respect to time t and using (1.2), we get

Ï = 4T + 2
∑

ai ·
∂U

∂ai
= 4T − 2U = 2(U + 2h), (1.5)

where we have used the fact that U is homogeneous of degree −1 as a function of the vectors

ai. This is the Lagrange-Jacobi equation.

On the other hand, trajectories can also be determined as solutions of a suitable boundary

value problem, and the simplest and most basic one is, for example,

“For a given pair of points P, Q, what are those trajectories γ(t), t0 ≤ t ≤ t1,

with γ(t0) = P and γ(t1) = Q?”

Then solutions are found by applying an appropriate least action principle, which characterizes

solutions as extremals of an action integral J(γ) among those virtual motions γ(t) with the

given pair of end points, together with some additional constraints.

Here we shall focus attention on the two least action principles due to Lagrange and Hamil-

ton, which are quite different but dual to each other:

Lagrange : J1(γ) =

∫

γ

Tdt, fixed energy h, (1.6)

Hamilton : J2(γ) =

∫

γ

(T + U)dt, fixed time interval [t0, t1]. (1.7)

The motions t→ γ(t) are regarded as parametrized curves in the Euclidean configuration space

M =
{

(a1,a2,a3);
∑

miai = 0
}
≃ R

6. (1.8)

Our aim, however, is to reduce the study of 3-body trajectories to a study of associated curves

in a lower dimensional space, namely the interior configuration space, i.e., the moduli space

M ≃ R
6/SO(3) ≈ R

3
+ ⊂ R

3. (1.9)
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With the appropriate assumptions, one expects that the least action principles, as well as

Newton’s differential equation, can be pushed down to the level of M . In fact, one of our major

results is that the study of 3-body motions with vanishing angular momentum further reduces

to the analysis of specific curves on the shape space, which is the sphere S2 ⊂ R3.

The final step of our program is, of course, the lifting procedure from the moduli curve γ(t)

back to the actual trajectory γ(t). But this is a purely geometric construction which is well

understood (cf. e.g. [5] or the following subsection) and it will not be a topic here. Briefly, the

curve in M determines the trajectory in M uniquely up to a global congruence.

1.2 Riemannian geometrization and reduction

Classical mechanics up to present time is largely based upon developments related to Hamil-

ton’s least action principle, involving Hamiltonian systems and canonical transformations. Ge-

ometrically speaking, the underlying structure is the symplectic geometry of the phase space.

However, in this paper, we shall rather focus on the Riemannian geometric approach, based

upon Jacobi’s reformulation of Lagrange’s least action principle. In his famous lectures (cf.

[6]), Jacobi introduced the concept of a kinematic metric

ds2 = 2Tdt2

on the configuration space M , in terms of the kinetic energy T of the mechanical system. For

example, in the case of an n-body system with total mass
∑
mi = 1

ds2 = 2Tdt2 =
∑

i

mi(dx
2
i + dy2

i + dz2
i ). (1.10)

Now, for a system with kinematic metric ds2, potential function U and a given constant total

energy h, set

M(U,h) = {p ∈M ;h+ U(p) ≥ 0}, (1.11)

ds2h = (h+ U)ds2,

where ds2h is the associated dynamical metric. Then by writing

dsh =
√
h+ U ds =

√
T ds =

√
2Tdt,

Jacobi transformed Lagrange’s action integral (1.6) into an arc-length integral

J1(γ) =
1√
2

∫

γ

dsh, (1.12)

and hence, in one stroke, the least action principle becomes the following simple geometric

statement:

“ Trajectories with total energy h are exactly those geodesic

curves in the space M(U,h) with the dynamical metric ds2h .”
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Nowadays, such metric spaces are called Riemannian manifolds, and the global geometric

study of geodesic curves is often referred to as the Morse theory of geodesics. In particular, we

note that the dynamical metric ds2h is a conformal modification of the underlying kinematic

metric ds2.

In this geometric setting, the notion of “congruence class” is defined by the action of the

rotation group SO(3), fixing the center of gravity (= origin). It acts isometrically on the

configuration space (M, ds2) with the kinematic metric, and also on the modified metric space

(M(U,h), ds
2
h) for any SO(3)-invariant potential function U . The corresponding SO(3)-orbit

spaces inherit the structure of a (stratified) Riemannian manifold with the induced orbital

distance metric, which we denote by

(M, ds2), (M (U,h), ds
2
h), ds2h = (h+ U)ds2, (1.13)

and similar to (1.11), for h negative the geodesics must stay inside the Hill’s region, namely the

proper subset

Mh = M (U,h) = {p ∈M ;h+ U(p) ≥ 0}. (1.14)

By definition, the projection map

π : M →M = M/SO(3)

is a (stratified) Riemannian submersion, where the horizontal tangent vectors at p ∈ M are

those perpendicular to the SO(3)-orbit. They are mapped, by the tangent map dπ, isometrically

to the tangent space of M at p = π(p). Via the map π there is a 1-1 correspondence between

curves γ in M and their horizontal lifting γ in M (resp. M(U,h)), up to congruence. In fact, for

a (virtual) motion γ(t), the property of being horizontal is equivalent to the vanishing of the

angular momentum vector Ω.

On the other hand, the above metric ds2 onM also has a kinematic interpretation in analogy

with (1.10), namely

ds2 = 2Tdt2, T = T − Tω, (1.15)

where Tω is the purely rotational energy and hence the difference T , representing that of the

change of size and shape, is naturally the kinetic energy at the level of M . Therefore, we also

refer to ds2 (resp. ds2h) as the kinematic (resp. dynamical) metric on M . Classical mechanics,

indeed, tells us how the term Tω can be calculated from Ω via the so-called inertia operator of

the system; in particular, it follows that Tω = 0 if and only if Ω = 0.

Now, assume Ω = 0 and let U be a nonnegative and SO(3)-invariant function on M . Then

it is not difficult to see that both action principles (1.6), (1.7) can be pushed down to M . In the

first case, using Jacobi’s reformulation (1.12), we arrive immediately at the following geometric

statement similar to the one above:

“ Curves in M representing 3-body trajectories with total energy h

(and Ω = 0) are exactly those geodesic curves in the moduli

space M (U,h) with the induced dynamical metric ds2h.”
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In the case of (1.7), the Lagrange function L = T + U is also defined at the level of M .

Indeed, when Ω = 0, we can view M as the configuration space for a simple conservative

classical mechanical system, namely with potential energy −U , kinetic energy T , and conserved

total energy h = T − U . It is easy to calculate the associated Euler-Lagrange equations with

respect to suitable coordinates in M , as demonstrated in Subsection 3.2. Finally, the reduced

Newton’s differential equation on M can be calculated by the procedure described in [5], but

we leave this topic here.

1.3 A brief survey of the main results

The results in this paper provide the foundations for the above Riemannian geometric ap-

proach to the 3-body problem with zero angular momentum. In Section 2, we present the

kinematic geometric framework for the reduction method which we shall work out, consisting

of the two successive reductions M → M → M∗, where M ≃ R3 is the (congruence) moduli

space and M∗ ≃ S2 is the shape space. The second reduction uses the cone structure of M

over M∗ to eliminate the scaling variable ρ =
√
I by radial projection to the sphere.

A trajectory γ(t) in the configuration space M projects to its moduli curve γ(t) in M , and

away from the base point O the curve further projects to the shape curve γ∗(t) on the sphere.

Conversely, whereas γ(t) is determined up to congruence by γ(t), the real power of the above

reduction method rests upon the knowledge of the subtle relationship which, in fact, generally

exists between γ(t) and the geometric (i.e. unparametrized) curve γ∗.

In reality, the complete study of the 3-body trajectories is hereby reduced to the study of

the relative geometry between the shape curve γ∗ and the gradient flow of U∗, namely the

Newtonian potential function restricted to the 2-sphere M∗. The major results of the paper

are divided into the following four main topics:

(1) The calculation of the reduced Newton’s equations in M in several ways, such as the

geodesic equations of the Riemannian space (Mh, dsh), and the reformulation of the geodesic

condition in terms of the curvature of the spherical shape curve. A suitable combination of

these equations also yields a separation of the radial variable ρ and hence a third order ODE

on the 2-sphere which describes all shape curves for any energy level h. The key step in this

reduction is Lemma 3.1 which relates the intrinsic geometry of (γ∗, U∗) to a kinematic quantity

of γ(t).

(2) The unique parametrization theorem (cf. Theorem 4.1) asserts that the time parametri-

zed moduli curve γ(t) is (essentially) determined by the oriented geometric shape curve γ∗.

Furthermore, the curve γ∗ is in fact uniquely determined by the first two curvature coefficients

at a generic point on the curve. The basic technique used here is the local analysis of solution

curves via power series expansion.

(3) The monotonicity theorem (cf. Theorem 5.1), which describes a type of piecewise mono-

tonic behavior of the shape curve γ∗. Namely, the mass-modified latitude is a strictly monotonic

function along γ∗ between two succeeding local maxima or minima, and they lie on opposite
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hemispheres. In particular, the curve intersects the eclipse circle at a unique point between two

such local extrema.

(4) Some initial applications to the study of triple collisions. In particular, simple geomet-

ric proofs of the fundamental theorems of Sundman and Siegel. Moreover, their asymptotic

formulae for the derivatives of the moment of inertia I up to order two are extended to the

derivatives of any order.

The present exposition is based upon previous works of the authors (cf. [3–5]) on the 3-

body problem, exploring its “sphericality” as it manifests itself in various ways. The differential

equations which describe the moduli curves of the 3-body trajectories, are elaborated in Sections

3 and 4, including a careful power series analysis and comparison of the initial value problems

at the moduli space and the shape space level.

Section 5 is devoted to a geometric study of the gradient field of U∗, which also yields a

simple and purely geometric proof of the monotonicity theorem. A similar type of monotonicity

for the shape curves was first proved by R. Montgomery [9] with his “infinitely many syzygies”

theorem, and later by T. Fujiwara et al [2].

In Section 6, we recall the classical results and clarify some issues on the work of Sundman

and Siegel concerning triple collisions. Moreover, with the results obtained so far, many chal-

lenging problems, for example in the study of collisions and periodic motions, naturally present

themselves for an in depth study of the global geometry of shape curves. Some of these open

problems will be briefly discussed in Section 7.

2 Kinematic Geometry of m-Triangles

A 3-body motion with vanishing angular momentum is always confined to a fixed plane

(for purely kinematic reasons), so the motions we shall study are always planary. Therefore,

we choose a plane R2 ⊂ R3 with normal vectors ±n and define an m-triangle to be a triple

δ = (a1,a2,a3) of vectors ai ∈ R2 constrained by the center of mass condition in (1.8). Hence,

for our purpose we shall modify the definition (1.8) of the configuration space by taking the

subspace

M ≃ R
4 ⊂ R

6 :

3∑

i=1

miai = 0 (2.1)

which consists of the above m-triangles in the fixed plane R2. M has the natural action of

the rotation group SO(2), and the moduli space, representing the SO(2)-congruence classes of

m-triangles, is the orbit space

M = M/SO(2) ≃ R
4/SO(2) ⊃ R

6/SO(3). (2.2)

The degenerate (or collinear) m-triangles constitute the eclipse subvariety E of M , and we

say a nondegeneratem-triangle is positively (resp. negatively) oriented if (a1,a2,n) is a positive

(resp. negative) frame of R3. Accordingly, we may write M and M as the disjoint union of
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three subsets

M = M+ ∪ E ∪M−, M = M+ ∪ E ∪M−. (2.3)

Moreover, we observe that the moduli space of unoriented m-triangles would be

M/Z2 ≃ R
4/O(2) ≃M± ∪ E ≃ R

6/SO(3) = R
6/O(3).

Remark 2.1 For a study of general (non-planary) 3-body motions, the natural configu-

ration space M̂ consists of pairs (δ,n), where δ is an m-triangle in R3 and n is a unit vector

perpendicular to all ai. M̂ is a 6-dimensional manifold (a 4-plane bundle over S2) with the

natural action of SO(3), and now the moduli space coincides with the above one (cf. [5, Section

2]), namely

M̂/SO(3) ≃M/SO(2) = M.

We shall describe in more detail the topology and induced Riemannian structure of the

above simple orbit spaces. Let δ (as above) and δ′ = (b1,b2,b3) be m-triangles. The following

SO(2)-invariant, but mass dependent inner product

〈δ, δ′〉 =
∑

miai · bi (2.4)

is just the kinematic metric ds2 of M defined by (1.10). In particular, the squared norm is

the moment of inertia, |δ|2 = I = ρ2. Let S3 ⊂ M be the unit sphere (ρ = 1) and denote its

spherical metric by du2. Then we can express M as the Riemannian cone over (S3, du2)

M = R
4 = C(S3) : ds2 = dρ2 + ρ2du2, (2.5)

where ρ measures the distance from the base point (origin) of the cone.

A description similar to (2.5) applies to the moduli space

(M, ds2) = (M, ds2)/SO(2) (2.6)

whose “unit sphere” M∗ = (ρ = 1) is called the shape space, namely it is the image of S3 in M

(M∗, dσ2) = (S3, du2)/SO(2), (2.7)

with the induced metric denoted by dσ2. Thus, M also inherits the structure of a Riemannian

cone over its “unit sphere”

M = C(S3)/SO(2) = C(S3/SO(2)) = C(M∗) : ds2 = dρ2 + ρ2dσ2 (2.8)

with ρ still measuring the distance from the base point O. The shape space is actually isometric

to the 2-sphere of radius 1
2 , as follows from the well-known Hopf fibration construction

S3 → M∗ = S3/SO(2) = CP 1 ≃ S2
(1

2

)
. (2.9)

As a cone over S2, M is clearly homeomorphic to R3 with the origin at the base point

O. Away from O they are even diffeomorphic, when M has the induced smooth functional

structure as an orbit space of R4.
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For the convenience of applying vector algebra, we also recall the Euclidean model of M ,

where M is identified with R3, with Euclidean coordinates (x, y, z) and associated spherical co-

ordinates (I, ϕ, θ), and the kinematic metric is expressed as the following conformal modification

of the standard Euclidean metric:

ds2 =
dx2 + dy2 + dz2

4
√
x2 + y2 + z2

= dρ2 +
ρ2

4
(dϕ2 + sin2 ϕ dθ2), (2.10)

I2 = ρ4 = x2 + y2 + z2, 0 ≤ ϕ ≤ π, 0 ≤ θ ≤ 2π.

Here (ϕ, θ) denotes any choice of spherical polar coordinates on the sphere

M∗ = S2 : x2 + y2 + z2 = 1,

whose induced metric from the Euclidean 3-space is that of the round sphere of radius 1

S2(1) : ds2 = dϕ2 + sin2 ϕ dθ2, (2.11)

whereas its induced (i.e. kinematic) metric as a submanifold of (M, ds2) is

dσ2 =
1

4
ds2. (2.12)

By (1.15) and (2.10) the total kinetic energy can be written as

T = T + Tω =
1

2
ρ̇2 +

ρ2

8
(ϕ̇2 + (sin2 ϕ)θ̇2) + Tω, (2.13)

where the rotational term Tω vanishes precisely when Ω = 0. Starting from Section 3 this is

our standing assumption.

Remark 2.2 The radial distance function ρ =
√
I is also referred to as the hyper-radius

in the physics literature. For our purpose it is generally more convenient to use ρ rather than

I as the scaling parameter, and we shall refer to (ρ, ϕ, θ) as a spherical coordinate system of

M . We refer to [5] for the relationships between spherical coordinates, individual moments of

inertia (I1, I2, I3), or mutual distances (r12, r23, r31).

In the above Euclidean model of kinematic geometry the decomposition in (2.3) has a

distinguished equator plane, namely the eclipse plane E which divides R3 into the two half-

spaces M± = R
3
±. We choose the Euclidean coordinates so that E is the xy-plane and the

half-space z > 0 represents the congruence classes δ of the positively oriented m-triangles.

Finally,

E∗ = E ∩M∗ : x2 + y2 = 1, z = 0

is the distinguished equator or eclipse circle of the sphere M∗ = S2.

On the other hand, the position of the various shapes δ∗ of m-triangles on the sphere is

uniquely determined by the position of the three binary collision points bi, i = 1, 2, 3, along

the circle E∗, where b1 represents the shape of the degenerate m-triangle with a2 = a3 etc. We

are still free to choose the cyclic ordering b1 → b2 → b3 either in the eastward or westward
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direction. Moreover, the mass distribution and the relative positions of the three points bi

mutually determine each other. In fact, the angle β1 between b2 and b3 is given by

cosβ1 =
m2m3 −m1

m2m3 +m1
, etc., (2.14)

and these formulae can be inverted.

Let {N,S} be the north and south pole of S2. It is often convenient to choose the spherical

coordinate system (ϕ, θ) centered at N , namely ϕ = 0 at the pole N . Then the poles represent

the m-triangles (congruent, but with opposite orientation) of maximal area for a fixed size ρ,

and more generally, the area of an m-triangle is given by the formula

∆ =
ρ2

4
√
m1m2m3

| cosϕ|. (2.15)

For a normalized (i.e. ρ = 1) m-triangle of shape p ∈ S2(1), we also recall the formula for

the mutual distances (cf. (1.2))

rij =
1

2

√
1 −mk

mimj
|p− bk| =

√
1 −mk

mimj
sinσk, (2.16)

where |p − bk| (resp. 2σk) is the Euclidean distance (resp. angle) between p and bk. For the

proofs of (2.14)–(2.16), we refer to [4] or [5].

Remark 2.3 In this paper, we use both the kinematic and Euclidean model S2(r), r = 1
2

or 1, of the shape space M∗. Their arc-length parameters are σ and s = 2σ, respectively

(cf. (2.12)). Of course, the various geometric quantities, such as velocity, geodesic curvature,

gradient etc., must also be scaled appropriately when passing from one model to the other.

3 Analysis on the Moduli Curves of 3-Body

Motions with Zero Angular Momentum

In this chapter, we shall follow Jacobi’s geometrization idea at the level of the moduli space

M = R3. This enables us to reduce the analysis of 3-body trajectories with zero angular

momentum to that of the corresponding moduli curves. According to Jacobi, for a given energy

level h the moduli curves can be interpreted as the geodesics of a specific Riemannian metric

ds2h on M . Now, the standard procedure for the calculation of the geodesic equations amounts

to the calculation of the Christoffel symbols of the metric, with respect to a suitably chosen

coordinate system suggested by the geometry of the space, say. The resulting equations are

ordinary differential equations whose solutions are curves parametrized by the arc-length.

The kinematic geometry describes M with the scaling and rotational symmetry of a Rie-

mannian cone over a sphere, and therefore the spherical coordinates ρ, ϕ, θ present themselves

as the most natural choice. In Subsection 3.1, we shall calculate the associated differential

equations. However, the natural parameter for 3-body trajectories is the physical time t, and

it is the effective usage of fixed energy that enables us to express the equations in terms of t as

well (cf. (3.3)).
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On the other hand, in the Hamiltonian least action principle the time interval is fixed and

t is the natural parameter from the outset. The Euler-Lagrange equations for the Lagrange

function L on M are calculated in Subsection 3.2, and this approach, in fact, yields the same

system (3.3) in a much simpler way.

However, we also seek a differential equation purely at the shape space level, that is, with

the scaling parameter ρ eliminated. This demands a deeper understanding of the relationship

between ρ and the geodesic curvature of the shape curve. To this end we shall introduce an

alternative geometric approach to the study of geodesics in M , which takes the full advantage

of the spherical symmetry and the cone structure of M . This is the topic of Subsection 3.3.

Finally, in Subsection 3.4 we shall synthesize the results obtained in the previous subsections

and, in particular, we explain how the moduli curve can be reconstructed from the shape curve.

3.1 Calculation of the standard geodesic equations in Mh

We shall calculate the (standard) geodesic equations of (Mh, ds
2
h) relative to the spherical

coordinates (ρ, ϕ, θ), where (ϕ, θ) denotes a choice of spherical polar coordinates on the shape

space M∗ = S2. The homogeneity of the Newtonian potential function (1.1) allows us to write

U =
1

ρ
U∗(ϕ, θ), (3.1)

where U∗ is the shape potential function on S2. By (1.13) and (2.10), the metric with the

arc-length element sh is

ds2h =
(U∗

ρ
+ h

)
ds2 =

(U∗

ρ
+ h

)(
dρ2 +

ρ2

4
(dϕ2 + sin2 ϕ dθ2)

)
, (3.2)

and the standard procedure for the calculation of the geodesic equations via the Christoffel

symbols, but expressed with respect to time t as the independent variable, yields the following

system (cf. [13, (5.11)])

( i ) 0 = ρ̈+
ρ̇2

ρ
− 1

ρ

(1

ρ
U∗ + 2h

)
,

( ii ) 0 = ϕ̈+ 2
ρ̇

ρ
ϕ̇− 1

2
sin(2ϕ)θ̇2 − 4

ρ3
U∗

ϕ, (3.3)

(iii) 0 = θ̈ + 2
ρ̇

ρ
θ̇ + 2 cot(ϕ)ϕ̇θ̇ − 4

ρ3

1

sin2 ϕ
U∗

θ ,

where the equation (3.3)(i) is just the Lagrange-Jacobi equation (1.5).

The calculation of the above system goes as follows. For simplicity, let us write

f2 = U + h = T, u = sh,

and dξ
du = ξ′, dξ

dt = ξ̇ for any function ξ. Then by (1.15) and (3.2)

du2 = Tds2 = 2T 2dt2 = 2f4dt2,
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and we deduce the useful identities relating arc-length and time derivatives

ξ′ =
ξ̇

u̇
, ξ′′ =

u̇ξ̈ − üξ̇

u̇3
,

ü

u̇
= 2

ḟ

f
, (3.4)

2f2 = ρ̇2 +
ρ2

4
(ϕ̇2 + (sin2 ϕ)θ̇2), 2f4 = u̇2. (3.5)

Now, the first step is to calculate the geodesic equations with u as the independent variable,

following the standard procedure, and the next step is to transform the equations by changing

to t as the independent variable, using the identities in (3.4) and (3.5). With the notation

(x1, x2, x3) = (ρ, ϕ, θ) the equations in the first step can be stated as

d2xk

du2
+

3∑

i,j=1

Γk
ij

dxi

du

dxj

du
= 0, k = 1, 2, 3, (3.6)

where the Christoffel symbols Γk
ij are defined by

Γk
ij =

1

2

∑

m

(∂gjm

∂xi
+
∂gmi

∂xj
− ∂gij

∂xm

)
gkm.

Here, (gij) is the inverse of the matrix (gij) representing the metric du2, in the sense that

du2 = f2
(
dρ2 +

ρ2

4
(dϕ2 + sin2 ϕ dθ2)

)
=

∑
gijdxidxj .

Thus the matrices are diagonal and

g11 = f2, g22 =
1

4
f2x2

1, g33 =
1

4
f2x2

1 sin2 x2, gii = g−1
ii .

The first geodesic equation follows from (3.6) with k = 1, so by calculating the symbols Γ1
ij

we obtain

ρ′′ − U∗

2f2ρ2
ρ′2 +

( U∗

2f2
− ρ

)1

4
(ϕ′2 + (sin2 ϕ)θ′2) +

ρ′

f2ρ
(U∗

ϕϕ
′ + U∗

θ θ
′) = 0.

Then, in the second step a straightforward calculation using (3.4) and (3.5) yields

ρ̈+
ρ̇2

ρ
+

{
− ρ̇2U∗

f2ρ2
− 2

f2

ρ
+
U∗

ρ2
+

( U̇∗

f2ρ
− 2

ḟ

f

)
ρ̇
}

= 0,

where the bracket expression simplifies to −ρ−1(U + 2h). The final result is the first equation

of (3.3).

Next, let us consider the case k = 2 where the first step yields the equation

0 = ϕ′′ −
2U∗

ϕ

f2ρ3

(
ρ′2 +

ρ2

4
(ϕ′2 + (sin2 ϕ)θ′2)

)
+
U∗

ϕ

f2ρ
ϕ′2 − 1

2
(sin 2ϕ)θ′2

+
1

f2

(
− U∗

ρ2
+

2f2

ρ

)
ρ′ϕ′ +

U∗
θ

f2ρ
ϕ′θ′.

The second step leads to the equation

0 = ϕ̈+ 2
ρ̇

ρ
ϕ̇− 1

2
sin(2ϕ)θ̇2 − 4

ρ3
U∗

ϕ +
{
− 2

ḟ

f
ϕ̇+

U∗
ϕ

f2ρ
ϕ̇2 − U∗

f2ρ2
ρ̇ϕ̇+

U∗
θ

f2ρ
ϕ̇θ̇

}
,
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where the bracket expression simplifies to

ϕ̇

f2

( U̇∗

ρ
− U∗

ρ2
ρ̇− d

dt
f2

)
= 0.

This yields the second equation of (3.3). The last case k = 3 is similar to the previous one, so

we have omitted the calculations.

3.2 An alternative derivation of the standard geodesic equations

Another way of deriving the system (3.3) is to calculate the Euler-Lagrange equations for

Hamilton’s least action principle (1.7), at the level of the moduli space M . In fact, the Lagrange

function L = T +U descends to a function defined on the tangent bundle TM since Ω = 0, and

T =
1

2

∣∣∣
dγ

dt

∣∣∣
2

=
1

2

(ds

dt

)2

is actually the kinetic energy of a curve γ(t) in M . Thus we have a simple classical conservative

mechanical system with potential energy −U , kinetic energy T , and conserved total energy

h = T − U . Therefore, in terms of the coordinates (ρ, ϕ, θ) the associated Lagrange system is

d

dt

∂L

∂ρ̇
=
∂L

∂ρ
,

d

dt

∂L

∂ϕ̇
=
∂L

∂ϕ
,

d

dt

∂L

∂θ̇
=
∂L

∂θ
, (3.7)

where by (2.10)

L = T + U =
(1

2
ρ̇2 +

ρ2

8
(ϕ̇2 + sin2 ϕ θ̇2)

)
+

1

ρ
U∗(ϕ, θ).

Now, the first equation of (3.7) reads

d

dt
ρ̇ =

ρ

4
(ϕ̇2 + sin2 ϕ θ̇2) − 1

ρ2
U∗, (3.8)

and by substituting the expression

1

4
(ϕ̇2 + sin2 ϕ θ̇2) =

1

ρ2
(2T − ρ̇2) =

1

ρ2
(2U + 2h− ρ̇2)

into (3.8) the equation transforms to the equation (3.3)(i).

Next, the second equation of (3.7) reads

d

dt

(ρ2

4
ϕ̇
)

=
ρ2

4
sinϕ cosϕ θ̇2 +

1

ρ
U∗

ϕ,

and after differentiation this becomes

ρ2ϕ̈+ 2ρρ̇ϕ̇− ρ2

2
sin 2ϕ θ̇2 − 4

ρ
U∗

ϕ = 0,

which is precisely the equation (3.3)(ii). Similarly, the third equation of (3.7) reads

d

dt
(ρ2 sin2 ϕ θ̇) =

4

ρ
U∗

θ , (3.9)

where the left side becomes

2ρρ̇ sin2 ϕ θ̇ + 2ρ2 sinϕ cosϕ ϕ̇θ̇ + ρ2 sin2 ϕ θ̈.

Then it is easily seen that the equation (3.9) becomes the equation (3.3)(iii).
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3.3 Cone surfaces and geodesics in Mh

To take full advantage of the cone structure of M and the scaling property (3.1) of the

potential function U , one naturally seeks to reduce the analysis of the moduli curve to that of

the shape curve. Therefore, in this subsection we shall study the geodesic equations with the

shape curve in the forefront.

Definition 3.1 Let γ be a curve in M not including the (triple collision) base point O. The

cone surface spanned by γ consists of all rays emanating from O and intersecting γ. The cone

surface is denoted by C(γ) or C(γ∗).

The intersection of the cone surface with the shape space M∗ is the associated shape curve

γ∗, and conversely, the cone surface is also uniquely determined by γ∗, which explains the

notation C(γ∗).

Let γ(t) be the moduli curve of a 3-body motion with zero angular momentum and γ∗(t)

the associated shape curve with arc-length parameter σ in M∗ ≃ S2(1
2 ). Endowed with the

kinematic metric, the cone surface

C(γ∗) : ds2 = dρ2 + ρ2dσ2, 0 ≤ σ ≤ σ1 (3.10)

is isometric to a (flat) Euclidean sector with polar coordinates (ρ, σ) and angular width σ1.

Next, let the function u(σ) denote the restriction of U∗ along γ∗. There is a pair of con-

formally related metrics on the above sector, namely the flat metric (3.10) and the dynamical

metric

ds2h =
(
h+

u(σ)

ρ

)
ds2 (3.11)

defined on the subregion

C(γ∗)h =
{
(ρ, σ); ρ ≥ 0, 0 ≤ σ ≤ σ1, h+

u(σ)

ρ
> 0

}
. (3.12)

On the one hand, γ is a geodesic curve of the surface C(γ∗)h with the metric (3.11), but

on the other hand, it is also a geodesic of the ambient space (Mh, ds
2
h) and hence the normal

component of the curvature vector of γ in Mh also vanishes. Accordingly, it is natural to

write the geodesic equations of γ in Mh as a pair of coupled ODEs expressing, respectively, the

vanishing of the tangential and normal component of the curvature vector.

To analyze curvatures, let us fix some convention concerning orientation. We assume γ (and

hence also γ∗) is oriented; they are curves in M ≃ R3 and M∗ ≃ S2 respectively, and these

spaces have their standard orientation. We choose a positive orthonormal frame (τ, η, ν) of

(M, ds2) along γ, as follows. Let τ (resp. τ∗) be the positive unit tangent field of γ (resp.

γ∗), and choose the unit normal field ν∗ of γ∗ so that (τ∗, ν∗) is a positive frame of M∗. Then

ν = ( 1
ρ )ν∗ is a unit normal field of the cone surface C(γ) and hence orients the surface. Finally,

η is the normal field of γ in C(γ). For convenience, we write

τ = cosα
∂

∂ρ
+ sinα

1

ρ

∂

∂σ
, η = − sinα

∂

∂ρ
+ cosα

1

ρ

∂

∂σ
, (3.13)
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where α denotes the angle between the radial and tangential direction, that is, the angle between
∂
∂ρ and τ .

Let n be a vector normal to γ, say η or ν as above, and let K(n) and Kh(n) denote the

associated geodesic curvatures of γ with respect to the metrics ds2 and ds2h, respectively. It

follows from the first variation formula of arc-length that the curvatures of a given curve with

respect to such a pair of conformally related metrics are linked by the following formula

Kh(n) = K(n) − 1

2

d

dn
ln(h+ U). (3.14)

There are two cases to analyze, namely n = η or ν, and for simplicity we write K = K(η),

K⊥ = K(ν) etc., and we assume γ∗ is not a single point.

First, the geodesic curvatures of γ in the surface C(γ∗) with the two metrics are related by

Kh = K − 1

2

d

dη
ln(h+ U) =

(dα

ds
+

dσ

ds

)
− 1

2

d

dη
ln

(
h+

u(σ)

ρ

)
, (3.15)

where we recognize (α+σ) as the angle between the tangent line and a fixed reference ray in the

Euclidean sector (3.10). Similarly, let K⊥ and K⊥
h be the “surface normal” geodesic curvatures

of γ with respect to the metrics ds2 and ds2h, consequently

K⊥
h = K⊥ − 1

2

d

dν
ln

(
h+

U∗

ρ

)
. (3.16)

To find an expression for K⊥, it is a key observation that the principal curvatures of C(γ∗) in

M at a given point (ρ, σ) are the numbers 0 and 1
ρK∗, where K∗ = K∗(σ) denotes the geodesic

curvature of γ∗ on the sphere M∗ ≃ S2(1
2 ) at the point γ∗(σ). Therefore, by the classical

Euler’s formulas, the normal sectional curvature of C(γ∗) in the tangential direction of γ is

equal to

K⊥ =
1

ρ
(sin2 α)K∗(σ). (3.17)

Finally, the geodesic condition for γ in Mh reads

Kh = K⊥
h = 0,

which by (3.15)–(3.17) is neatly expressed by two scalar ODEs. In terms of the kinematic

arc-length parameter ds of γ, regarded either as a curve in C(γ∗) or M , we can state the final

result as the following theorem.

Theorem 3.1 Let γ(t) (resp. γ∗(t)) be the moduli (resp. shape) curve of a given 3-body

motion with zero angular momentum and total energy h. Set σ to be the arc-length parameter

of γ∗ in the shape space M∗ ≃ S2(1
2 ), (ρ, σ) the polar coordinate system of the associated cone

surface C(γ∗), and u(σ) the restriction of U∗ along γ∗. If γ is not a ray solution, then it is

characterized by the following pair of equations

( i )
dα

ds
+

dσ

ds
− 1

2

(
− sinα

∂

∂ρ
+

cosα

ρ

∂

∂σ

)
ln

(
h+

u(σ)

ρ

)
= 0, (3.18)

(ii) (sin2 α)K∗ − 1

2

∂

∂ν∗
ln

(
h+

U∗

ρ

)
= 0, (3.19)
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where α is the angle between the radial direction and the tangential direction and ν∗ is the

positive unit normal vector field of γ∗ in M∗.

Remark 3.1 The exceptional case of ray solutions, that is, γ∗ is a single point, can be

settled directly from (3.14), where K(n) = Kh(n) = 0 and hence for each n

d

dn
ln(h+ U) = 0 or ∇U · n = 0.

This is equivalent to ∇U∗ = 0, so γ∗ is one of the five critical points of U∗ on the 2-sphere,

namely the two minima (called Lagrange points) and the three saddle points (called Euler

points) lying on the equator (or eclipse) circle.

We also deduce the above result from the equations (3.3)(ii), (3.3)(iii), namely U∗
ϕ and U∗

θ

must vanish if ϕ and θ are set to be constant. Ray solutions yield the simplest type of 3-body

motions, namely the shape invariant or so-called homographic motions, which in the case of

Ω = 0 are confined to a line. Then the only variable ρ(t) is the solution of the 1-dimensional

Kepler problem given by the Lagrange-Jacobi equation (i.e. (3.3)(i)).

Remark 3.2 ( i ) For a given value of total energy h, the influence of U∗ on the geometry

of the associated cone surface C(γ∗)h is via the function u = U∗|γ∗ , and the equation (3.18) is

exactly the geodesic equation of C(γ∗)h. Most of the geodesic curves of C(γ∗)h are, of course,

not geodesics of the ambient space Mh since they are not moduli curves of actual 3-body

motions.

(ii) Equation (3.19), on the other hand, is expressed in terms of the relative geometry of the

inclusion γ∗ ⊂M∗, namely the geodesic curvature K∗ and the normal derivative of U∗along γ∗.

Finally, recall from (3.13) that the scaling variable ρ and the angular variable α, which

measures the radial inclination of the moduli curve in the cone M , essentially determine each

other via the relations

cosα =
dρ

ds
, sinα = ρ

dσ

ds
, (3.20)

which tell us, for example, how to calculate ρ from the variation of α along the shape curve

γ∗ ⊂ S2(1
2 ):

ρ(σ) = ρ(σ0)e
R

σ

σ0
cotα(σ)dσ

for ρ(σ0) 6= 0. (3.21)

3.4 Synthesis of the analysis of the moduli curve and that of the shape curve

In the previous sections we have used geometric ideas to obtain differential equations in the

moduli space M ≃ R3 characterizing 3-body trajectories with zero angular momentum. Since

M is a cone over the 2-sphere M∗ defined by ρ = 1, it is natural to project the moduli curve γ

down to its image curve γ∗ on the sphere. However, unless one resolves the hidden interlocking

between γ∗ and the scaling variable ρ, implicitly described by the differential equations, one

cannot reconstruct the moduli curve from its shape curve and thus fully utilize the reduction

from M to M∗.

In order to separate the scaling variable ρ from the spherical variables (ϕ, θ), we shall

proceed by combining the two systems of geodesic equations, (3.3) and (3.18)–(3.19), which
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we derived in two different ways. Note that the natural parameter in mechanics is the time t,

whereas the arc-length parameter is the natural parameter in metric geometry. This suggests

a transformation of the latter system to equations with t as the independent variable, and as

it turns out, this also provides a remarkable simple solution of the above separation problem.

3.4.1 Basic geometry of curves on the 2-sphere with a potential function

Since spherical curves play a crucial role in the present study, it is convenient to collect some

basic formulae concerning the differential geometry of curves on S2(1), as well as the tangential

and normal derivatives of a given (potential) function U∗ on the sphere. We shall express them

in terms of a chosen spherical polar coordinate system (ϕ, θ).

For a given oriented curve γ∗, let τ∗ (resp. ν∗) be the unit tangent vector in the positive

direction (resp. unit normal vector) such that (τ∗, ν∗) is a positively oriented frame of the

sphere. We consider a (regular) time parametrized curve γ∗(t) = (ϕ(t), θ(t)) and set s = s(t) ≥ 0

to be the arc-length along the curve. As before, differentiation of a function f with respect to

t or s are denoted by ḟ and f ′ respectively, and clearly ḟ = f ′v where v = ṡ is the speed of the

curve. Then

τ∗ =
dγ∗

ds
=

1

v

(
ϕ̇
∂

∂ϕ
+ θ̇

∂

∂θ

)
, ν∗ =

1

v

(
− θ̇ sinϕ

∂

∂ϕ
+ ϕ̇

1

sinϕ

∂

∂θ

)
, (3.22)

and the velocity vector field of the curve is

dγ∗

dt
= vτ∗, v =

√
ϕ̇2 + (sin2 ϕ)θ̇2. (3.23)

The scalar acceleration

v̇ =
d

dt
v =

1

v
[ϕ̇ϕ̈+ (sinϕ cosϕ)ϕ̇θ̇2 + sin2(ϕ)θ̇θ̈], (3.24)

and its higher time derivatives are needed to express time derivatives of a function in terms of

arc-length derivatives, using operators of increasing order

d

dt
= v

d

ds
,

d2

dt2
= v2 d2

ds2
+ v̇

d

ds
, etc. (3.25)

To calculate the geodesic curvature function K∗, let us first make use of Euclidean coordi-

nates

x = sinϕ cos θ, y = sinϕ sin θ, z = cosϕ,

and write x(s) = (x(s), y(s), z(s)) and use the formula

K∗(s) = x(s) × x′(s) · x′′(s),

where x′(s) = τ∗. This yields

K∗ = (cosϕ)θ′(1 + ϕ′2) + sinϕ(ϕ′θ′′ − θ′ϕ′′)

=
1

v3
{(cosϕ)θ̇(v2 + ϕ̇2) + sinϕ(ϕ̇θ̈ − θ̇ϕ̈)}, (3.26)
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and its intrinsic first derivative is

K∗′ =
d

ds
K∗ = (−(sinϕ)ϕ′θ′ + (cosϕ)θ′′)(1 + ϕ′2)

+ (cosϕ)ϕ′(ϕ′θ′′ − θ′ϕ′′) + sinϕ(ϕ′θ′′′ − θ′ϕ′′′). (3.27)

The gradient field of U∗ is the following vector field on the sphere

∇U∗ = U∗
ϕ

∂

∂ϕ
+

U∗
θ

sin2 ϕ

∂

∂θ
, (3.28)

which allows us to calculate various derivatives of U∗. For example, the tangential and normal

derivatives along the curve are, respectively,

U∗
τ =

∂U∗

∂τ∗
= ∇U∗ · τ∗ =

1

v
(ϕ̇U∗

ϕ + θ̇U∗
θ ), (3.29)

U∗
ν =

∂U∗

∂ν∗
= ∇U∗ · ν∗ =

1

v

(
− θ̇ sinϕU∗

ϕ + ϕ̇
1

sinϕ
U∗

θ

)
, (3.30)

and the intrinsic first derivative of U∗
ν is

U∗′
ν =

d

ds
U∗

ν =
( U∗

θ

sinϕ

)
ϕ′′ + (− sinϕU∗

ϕ)θ′′ +
(
− cosϕU∗

θ

sin2 ϕ

)
ϕ′2

+
( U∗

θθ

sinϕ
− U∗

ϕθ sinϕ
)
θ′2 +

( U∗
θθ

sinϕ
− sinϕU∗

ϕϕ − cosϕU∗
ϕ

)
ϕ′θ′. (3.31)

Finally, for convenience and later reference let us introduce the following definition.

Definition 3.2 For a given curve γ∗ and function U∗ on S2, the associated Siegel function

along the curve is defined to be

S =
U∗

ν

K∗ . (3.32)

We regard the function as undefined along geodesic arcs. Moreover, the function may have a

singularity at isolated points where K∗ vanishes. Note that S is independent of the orientation

of γ∗. Observe the following formula for the logarithmic derivative of S, as a function of s (and

similarly for t as parameter)
S′

S
=
U∗′

ν

U∗
ν

− K∗′

K∗ . (3.33)

Remark 3.3 We have named the above function after C. L. Siegel for the following reason.

In his study (cf. [11]) of triple collisions in the 3-body problem, Siegel investigated the asymp-

totic behavior of the time derivatives İ, Ï of the moment of inertia I = ρ2. The major step in

his proof was, indeed, to show that the expression
√
I(2T − İ2

4I ) tends to zero. It turns out that

this expression equals S whenever the latter is defined (see Lemma 3.1, where ρ3v2 equals the

above expression). In particular, it is an intrinsic quantity at the shape space level. We shall

return to triple collisions and Siegel’s approach in Section 6.

3.4.2 Reformulation of the geodesic equations in terms of the shape curve

For convenience, let us write V1 = ∂
∂ϕ and V2 = ∂

∂θ for the basic coordinate vector fields

of the spherical coordinate system on the unit sphere. By definition, the acceleration of the
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spherical curve γ∗(t) = (ϕ(t), θ(t)) is the expression

γ̈∗ =
D

dt
γ∗ = ϕ̈V1 + ϕ̇∇γ̇∗V1 + θ̈V2 + θ̇∇γ̇∗V2

= ϕ̈V1 + θ̈V2 + ϕ̇2∇V1
V1 + θ̇2∇V2

V2 + ϕ̇θ̇(∇V1
V2 + ∇V2

V1),

which is the covariant derivative of the velocity along the curve, with respect to the metric

(2.11). By definition,

∇Vi
Vj = Γ1

ijV1 + Γ2
ijV2

and the only nonzero Christoffel symbols of the metric are

Γ2
12 = Γ2

21 = cotϕ, Γ1
22 = − sinϕ cosϕ.

Consequently,

γ̈∗ = (ϕ̈ − θ̇2 sinϕ cosϕ)
∂

∂ϕ
+ (θ̈ + 2ϕ̇θ̇ cotϕ)

∂

∂θ
. (3.34)

Now, take the above sphere and curve to be the shape space M∗ and a shape curve γ∗(t),

respectively. Then it follows immediately from (3.28) and (3.34) that the equations (3.3)(ii)

and (3.3)(iii) can be expressed neatly as the following coordinate-free vector equation on the

2-sphere,

γ̈∗ +
(
2
ρ̇

ρ

)
γ̇∗ − 4

ρ3
∇U∗ = 0. (3.35)

Here the scaling variable ρ =
√
I of the cone M plays the role of an auxiliary function which

couples the equation (3.35) to the equation (3.3)(i). The latter is the Lagrange-Jacobi equation

(1.5), which for a given shape curve γ∗(t) is a second order differential equation purely for ρ(t).

Another interpretation of the coefficient of the velocity in (3.35) follows from (3.20), namely we

have

2
ρ̇

ρ
= v cotα. (3.36)

Remark 3.4 In fact, the differential equation (3.35) can be completely decoupled from the

function ρ(t) and hence it really becomes a differential equation on the 2-sphere, as summarized

in Theorem 3.2 below.

3.4.3 Separation of the scaling function ρ(t) from the shape space coordinates

The system (3.18)–(3.19) characterizes the moduli curves of 3-body trajectories with zero

angular momentum, expressed in the language of kinematic geometry and, in particular, for

that reason the natural parameter is the arc-length s of the moduli curve or the arc-length σ

of its image shape curve on the sphere of radius 1
2 . Although the original mechanical system

(1.2) naturally involves the physical parameter of time t, the latter is infinitesimally related to

s by the identity
ds

dt
=

√
2T =

√
2
√
h+ U, (3.37)

and this enables us to express the system (3.18)–(3.19) in terms of t and hence combine it

directly with the other system (3.3).
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To this end, let us consider a shape curve γ∗(t) on the sphere S2(1
2 ). By (3.20),

sinα = ρ
dσ
dt
ds
dt

=
ρ√
2

(
h+

U∗

ρ

)−1/2∣∣∣
dγ∗

dt

∣∣∣, (3.38)

and then the equation (3.19) becomes

ρ2

2

∣∣∣
dγ∗

dt

∣∣∣
2

K∗ =
1

2ρ

d

dν∗
U∗. (3.39)

The latter is not only considerably simpler than equation (3.19), but it also provides a simple

formula to compute ρ(t) = ρ(γ(t)) in terms of the geometry of the shape curve, namely

ρ3 =
d

dν∗
U∗

K∗|dγ∗

dt |2
. (3.40)

In view of the integral formula (3.21) this is, indeed, a pleasant surprise which, in one stroke,

shows how to reconstruct the moduli curve γ(t) from the shape curve γ∗(t) by the simple

formula (3.40).

The expression on the right-hand side of (3.40) refers to the kinematic geometry with M∗ =

S2(1
2 ), and the whole product on this side would change by the factor 4r2 if we had worked in

the sphere S2(r). Henceforth, we shall return to the unit sphere S2(1), and with the notation

for speed, curvature and normal derivative from Subsection 3.4.1 we can restate (3.40) in the

following way.

Lemma 3.1 Let S be the Siegel function (3.32) of (γ∗, U∗), which relates the intrinsic

geometry of γ∗ with the gradient field ∇U∗ on the unit 2-sphere. If γ(t) = (ρ(t), γ∗(t)) is the

time-parametrized moduli curve of a 3-body motion with zero angular momentum, then the speed

v(t) of γ∗(t) is related to ρ(t) and S(γ∗(t)) by the identity

ρ3 =
4

v2
S or S =

1

4
ρ3v2. (3.41)

In particular, S is always nonnegative!

Now, returning to the equation (3.35), we set

P = 2
ρ̇

ρ
=

2

3

Ṡ

S
− 4

3

v̇

v
, (3.42)

Q = − 4

ρ3
= −v

2

S
, (3.43)

where the rightmost identity in (3.42) follows from (logarithmic) differentiation of the identity

(3.41). Then we can state the following result.

Theorem 3.2 For 3-body motions with zero angular momentum and fixed total energy, the

associated shape curves γ∗(t) on the unit 2-sphere are characterized by the ODE

d2

dt2
γ∗ + P

d

dt
γ∗ +Q∇U∗ = 0, (3.44)
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where the first term is the (covariant) acceleration and the coefficients are the functions P, Q

defined by (3.42), (3.43), which can be expressed purely in terms of ϕ, θ and their derivatives

up to order 3.

Remark 3.5 The formula (3.41), or equivalently

K∗ =
4U∗

ν

v2ρ3
(3.45)

expresses the geodesic curvature of the shape curve in terms of ρ, ϕ, θ, ϕ̇, θ̇. Therefore, since

it only involves first order derivatives in the moduli space, it is not surprising to find that the

same formula can, indeed, be derived more directly from the general spherical curvature formula

(3.26) by elimination of the second order derivatives using the equations (3.3)(ii), (3.3)(iii).

3.4.4 Regular and irregular points and exceptional shape curves

The formula for ρ3 in (3.41) involves the three quantities v, U∗
ν and K∗ and the product

may become indefinite when some of them vanish, namely we note the following implications

[v = 0] =⇒ [U∗
ν = 0] ⇐= [K∗ = 0],

[U∗
ν = 0] =⇒ [v = 0] or [K∗ = 0].

(3.46)

It is worthwhile having a closer look at the geometric interpretation and behavior of the shape

curve due to the vanishing of any of these numbers, and accordingly we shall make some

definitions to distinguish the various cases.

Formula (3.41) expresses the Siegel function S of γ∗ in two different ways, namely at a point

P0 = γ∗(t0) its value is

lim
t→t0

1

4
ρ3v2 = S0 = lim

t→t0

U∗
ν

K∗ , (3.47)

whenever any of the limits are defined, including +∞ as a limiting value.

Definition 3.3 P0 is a regular point if 0 < S0 <∞, and otherwise it is irregular.

The irregular points consist of the cusps, the collision points (binary or triple), and for

completeness we also include escape points:

cusp at P0 : S0 = 0, v0 = 0, ∇U∗(P0) 6= 0,

triple collision at P0 : S0 = 0, ρ0 = 0, ∇U∗(P0) = 0,

binary collision at P0 : S0 = ∞, v0 = ∞, P0 = bi,

escape at P0 : S0 =?, ρ0 = ∞, v0 = 0.

(3.48)

In Section 6, we shall return to triple collisions, but binary collisions and escape to infinity

behavior will not be a topic in this paper.

The simplest curves on the 2-sphere are the geodesic circles, characterized by K∗ = 0 at

each point. If such a curve is the shape curve of a 3-body motion, then it follows from (3.47)

that U∗
ν also vanishes. In fact, γ∗ coincides with a gradient line segment if and only if it is a

geodesic.
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Definition 3.4 The shape curve γ∗ is called exceptional if it is confined to a gradient line

(or a geodesic circle), or it consists of a single point.

Clearly, a single point shape curve must be a fixpoint of the gradient flow, see Remark 3.1.

Thus, apart from the exceptional shape curves, being a regular or irregular point is an intrinsic

property, that is, it depends only on the geometric curve.

Remark 3.6 We omit the proof here, so we rather claim that the only exceptional shape

curves (of length > 0) are those representing collinear motions or isosceles triangle motions.

Their crucial property is that the shape curve lies on a circle fixed by an isometry (reflection)

of the sphere which leaves U∗ invariant. It also follows that a non-exceptional shape curve γ∗

can only intersect an exceptional curve transversely, that is, neither tangentially nor with zero

speed.

The equator circle E∗ represents the collinear motions, of course, but isosceles motions exist

only for special mass distributions, as follows. An isosceles m-triangle has (at least) two equal

masses, say m1 = m2, and the mass m3 lies on the symmetry axis of the triangle. Their

shapes constitute the meridian through the north pole, the Euler point e3 and its antipodal

point −e3 = b3. The latter point represents the collision of the two symmetric mass points

somewhere on the symmetry axis. Thus, an isosceles triangle motion arises when the initial

position and velocity have the above isosceles symmetry.

Henceforth, we shall assume the shape curve γ∗ is not of exceptional type, unless otherwise

stated. Consider the power series expansions

K∗ =

∞∑

i=0

Kis
i, U∗

ν =

∞∑

i=0

ωis
i

at a regular point P0 = γ∗(t0), where s is the arc-length measured from P0. The value S0 of

S at s = 0 can be calculated in two ways, possibly by the aid of l’Hospitals rule,

1

4
ρ3
0v

2
0 = S0 = lim

s→0

U∗
ν

K∗ =
lim d

dsU
∗
ν

lim d
dsK

∗ = · · · =
lim dk

dskU
∗
ν

lim dk

dskK∗
=
ωk

Kk
> 0, (3.49)

where k ≥ 0 is the smallest integer such that Kk 6= 0. Then Ki = ωi = 0 for i < k, ωk 6= 0,

and we say P0 is a regular point of order k. It is a finite number since otherwise U∗
ν and K∗

vanishes identically and γ∗ would be exceptional. In particular, we see that ω0 6= 0 means γ∗(t)

is transversal to the gradient flow at t = t0.

The order k of a cusp at P0 = (ϕ0, θ0) can be defined similarly by considering the limits

in (3.49). The only difference is that ωk = 0 and Kk 6= 0 at the last step. Cusps arise when

the moduli curve γ(t) in M is tangent to the ray at the point (ρ0, P0) and hence the projected

curve γ∗(t) on the 2-sphere “halts” at t = t0. Geometrically, the curve γ∗ near P0 is a cusp

consisting of two diverging branches which emanate from P0, both with the initial direction of

∇U∗(P0) and the initial curvature

K0 =
1

3

d

dν
ln |∇U∗(P0)|. (3.50)
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In Remark 3.8 we further describe the totality of cusps at P0, at a fixed energy level h, as a

specific family of curves γ∗ parametrized by a number c > 0 (resp. c ≥ 0) for h ≥ 0 (resp.

h < 0). In the case c = 0 the two branches coincide completely and γ(t0) = (ρ0, P0) lies on the

Hill’s surface ∂Mh (cf. (1.14)).

3.4.5 On the initial value problem for the moduli curve and the shape curve

In the spherical coordinates (ρ, ϕ, θ) on M ≃ R3, the time parametrized moduli curve and

its associated shape curve are simply related by

γ(t) = (ρ(t), γ∗(t)), γ∗(t) = (ϕ(t), θ(t)),

and conversely, formula (3.41) is the key to the lifting procedure, namely the reconstruction of

γ(t) from its projection on the 2-sphere.

We choose an initial point P0 = (ϕ0, θ0) on the shape curve, and assume (for simplicity)

it is regular in the sense of Definition 3.3. In particular, the (local) lifting procedure is well

defined, and the corresponding initial value problems for the ODEs (3.3) and (3.44) respectively

are equivalent. Thus, on the one hand, the solution γ(t) is uniquely determined by its initial

position and velocity

γ(t0) = (ρ0, ϕ0, θ0),
d

dt
γ(t0) = (ρ1, ϕ1, θ1), (3.51)

but on the other hand it is also determined by the corresponding initial data

(ϕ0, θ0), (ϕ1, θ1), (ϕ2, θ2), where ϕ2 =
1

2
ϕ̈|t0 , θ2 =

1

2
θ̈|t0 , (3.52)

at the shape space level.

However, the above chosen initial data determine an energy level h, and conversely, if h is

already given, the initial data (3.51) or (3.52) are acceptable only if the resulting energy level

is h. To make this more transparent, let us rather state the initial value problem in the moduli

space as a system with 4 equations

( i ) 0 = ρ̈+
ρ̇2

ρ
− 1

ρ

(1

ρ
U∗ + 2h

)
,

( ii ) 0 = ϕ̈+ 2
ρ̇

ρ
ϕ̇− 1

2
sin(2ϕ)θ̇2 − 4

ρ3
U∗

ϕ,

(iii) 0 = θ̈ + 2
ρ̇

ρ
θ̇ + 2 cot(ϕ)ϕ̇θ̇ − 4

ρ3

1

sin2 ϕ
U∗

θ ,

(iv) 0 =
1

2
ρ̇2 +

ρ2

8
(ϕ̇2 + sin2 ϕ θ̇2) − 1

ρ
U∗(ϕ, θ) − h,

(3.53)

where the first order equation (iv) is the energy integral (1.4) for the fixed value h. In fact, any

one of the four equations is redundant and can be deduced from the other three. For example,

with h calculated from the initial data (3.51), the solution of (i)–(iii) also satisfies (iv).

More geometrically, if the initial data set (3.51) is a point on a specific level surface of type

(iv) in the tangent bundle of M , then the solution γ(t) of (3.53)(i)–(iii) must lie on the surface
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(iv) for all t. But we can also determine the same solution γ(t) from (ii)–(iv). All this amounts

to saying that for a given value of h the whole system (3.53) is of total order 5.

On the other hand, the ODE (3.44) on the 2-sphere is independent of h and its total order

is 6. Its solutions are the projections γ∗ of all solutions of the system (3.53) for any value of h.

In general, they are divided into three disjoint classes, distinguished by the sign of h (positive,

zero or negative). The exceptions to this subdivision are precisely the exceptional shape curves

(cf. Definition 3.4), which can represent 3-body motions at any energy level (cf. Subsection

4.2).

Now, let us consider the problem of how to translate the initial data (3.51), at a given energy

level h, into a set of suitable initial data consisting of five numbers depending only on the shape

curve. A natural first choice would be

(ϕ0, θ0), (ψ0, v0), S0, (3.54)

where the angle ψ0 ∈ [0, 2π) specifies the initial direction of γ∗, v0 > 0 is the inital speed, and

S0 = (U∗
ν /K

∗)0 > 0 is the initial value of the Siegel function.

Remark 3.7 The generic points of γ∗ are the regular points of order k = 0, and hence γ∗ is

transversal to the gradient flow almost everywhere. For such points it is, perhaps, more natural

to replace S0 by K0 in (3.54). In fact, the two choices— either K0 or S0 — are equivalent since

the direction ψ0 determines ω0 when k = 0.

The pairs (ψ0, v0) and (ϕ1, θ1) evidently determine each other, namely they specify the

initial velocity of γ∗. Clearly, the 5-tuple (3.54) is merely the data (3.51) with the pair (ρ0, ρ1)

replaced by the single number S0, which is a second order quantity at the shape space level.

Indeed, we recover ρ0 immediately from (3.54) by making use of (3.49).

Thus, it is clear that the initial data information given by (3.51) or (3.54) would be equivalent

if we could also recover the radial speed ρ1 from (3.54). However, the energy integral (3.53)(iv)

determines only ρ2
1; in fact, there is no solution at all if h is below the critical value

hmin =
1

8
ρ2
0v

2
0 − 1

ρ0
U∗(ϕ0, θ0), where ρ0 =

(4S0

v2
0

) 1

3

. (3.55)

There is a unique solution if h = hmin, with ρ1 = 0, and for h > hmin there are two solutions

which are distinguished by the sign of ρ1.

A slightly different approach is to combine the identities (3.36) and (3.38), which yields a

value of sinα, where 0 < α < π. In fact, α < π
2 means ρ1 < 0 and α > π

2 means ρ1 > 0. But,

we are still left with the problem of how to determine the sign of ρ1 from the initial data (3.54).

Anyhow, up to now we have the following result as a summary of the above local analysis at a

regular point.

Proposition 3.1 Consider the 3-body motions with zero angular momentum and a given

total energy h, whose oriented shape curves at a given regular point have the same initial

direction, speed, and curvature (or Siegel number S0, if the curvature K0 vanishes). Then the

number of solutions is, up to congruence, equal to 0, 1 or 2 depending on whether h < hmin
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(resp. h = hmin or h > hmin), where hmin is calculated from the given initial data by the

formula (3.55).

A 3-body motion is said to be expanding when ρ̇(t) > 0, and it is contracting when ρ̇(t) < 0.

Accordingly, we say the expansion index at time t0 is the sign e(t0) = 0,±1 of ρ̇(t0) = ρ1.

Corollary 3.1 A 3-body motion γ(t) with zero angular momentum and a given total energy

h is uniquely determined up to congruence by the oriented shape curve γ∗ ⊂ S2 as a subset (i.e.

non-parametrized ), together with the initial speed v0 and expansion index e(t0) at a regular

point γ∗(t0).

Remark 3.8 The above corollary is, in fact, also true when the point P0 = γ∗(t0) is a cusp.

Indeed, for each fixed h, the family of possible cusps at P0 is parametrized by the nonnegative

numbers

c = ρ2
1 = 2

(U∗(P0)

ρ0
+ h

)
, (3.56)

as follows from the energy integral (3.53)(iv).

For c = 0 there is a unique moduli curve γ(t) starting out from the “rest point” (ρ0, P0)

on the Hill’s boundary ∂Mh, and the corresponding shape curve γ∗ is the simple cusp (i.e.,

with one branch) emanating from P0. In general, the local geometry of γ∗ at P0 determines

the number c. In fact, one can determine c from the first curvature coefficients Ki, i > 0, but

note that K0 is independent of c, by (3.50). Finally, one solves the initial value problem in M

at (ρ0, P0), with the velocity component ρ1 = ±√
c selected according to our choice of e(t0).

For a given non-parametrized curve γ∗ in M∗, the geodesic curves of the associated cone

surface C(γ∗)h are characterized by the ODE of (3.18). The squared speed of such a curve is,

of course, given by 2T = 2(U + h) and hence it is determined by the position. A geodesic γ

is therefore uniquely determined by the initial position and direction at t = t0, namely ρ(t0),

α(t0) and the point γ∗(t0). By (3.40) or (3.41), and elimination of the speed in the shape space

using (3.38), it follows that the validity of the identity

sin2 α =
2S

ρh+ U∗ (3.57)

along the entire curve γ, where S is the Siegel function of γ∗ in S2(1), is a necessary and

sufficient condition for a geodesic of the cone surface to be a geodesic curve of Mh as well. This

proves the following statement.

Corollary 3.2 A non-parametrized (i.e. geometric) curve γ∗ ⊂ S2(1) can be suitably

parametrized as the shape curve of a 3-body motion with zero angular momentum and total

energy h if and only if its cone surface C(γ∗)h has a geodesic curve satisfying (3.57) along the

entire curve.

Problem 3.1 As indicated by the condition (3.57), only a very special kind of geometric

curves on the 2-sphere S2 can be suitably parametrized as the shape curve of a 3-body motion

as above. How can they be characterized in a neat way ? Can such a curve have different time

parametrizations as the shape curve of 3-body motions ?
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Problem 3.2 Is the initial speed and expansion index also determined by the geometric

shape curve in Corollary 3.1? (The case h = 0 turns out to be special.)

4 On the Analysis of Moduli and Shape Curves via Power Series

We continue to use the notation and terminology from Section 3. Consider a time parametri-

zed moduli curve t→ γ(t) in M ≃ R3 which represents a 3-body motion with vanishing angular

momentum, and let t → γ∗(t) be the associated shape curve, namely its projection in the 2-

sphere S2. In this section we shall investigate the possibility of reconstructing the parametrized

curve γ(t) solely from the oriented geometric shape curve. Moreover, there is the question of how

much geometric information about the curve γ∗ is really needed for such a lifting procedure. At

the end we shall also answer the question concerning the uniqueness of the time parametrization.

4.1 Generation of recursive relations and intrinsic geometric invariants

In the local analysis of the moduli and the shape curve, and their interaction with the

potential function U∗, we shall distinguish between two types of variables or quantities. Namely,

on the one hand there are the intrinsic quantities which depend only on γ∗ as an oriented

geometric (i.e. unparametrized) curve and U∗ as a function on S2, and on the other hand

there are the variable quantities, defined along the curve γ or γ∗, which depend on the scaling

function ρ in the moduli space M or the time parametrization of the curves. The basic intrinsic

quantities are the gradient field ∇U∗ (or the tangential and normal derivatives U∗
τ , U∗

ν ), the unit

tangent field of γ∗, and the geodesic curvature function K∗ of γ∗. Moreover, we shall assume

that γ∗ is not exceptional and hence the linkage between γ∗ and U∗ is also neatly encoded into

the intrinsic Siegel function S = U∗
ν /K

∗ (cf. (3.32) and Subsection 3.4.4).

Let s be the arc-length parameter of γ∗ measured in the positive direction from a given

regular point P0 of order k ≥ 0. Then the coefficients of the power series expansions of the

above functions, such as

K∗ = K0 +K1s+K2s
2 + · · · ,

U∗ = u0 + u1s+ u2s
2 + · · · , (4.1)

U∗
ν = ω0 + ω1s+ ω2s

2 + · · · ,
S = S0 + S1s+ S2s

2 + · · · ,

yield intrinsic quantities localized at the point P0. Note that the expansion of the tangential

derivative of U∗ is

U∗
τ = ∇U∗ · τ =

d

ds
U∗ = u1 + 2u2s+ 3u3s

2 + · · · , (4.2)

and the coefficients Sn are expressible as rational functions of Ki and ωi, k ≤ i ≤ n+ k. Let

us say that the order of a coefficient is the highest order of derivatives of local coordinates in

its expression. Thus, the pair (ϕ0, θ0) and u0 are the intrinsic (geometric) data of order 0 at

P0. Next, the triple u1, ω0, and the unit tangent vector at P0 represent the intrinsic data of

order 1 at P0, and ωn and un+1 (resp. Kn and Sn) has order n+ 1 (resp. n+ 2).
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We choose a spherical polar coordinate system (ϕ, θ), with P0 different from any of the

“poles” ϕ = 0 or π, and for a given moduli curve γ(t) = (ρ(t), ϕ(t), θ(t)) we shall expand the

coordinate functions, as well as U∗ and its partial derivatives, as power series with respect to

t :

ρ = ρ0 + ρ1t+ ρ2t
2 + ρ3t

3 + · · · ,
ϕ = ϕ0 + ϕ1t+ ϕ2t

2 + ϕ3t
3 + · · · ,

θ = θ0 + θ1t+ θ2t
2 + θ3t

3 + · · · ,
v = v0 + v1 + v2t+ v2t

2 + · · · , (4.3)

U∗ = u0 + u1t+ u2t
2 + u3t

3 + · · · ,
U∗

ϕ = µ0 + µ1t+ µ2t
2 + µ3t

3 + · · · ,
U∗

θ = η0 + η1t+ η2t
2 + η3t

3 + · · · .

For convenience, we also write

sin(2ϕ) = f0 + f1t+ f2t
2 + · · · ,

sin2(ϕ) = g0 + g1t+ g2t
2 + · · · ,

and list some of the initial coefficiens:

u0 = U∗(ϕ0, θ0), u1 = µ0ϕ1 + η0θ1, etc.,

f0 = sin(2ϕ0), f1 = 2 cos(2ϕ0)ϕ1, etc.,

g0 = sin2(ϕ0), g1 = f0ϕ1, etc.,

v1 =
1

v0
[2ϕ1ϕ2 + sin(ϕ0) cos(ϕ0)ϕ1θ

2
1 + 2 sin2(ϕ0)θ1θ2],

(4.4)

where the expression for v1 follows from (3.24). We shall regard µ0, η0 as intrinsic data, but

they depend on the coordinate system, of course.

Below we shall investigate dependence relations among the coefficients ρi, ϕj , θk of the

coordinate functions in (4.3) and various other coefficients. Some of them are directly expressible

in terms of the intrinsic data and hence regarded as constants, whereas the others are the

variables.

Definition 4.1 The following list of coefficients from (4.3)

ρ0, v0; ρ1, ϕ1, θ1; ρ2, ϕ2, θ2 (4.5)

will be referred to as the variables of order ≤ 2. The variables of order n are ρn, ϕn, θn when

n > 0, and ρ0, v0 are the only variables of order zero.

Henceforth, assume that the above moduli curve γ(t) is a solution of the ODE system

(3.53). By inserting the power series into the equations (3.53)(i)–(iv) and applying the method

of undetermined coefficients, we arrive at the following scheme of recursive relations for the
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variables of increasing order 0, 1, 2, · · · :

E10 : 0 = 2ρ2
0ρ2 + ρ0ρ

2
1 − 2hρ0 − u0,

E20 : 0 = 2ρ3
0ϕ2 + 2ρ2

0ρ1ϕ1 −
1

2
ρ3
0f0θ

2
1 − 4µ0,

E30 : 0 = 2g0ρ
3
0θ2 + 2g0ρ

2
0ρ1θ1 + ρ3

0f0ϕ1θ1 − 4η0,

E40 : 0 = ρ0ρ
2
1 +

1

4
ρ3
0(ϕ

2
1 + g0θ

2
1) − 2u0 − 2hρ0,

(4.6)

E11 : 0 = 6ρ2
0ρ3 + 8ρ0ρ1ρ2 + ρ3

1 − 2hρ1 − u1,

E21 : 0 = 6ρ3
0ϕ3 + 10ρ2

0ρ1ϕ2 + 4(ρ2
0ρ2 + ρ0ρ

2
1)ϕ1 − 2f0ρ

3
0θ1θ2

− 1

2
(f1ρ

3
0 + 3f0ρ

2
0ρ1)θ

2
1 − 4µ1,

E31 : 0 = 6g0ρ
3
0θ3 + (10g0ρ

2
0ρ1 + 2g1ρ

3
0 + 2f0ρ

3
0ϕ1)θ2 + 2f0ρ

3
0θ1ϕ2

+ (f1ρ
3
0 + 3f0ρ

2
0ρ1)ϕ1θ1 + (4g0ρ

2
0ρ2 + 4g0ρ0ρ

2
1 + 2g1ρ

2
0ρ1)θ1 − 4η1,

(4.7)

and in general

E1n : 0 = (n+ 2)(n+ 1)ρ2
0ρn+2 + · · · ,

E2n : 0 = (n+ 2)(n+ 1)ρ3
0ϕn+2 + · · · , (4.8)

E3n : 0 = (n+ 2)(n+ 1)ρ3
0θn+2 + · · · ,

where the remaining terms are of less order since they involve ρi, ϕi, θi for i < n + 2. For

example, the coefficients un, µn, ηn occur in (4.8) and their order is n. The equations E4n for

n > 0 are omitted since they do not lead to additional (algebraic independent) relations.

Now, let us select some independent and recursive relations from the above ones, but first

we take the basic identity (3.41) and the expression (3.23) for the speed in the spherical metric,

whose zero order terms yield the two identities:

E0 : ρ3
0v

2
0 = 4S0, S0 =

ω0

K0
, (4.9)

E′
0 : v0 =

√
ϕ2

1 + g0θ21 . (4.10)

We shall use the symbols J1, J2 etc. to denote various expressions which are of intrinsic type.

By using (4.9) the identities E10 and E40 can be restated as

E1 : ρ0(ρ
2
1 − 2h) = J1, J1 = 2u0 − S0,

E4 : ρ2
0ρ2 = J4, J4 =

1

2
(−u0 + S0).

(4.11)

Next, the direction ψ0 of γ∗ at the point (ϕ0, θ0) is intrinsic; it is also conveniently represented

by the unit tangent vector

τ∗ =
1

v0

(
ϕ1

∂

∂ϕ
+ θ1

∂

∂θ

)
= Jϕ

∂

∂ϕ
+ Jθ

∂

∂θ
.

The coefficients Jϕ, Jθ are intrinsic functions, depending on the coordinate system, and they

are related by the identity

J2
ϕ + g0J

2
θ = 1. (4.12)
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Therefore, we adjoin to our list (4.11) the two identities

E2 : ϕ1 = Jϕv0, E3 : θ1 = Jθv0. (4.13)

Still, we have not used all zero order relations, namely E20 and E30, and now we state them

as

E5 : ρ3
0ϕ2 + ρ2

0ρ1ϕ1 = J5, J5 = 2µ0 + f0J
2
θ S0,

E6 : ρ3
0θ2 + ρ2

0ρ1θ1 = J6, J6 =
2η0
g0

− 2
f0
g0
JϕJθS0.

(4.14)

By continuing this way, we obtain for each n > 0 three new relations

E3n+1 : 0 = ρ2
0ρn+2 + · · · ,

E3n+2 : 0 = ρ3
0ϕn+2 + · · · , (4.15)

E3n+3 : 0 = ρ3
0θn+2 + · · · ,

involving at each step the new triple ρn+2, ϕn+2, θn+2 of variables of order n+ 2.

Claim 4.1 It is possible to solve the above recursive relations for the variables (4.5) com-

pletely in terms of the intrinsic local geometric data in the shape space.

This will be finally settled at the end of the subsection. At this point, we have altogether

3n+ 8 variables

ρ0, v0; ρ1, ϕ1, θ1; ρ2, ϕ2, θ2; · · · ; ρn+2, ϕn+2, θn+2;

involved in 3n+ 8 recursive relations, and the first eight involve only the variables up to order

2. However, E′
0, E2 and E3 are obviously algebraic dependent due to the identity (4.12), so let

us search for one more independent relation among the variables of order ≤ 2. Since we expect

such a relation to involve local intrinsic quantities of order (at least) 3, a natural approach is

to differentiate the basic identity (3.41) involving the Siegel function. Thus evaluation of the

resulting identity (3.42) at t = t0 yields

3
ρ1

ρ0v0
+ 2

v1
v2
0

= J7, J7 =
S1

S0
=

(ωk+1

ωk
− Kk+1

Kk

)
. (4.16)

Using the expression in (4.4) for v1 we can restate the above identity as

3
ρ1

ρ0v0
+

4

v3
0

[
ϕ1ϕ2 +

1

4
f0ϕ1θ

2
1 + g0θ1θ2

]
= J7. (4.17)

By simple calculation and substitution using some of the previous relations Ei,

ρ3
0

[
ϕ1ϕ2 +

1

4
f0ϕ1θ

2
1 + g0θ1θ2

]

= ϕ1(J5 − ρ2
0ρ1ϕ1) + ϕ1

(1

4
f0J

2
θ ρ

3
0v

2
0

)
+ θ1(g0J6 − g0ρ

2
0ρ1θ1)

= −ρ1

ρ0
ρ3
0(ϕ

2
1 + g0θ

2
1) + ϕ1(J5 + f0J

2
θ S0) + θ1g0J6

= −4
ρ1

ρ0
S0 + v0[JϕJ5 + f0JϕJ

2
θ S0 + g0JθJ6]
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and by substitution into (4.17), using the identity ρ3
0v

2
0 = 4S0 and the expressions for J5, J6 in

(4.14), this leads to our new identity

E′
1 :

ρ1

ρ0v0
= J8, J8 = 2S

−1
0 (Jϕµ0 + Jθη0) − J7 =

1

S0
(2u1 − S1), (4.18)

where u1 is the tangential derivative of U∗ at P0 (cf. (4.2)).

From the system of algebraic equations

E0, E
′
0, E1, E

′
1, E2, E3, E4, · · · ,

we can now solve recursively and thus determine the variables

ρ0, v0,ρ1, ϕ1, θ1, ρ2, ϕ2, θ2, · · ·

successively in terms of the intrinsic data. In fact, this is obvious from the structure of the

equations, once we have determined ρ0, v0, ρ1, namely using the three equations E0, E1, E
′
1:

ρ3
0v

2
0 = 4S0, ρ0(ρ

2
1 − 2h) = J1,

ρ1

ρ0v0
= J8. (4.19)

It follows that

2hρ0 = −J1 + J2
8ρ

3
0v

2
0 = −J1 + 4J2

8S0 (4.20)

and consequently, for h 6= 0,

ρ0 =
1

h

[
S0

2
(4J2

8 + 1) − u0

]
, v0 =

2

ρ
3/2
0

√
S0, ρ1 = 2J8

√
S0

ρ0
. (4.21)

In the case h = 0, the identity (4.20) merely tells us that

u0 =
1

2
(4J2

8 + 1)S0, (4.22)

and we can freely choose any initial size ρ0 of ρ and then calculate v0 and ρ1 from (4.21). In

particular, we calculate the pair (ϕ1, θ1) using (4.13), where the pair (Jϕ, Jθ) represents the

initial direction and hence is intrinsic. Now, we are able to calculate successively each new

triple (ρn, ϕn, θn), n = 2, 3, 4, · · · , expressed in terms of the intrinsic data, as claimed above.

Remark 4.1 The initial direction, (Jϕ, Jθ), is the only basic intrinsic data with no invariant

description, that is, independent of the coordinate frame. However, from the recursive procedure

it follows that un, vn, ρn, n ≥ 0, come out with coordinate free expressions involving only the

coefficients in (4.1). In fact, we can calculate vn−1 in terms of ρi (i < n) and vj (j < n− 1), by

repeated differentiation of (3.41), next we calculate un by applying differential operators such

as (3.25) to U∗, and finally ρn+2 is calculated using equation E1n. The beginning terms are

u1 = v0u1, u2 = v2
0u2 +

1

2
v1u1, v1 =

4S1 − 3ρ2
0v0ρ1

2ρ3
0

.
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4.2 Some basic results on the shape curves of 3-body

motions with vanishing angular momentum

Let us first review some of the above facts from the local analysis and draw a few immediate

but important consequences. The above power series developments amount to the explicit

calculation of the solution t → γ(t) of the system (3.53) in the moduli space with the initial

data (3.51). In doing so we started from the following 5-tuple

(ϕ0, θ0), (ψ0,S0,S1), (4.23)

where S0,S1 may be replaced by K0,K1 (or Kk,Kk+1, for the smallest k with Kk 6= 0), which

consists of three specific intrinsic local geometric invariants at the point (ϕ0, θ0) on the shape

curve. In particular, we also recover the time parametrized shape curve γ∗(t) by projecting γ(t)

to the 2-sphere.

Actually, since γ(t) is uniquely determined by the initial value problem, (3.51) and (3.53),

it suffices to recover (3.51) from (4.23), namely the missing information in (3.51) is ρ0 and ρ1.

This turns out to be possible when h 6= 0, but for a “good” reason (see below) it is impossible

when h = 0 since in this case the shape curve only controls the product ρ3
0v

2
0 = 4S0. In any

case, with the quantity S1 we can actually determine ρ1 and, in particular, the question in

Problem 3.2 concerning the expansion index is settled.

The general 3-body problem has the 10 classical conservation laws (linear and angular

momentum, and energy) due to its invariance under the Galilean symmetry group. All of

them have been used and, in particular, the set of solutions is invariant under time translation,

t → t + t0, as well as reversal of time (t → −t) which reverses the direction of the trajectory.

However, there is also an additional 1-parameter size/time scaling symmetry group, whose

induced action on parametrized moduli curves sends γ(t) = (ρ(t), γ∗(t)) to

γ(r)(t) = (ρ(r)(t), γ
∗
(r)(t)) = (rρ(r−

3

2 t), γ∗(r−
3

2 t)), ∀ r > 0, (4.24)

and changes the energy from h to h(r) = r−1h. In particular, although scaling and time

translation leaves the oriented shape curve geometrically unchanged, its time parametrization

is subject to an affine transformation

t→ at+ t0, a = r−
3

2 > 0. (4.25)

Since the energy level h = 0 is scaling invariant, this also explains why the reconstruction of a

unique initial size ρ0 fails when h = 0.

Remark 4.2 For any n ≥ 1, the Newtonian n-body problem has the above 1-parameter

symmetry group {Φr}, acting on size and time but leaves the shape invariant. For example,

for a periodic motion with period P(1) and average (or initial) size ρ(1), the group sweeps out

a periodic motion with the same shape, and the ratio P 2
(r)/ρ

3
(r) is independent of r. The case

n = 1 means the restricted case n = 2 with one of the masses (e.g. a planet) infinitesimal small,

in which case there is only one shape (a point) and the above ratio depends only on the large
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mass (the sun). This gives Kepler’s third law, so the above symmetry group is essentially the

generalization of this law.

On the other hand, for 3-body motions with vanishing angular momentum, the identity

ρ3v2 = 4S of (3.41) gives another quantity, ρ3v2, which is invariant under the above symmetry

group.

Definition 4.2 A time reparametrization of γ(t) or γ∗(t) by an affine transformation

(4.25), for any a 6= 0, is called canonical, otherwise it is called exceptional.

Of course, in order to stay at a given nonzero energy level a canonical reparametrization

must have a = ±1, and moreover, the orientation of the curve is reversed if a < 0. Now we can

state the following basic unique parametrization theorem.

Theorem 4.1 A 3-body motion with zero angular momentum is, up to congruence and

canonical reparametrization, uniquely determined by its oriented shape curve on the 2-sphere.

In fact, it suffices to know the direction and the first two Siegel numbers S0,S1 at any regular

point on the shape curve. In particular, there are no exceptional reparametrizations.

As shown before, the theorem still holds with (S0,S1) replaced by the curvature numbers

(K0,K1) if the point is regular of order 0, and this is, indeed, the generic type of points.

A curve on the 2-sphere which is the shape curve of a motion with total energy h can also

be the shape curve for some motion with any other energy h′ of the same sign as h. Indeed,

we find the other motions by suitable canonical reparametrizations of the given motion, and by

(4.21) it also follows that the sign of h (viewed as a number 0,±1) is an intrinsic invariant at

the shape space level. More precisely, we have the following quantitative measurement of the

energy type.

Theorem 4.2 Let γ∗ be a geometric curve on the 2-sphere, with the Siegel function S (with

respect to U∗, as usual ), and consider the function

∆ =
S

2

(
4
[ 1

S

d

dτ
(2U∗ − S)

]2

+ 1
)
− U∗

along the curve, where d
dτ denotes the tangential derivative. If γ∗ can be realized as the shape

curve of a 3-body motion with vanishing angular momentum, then the sign of ∆ is constant

along the curve (whenever ∆ is defined), namely equal to the sign of the total energy h of the

motion.

Corollary 4.1 A given oriented (geometric) curve on the 2-sphere can be time parametrized

in at most one way, up to canonical reparametrization, as the shape curve t→ γ∗(t) of a 3-body

motion with zero angular momentum. Moreover, the sign of the total energy of such a motion

is determined by the local relative geometry of (γ∗, U∗) at a (regular) point.

The above uniqueness property of time parametrization of geometric shape curves, the mini-

mal amount of geometric information needed to determine the shape curve, and the monotonic-

ity theorem which we shall discuss in Section 5, are our basic tools for the understanding of both

the local and global picture of shape curves representing 3-body motions with vanishing angular



32 W. Y. Hsiang and E. Straume

momentum. The monotonicity property tells us the m-latitude function is monotonic increasing

or decreasing until the curve turns back somewhere in the opposite hemisphere. Thus the curve

resembles an “oscillating motion” between the upper and lower hemisphere which never stops,

unless it ends at a triple collision or escapes to infinity. The curve crosses the equator circle

transversely, or it goes to a binary collision and bounces back (via regularization) to the same

hemisphere. In Subsection 7.5 we describe the problem of how to construct such a curve by

linking together its maximal monotonic segments.

5 The Monotonicity Theorem for Shape Curves

5.1 A closer look at the gradient vector field of U∗

The analysis of trajectories, moduli curves or shape curves describing 3-body motions de-

pends, of course, ultimately on the function U∗, whose behavior is largely reflected by the

geometry of its gradient field. In this subsection, some useful facts are established which are

beyond those simpler statements concerning the critical or singular points of U∗.

We shall apply vector algebra in the Euclidean model for the moduli space, namely with

M = R3 as the Euclidean space (cf. Section 2) and vectors denoted by boldface letters. Thus

the shape space M∗ = S2(1) consists of unit vectors p = (x, y, z), |p|2 = x2 +y2 +z2, and p · q
denotes the usual inner product. Set

m̂ =
∑

m̂i, m = m1m2m3, m̂1 = m2m3 etc., and
∑

mi = 1,

ki = 2
m̂

3

2

i√
1 −mi

, βi = cos−1
(m̂i −mi

m̂i +mi

)
= sin−1

( 2
√
m

m̂i +mi

)
, (5.1)

b1 = (1, 0, 0), b2 = (cosβ3, sinβ3, 0), b3 = (cosβ2,− sinβ2, 0),

where 0 < βi < π is the angle between the binary collision points bj and bk, {i, j, k} = {1, 2, 3}.
The Newtonian shape potential function is the restriction of U to the above 2-sphere,

U∗ =

3∑

i=1

m̂i

si
=

3∑

i=1

ki

|p− bi|
(cf. (2.16)), (5.2)

where the mutual distances si = rjk are normalized to I = 1, and hence by a formula of

Lagrange

I =
∑

m̂is
2
i = 1. (5.3)

The basic behavior of U∗ is, of course, given by the 8 special points on the 2-sphere, namely

b1, e3,b2, e1,b3, e2; p0,p
′
0, (5.4)

where the first six are cyclically ordered (eastward) along the equator circle E∗ representing

degenerate m-triangles. The bi are poles where U∗ tends to ∞, and the Euler points ei are

the saddle points. Finally, the remaining two are the minima, say p0 lies on the northern

hemisphere and p′
0 is the symmetric (mirror) image with respect to the equator plane.
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We can also use the points bi to describe the gradient field, as follows. Let dx be an

arbitrary infinitesimal vector perpendicular to p (i.e. dx ∈ TpS
2). Then, on the one hand

∇U∗(p) · dx ≡ U∗(p + dx) − U∗(p) (mod |dx|2) (5.5)

and on the other hand,

U∗(p + dx) − U∗(p) =

3∑

i=1

ki((2 − 2(p + dx) · bi)
− 1

2 − (2 − 2p · bi)
− 1

2 )

≡
( 3∑

i=1

kibi

|p− bi|3
)
· dx (mod |dx|2). (5.6)

Set

B = B(p) =

3∑

i=1

kibi

|p − bi|3
. (5.7)

Then it follows from (5.5) and (5.6) that the gradient of the function U∗ is the orthogonal

projection of the vector B to the tangent plane of the sphere at p, namely

∇U∗ = B− (B · p)p. (5.8)

The characterization of the critical points of U∗ is, of course, well known. However, with

the following lemma we also like to establish the identity (5.9).

Lemma 5.1 Let p0 and p′
0 represent the pair of equilateral m-triangles with I = 1 and with

opposite orientations. Then p0 and p′
0 are the minima of U∗, and moreover

bi · (bi − p0) = bi · (bi − p′
0) =

2mjmk

(1 −mi)m̂
. (5.9)

Proof The determination of the critical points away from the equator follows readily by

Lagrange’s multiplier method in M with the constraint I = 1. As coordinates we can, for

example, use the individual moments of inertia Ij , but the calculations are simplest in terms of

the mutual distances rij = sk using (5.2) and (5.3). This shows that the minimum (s01, s
0
2, s

0
3)

of U∗ (on any of the hemispheres) satisfies the following set of equations with a multiplier λ

1

2(s0i )
3

= λ, i = 1, 2, 3, (5.10)

and hence, by (5.3), all the sides s0i are equal to 1√bm . Moreover, by (5.2)

ki

|p0−bi|
=
m̂i

s0i
= mjmk

√
m̂ =⇒ 2 − 2p0 · bi = |p0−bi|2 =

4mjmk

(1 −mi)m̂

=⇒ p0 · bi = 1 − 2mjmk

(1 −mi)m̂
(5.11)

and this gives (5.9).
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Remark 5.1 It is also straightforward to check the identities

ki

|p0 − bi|3
=
mjmk

√
m̂

|p0 − bi|2
=

1

4
m̂

3

2 (1 −mi), (5.12)

3∑

i=1

(1 −mi)bi = 0. (5.13)

To simplify the notation below, let us write

ψi(t) =
(
1 − t

ci

)− 3

2

, ci =
mjmk

(1 −mi)m̂
(cf. (5.9)), (5.14)

Ψi(t) =
1

4
m̂

3

2 (1 −mi)ψi(t), (5.15)

where ψi is defined for t < ci, i = 1, 2, 3, and observe that the derivative of ψi is strictly positive.

The following two lemmas will be useful.

Lemma 5.2 The expression (5.7) of B can be restated as

B(p) =
3∑

i=1

Ψi(ξi)bi, (5.16)

where

ξi = bi · (p − p0). (5.17)

Proof By (5.12),

B =

3∑

i=1

kibi

|p − bi|3
=

3∑

i=1

ki

|p0 − bi|3
( |p0 − bi|
|p − bi|

)3

bi

=

3∑

i=1

m̂
3

2

4
(1 −mi)

(bi · (bi − p0)

bi · (bi − p)

) 3

2

bi

=
m̂

3

2

4

3∑

i=1

(1 −mi)
(
1 − bi · (p − p0)

bi · (bi − p0)

)− 3

2

bi

=
m̂

3

2

4

3∑

i=1

(1 −mi)ψi(ξi)bi =

3∑

i=1

Ψi(ξi)bi. (5.18)

Lemma 5.3 Let p be a unit vector different from p0 and p′
0. Then B · (p − p0) is strictly

positive.

Proof By the mean value theorem, there exists 0 < εi < 1,

Ψi(ξi) = Ψi(ξi) − Ψi(0) = Ψ′
i(εiξi)ξi, 1 ≤ i ≤ 3,

and we recall that the derivative of Ψi is strictly positive. By (5.16) and (5.17)

B(p) · (p − p0) =
( 3∑

i=1

Ψi(ξi)bi

)
· (p − p0) =

3∑

i=1

Ψi(ξi)ξi =
3∑

i=1

Ψ′
i(εiξi)ξ

2
i > 0.



Global Geometry of 3-Body Motions 35

Note that B is, by definition, a linear combination of {b1,b2,b3}, hence B lies in the

xy-plane and consequently

B · (p − p0) = B · (p − p0),

where p (resp. p0) is the orthogonal projection of p (resp. p0) in the xy-plane. Clearly, the

geometric meaning of the positivity of the inner product in the lemma is that the angle between

B and the vector from p0 to p is strictly less than π
2 .

5.2 The relative geometry between ∇U∗ and the conjugate pair of

co-axial families of circles associated to {p0,p
′

0
}

In spherical geometry, circles are the simplest kind of curves and they are characterized by

the constancy of their geodesic curvature. Associated to a given pair of points, such as the

minima {p0,p
′
0} of U∗, there are two co-axial families of circles, namely the family of circles

passing through the two given points and its dual family consisting of those circles which are

orthogonal to all circles of the former family. We shall denote the conjugate pair of coaxial

families of circles associated to {p0,p
′
0} by F and F ′.

To a given p ∈ S2(1) other than p0,p
′
0, let us denote the unique circle of F (resp. F ′)

passing through p by Γp (resp. Γ′
p). In fact, Γp is simply the intersection of S2(1) and the

plane spanned by the triple {p0,p
′
0,p}. Therefore, the tangent line of Γp at p is the intersection

of the tangent plane TpS
2(1) and the above plane. In fact, the following pair of vectors

T = p × [(p − p0) × (p − p′
0)], T′= p× T (5.19)

constitutes a positively oriented orthogonal basis {T,T′} for the tangent plane at p such that

T (resp. T′) is tangent to Γp (resp. Γ′
p). The vector T defines the southward direction, that

is, away from p0, whereas T′ defines the eastward direction along Γ′
p.

For example, in the case of uniform mass distribution, {p0,p
′
0} = {N,S} are the north

and south pole of the sphere, whose conjugate pair of coaxial families of circles are the usual

longitude circles (or meridians) and latitude circles. In this case

T = 2[(p · k)p − k], T′ = −2p× k

and these are positive multiples of the coordinate vectors ∂
∂ϕ and ∂

∂θ associated with spherical

polar coordinates (ϕ, θ) centered at the pole N .

Proposition 5.1 The inner product between the “southward” vector T and the gradient

vector ∇U∗ at a point p on the sphere is

T·∇U∗ = T · B = [p·(p0−p′
0)][B · (p − p0)]. (5.20)

In particular, on the northern (resp. southern) hemisphere the angle β between T and ∇U∗ is

in the range 0 ≤ β < π
2 (resp. π

2 < β ≤ π).
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Proof By (5.8), T·∇U∗ = T · B, and clearly B · p0 = B · p′
0, consequently

T ·B = B · {p× [p × (p0 − p′
0)] + p× (p0 × p′

0)}

=

∣∣∣∣
B · p 1

B · (p0 − p′
0) p · (p0 − p′

0)

∣∣∣∣ +

∣∣∣∣
B · p0 p · p0

B · p0 p · p′
0

∣∣∣∣

= (B · p)(p · (p0 − p′
0)) + (B · p0)(p · (p′

0 − p0))

= [p · (p0 − p′
0)][B · (p − p0)]. (5.21)

Finally, by Lemma 5.3 the second factor in (5.20) is always positive, whereas the first factor

is positive on the northern hemisphere and vanishes precisely on the equator circle.

5.3 The monotone m-latitude theorem

Spherical polar coordinates (ϕ, θ) centered at the north pole N parametrize, of course, the

latitude and longitude (meridian) circles, which constitute the pair of coaxial families of circles

associated to the pair {N,S} of geometric centers of the two hemispheres. However, instead of

using the colatitude ϕ let us rather parametrize the latitude circles by the latitude in radians,

−π
2 ≤ λ ≤ π

2 , namely λ = π
2 − ϕ and hence λ is positive on the northern hemisphere.

For equal masses the pair of minima {p0,p
′
0} of U∗ happens to coincide with the pair

{N,S}, but this does not hold for non-equal masses. However, there exists a unique Möbius

transformation which maps p0 to N , p′
0 to S and the equator circle E∗ to itself. Such a Möbius

transformation maps F (resp. F ′) to the family of meridians (resp. latitude circles).

Definition 5.1 For a given mass distribution {m1,m2,m3}, the m-modified latitude of

p ∈ S2(1) is defined to be the latitude in radians of the image of p under the above Möbius

transformation, and it is denoted by λ(p).

For example, λ(p0) = π
2 , λ(p

′
0) = −π

2 , and λ(p) = 0 if and only if p ∈ E∗. Moreover,

λ(p) = −λ(p′) for any pair {p,p′} representing similar m-triangles of opposite orientations.

For a given (smooth) curve γ∗(t) on the sphere we shall consider the associated function

λγ∗(t) = λ(γ∗(t)), (5.22)

which records the m-modified latitude along the curve. It turns out that for shape curves

representing 3-body motions with zero angular momentum this function has a remarkable

monotonicity property. Namely, it oscillates between local maxima where it is positive and

local minima where it is negative, and between two such extremals it is monotonic. The only

exceptions arise when the function is a constant, as described by the following lemma.

Lemma 5.4 If the m-latitude function λγ∗ is constant along γ∗, then γ∗ is an exceptional

shape curve which is either a single point or is confined to the equator circle (cf. Definition

3.4).

Proof Assume γ∗ is not a single point and is confined to an m-modified latitude circle Γ′

different from the equator. We choose a spherical polar coordinate system (ϕ, θ) centered at the

geometric center of Γ′; hence ϕ is also constant along γ∗. By the equation (3.3)(ii), U∗
ϕ must
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be negative along Γ′, that is, the gradient ∇U∗ is pointing inward along the circle. However,

Γ′ encloses p0 (or p′
0) and Proposition 5.1 tells us that ∇U∗ is pointing outward, so this is a

contradiction.

Now, let us assume γ∗ is not exceptional as in the above lemma. We shall state and prove

the Monotone m-latitude theorem.

Theorem 5.1 Let γ∗(t), a ≤ t ≤ b, be a segment of the associated shape curve of a 3-

body trajectory with vanishing angular momentum, and let λγ∗ as in (5.22) be the function

recording the m-modified latitude along γ∗[a, b]. Suppose that a ≤ t0 ≤ b is a critical point of

λγ∗ (i.e. λ′γ∗(t0) = 0) or is possibly a singularity. Then λγ∗(t0) must be a local maximum

(resp. minimum) when γ∗(t0) lies on the northern (resp. southern) hemisphere.

Proof We may assume that the point q0 = γ∗(t0) on the m-modified latitude circle Γ′ =

Γ′
q0

is strictly inside either the northern or southern hemisphere, since γ∗ crosses the equator

transversely or it hits a binary collision point and bounces back into the same hemisphere (by

regularization). Moreover, by using the reflectional symmetry which reverses orientation we

may reduce the proof to the case that q0 lies on the northern hemisphere.

There are two cases to consider; either q0 is a cusp, that is, the speed v0 of γ∗ vanishes, or

q0 is a regular point (v0 6= 0) and hence the curvature function of γ∗(t) is smooth at t0.

If a cusp is encountered at q0, it cannot be the critical point p0 of U∗. In general, the

nonzero vector ∇U∗(q0) actually gives the outgoing direction of the cusp, which by Proposition

5.1 is directed “southward” and hence λγ∗ is strictly increasing (resp. decreasing) when γ∗

approaches (resp. leaves) q0.

In the other case, γ∗ and Γ′ are tangent to each other at q0. By reversal of time if necessary,

we may assume that the velocity vector of γ∗ at q0 points in the “eastward” direction of Γ′,

that is, the positive direction of Γ′ as the oriented boundary of the circular cap containing

p0. Geometrically speaking, a local maximum of λγ∗ at t0 means exactly that the geodesic

curvature K0 of γ∗ at q0 is strictly less than that of Γ′, which is a positive constant k0. Thus,

it suffices to show K0 < k0, and we claim, in fact, that K0 ≤ 0.

Suppose to the contrary that K0 is at least positive, and recall Theorem 3.1 and its identity

(3.19), but scaled with M∗ as the unit sphere. Then, on the one hand

(sin2 α)K0 ≥ 0,

and on the other hand, the positive normal vector to γ∗ is

ν∗ =
−T(q0)

|T(q0)|
and, by Proposition 5.1, evaluation at q0 yields

− d

dν∗
ln(U + h) = − 1

U + h
∇U∗ · ν∗ =

1

(U + h)
∇U∗· T

|T| > 0.

This implies that

2(sin2 α)K0 −
d

dν∗
ln(U + h) > 0
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and hence contradicts the identity (3.19). Consequently, K0 cannot be positive and, in partic-

ular, we conclude that λγ∗(t0) is a local maximum.

Corollary 5.1 Suppose that γ∗(t) is the associated shape curve of a 3-body motion with

vanishing angular momentum, without ever encountering a triple collision or escape to infinity.

Then it contains infinitely many eclipse points (resp. local maxima and local minima for λγ∗),

and they occur at alternating sequences of times.

6 The Asymptotic Behavior at a Triple Collision

3-Body motions leading to a triple collision have vanishing angular momenum, and their

moduli curves γ(t) are exactly those geodesic curves in (Mh, ds
2
h) leading to the base point O

= (ρ = 0) as the limit. Therefore, it is also natural to review and study their basic asymtotic

properties at the triple collision.

The classical works of Sundman and Siegel tell us that the triple collision is the only essential

singularity of 3-body motions, and their asymptotic theorem, briefly stated as Theorem 6.1

below, gives a qualitative description of the behavior at the singularity. We mention here some

major works in the classical literature which have contributed to the understanding of the

collision motions, namely Sundman [14, 15], Levi-Civita [8], Siegel [10, 11], Siegel-Moser [12]

and Wintner [16]. Unfortunately, the proofs one finds in the above literature are rather long

and difficult, and thus it is worthwhile to provide simpler proofs, as well as improvements of

their results, in the setting of kinematic geometry.

The asymptotic theorem is, in fact, a direct consequence of the asymptotic estimates of I and

its lowest derivatives İ and Ï, and since ρ =
√
I is the kinematic distance to the triple collision

(base) point, these lower order asymptotic estimates are needed somehow for any proof of the

above theorem. On the other hand, the theorem can actually be regarded as the geometric

interpretation of such estimates.

Along the way, we shall also give remarks on the works of Sundman and Siegel, and in the

final subsection we shall apply Wintner’s idea of using a logarithmic time scale to deduce the

asymptotic formulae for the time derivatives of I of any order (cf. Theorem 6.2).

6.1 Ray solutions as a model for the asymptotic behavior at a triple collision

We begin with some vector algebra in the Euclidean space R3
(1)⊕ R3

(2)⊕ R3
(3) = R9 of all

triples δ = (a1,a2,a3), or rather in the subspace ofm-triangles defined by
∑
miai = 0, equipped

with the Jacobi metric (2.4), cross product and exterior product

δ × δ′ =
∑

miai × bi ∈ R
3, δ ∧ δ′ =

∑
ai ∧ bj ∈ ∧2

R
9,

where the standard basis vectors er ∧es ∈ R3
(i) ∧R3

(j) has length
√
mimj . Some useful relation-

ships between these operations are expressed by

|δ ∧ δ′|2 = det

∣∣∣∣
δ · δ δ · δ′
δ · δ′ δ′ · δ′

∣∣∣∣ = |δ|2|δ′|2 − (δ · δ′)2 ≥ |δ × δ′|2,
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|δ ∧ δ′|2 =
∑

m2
i |ai × bi|2 +

∑

i<j

mimjµij , µij ≥ 0.

In particular, for a motion δ(t) with velocity δ̇(t) and individual angular momenta Ωi, we

deduce the relations

|δ ∧ δ̇|2 =
∑

|Ωi|2 + |Ωmix|2 = 2IT − 1

4
İ2 ≥ |Ω|2. (6.1)

These can also be interpreted in tems of the splitting of kinetic energy

T = T ρ + (T σ + Tω) =
1

8

İ2

I
+

|δ ∧ δ̇|2
2I

,

where T ρ, T σ or Tω is due to radial motion, change of shape, or (rigid) rotational motion,

respectively. In the case of planary motions, equality holds in (6.1) since T ω = |Ω|2
2I . In

particular, equality holds if Ω = 0 since in that case the motion is planary, e.g., by a simple

geometric argument.

Ray solutions provide, of course, the simplest examples of triple collision motions. Here

each particle moves along a fixed line through the center of gravity (origin) and hence Ωi = 0

for each i, and also T σ = Tω = 0. By Remark 3.1, the shape of the ray is a critical point

of U∗ on the 2-sphere M∗, namely a Lagrange point or an Euler point. In other words, the

motion is either a homothetic deformation of an equilateral triangle or a degenerate triangle

which is an Euler configuration. Let µ be the value of U∗ at the above critical point. Then the

Lagrange-Jacobi equation (1.5) reads

Ï = 2µ
1√
I

+ 4h (6.2)

and hence the only variable of the problem, I(t), is the solution of a 1-dimensional Kepler

problem.

The equation (6.2) can be solved explicitly, but we seek the solutions with the (singular)

initial condition I(0) = 0. In the special case of h = 0,

I(t) = Kt
4

3 , K =
(9µ

2

) 2

3

, (6.3)

and for general h there is a formula t = Fh(I) which can be inverted and, for example, this

yields a series development of type

I(t) = t
4

3

(
K +

∞∑

i=1

kit
2i

3

)
.

To facilitate our study of asymptotic estimates in general, let us introduce the commonly

used notation

f ∼ g ⇐⇒ lim f/g = 1, as t → 0. (6.4)

Then all ray solutions have the same asymptotic behavior at t = 0, in the sense that their time

derivatives of I(t) at t = 0 yield the same asymptotic formulae, beginning with

I(t) ∼ Kt
4

3 , İ(t) ∼ 4

3
Kt

1

3 , Ï ∼ 4

9
Kt−

2

3 , (6.5)
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and clearly the higher order asymtotic formulae follow the same pattern, namely

dk

dtk
I(t) ∼ dk

dtk
Kt

4

3 , k = 0, 1, 2, 3, · · · . (6.6)

For a general triple collision motion, it was first realized that Ω must vanish, and hence

also Tω vanishes. On the other hand, although T ρ was found to be the dominating kinetic

energy, T σ cannot vanish for a non-radial motion and may perhaps tend to infinity at some

lower order of magnitude. However, although the general asymptotic behavior is certainly more

involved due to the change of shape, it turns out that the estimates (6.6) still hold, by Theorem

6.2. Moreover, a general triple collision motion has one of the above simple ray solutions as its

asymptotic limit, according to Theorem 6.1.

Exact information on the limiting behavior of the shape is not really needed to derive the

asymptotic formulae (6.6) for the motion in the radial direction. The theory of Sundman and

Siegel establishes the formulae only up to k = 2, namely the asymptotic estimates (6.5). To

proceed from k = 0, 1 to k = 2 Siegel introduced the following function g(t) and proved its

crucial property

g(t) = (8IT − İ2)t−
2

3 → 0, as t→ 0 (cf. [11, Chapter III, §1]),

which in our setting can be reformulated as

|δ ∧ δ̇|2
ρ

= 2ρT σ =
1

4
ρ3v2 → 0, as t→ 0, (6.7)

where v is the speed of the shape curve. From our viewpoint, we recognize the expression in

(6.7) as the Siegel function S of the associated shape curve δ∗(t) on the 2-sphere (cf. (3.41)).

6.2 The results of Sundman and Siegel

The following basic fact on the vanishing of the angular momentum of 3-body motions

leading to triple collision had already been stated by Weierstrass when Sundman first proved

the following classical statement at the beginning of the 20th century.

Lemma 6.1 (Sundman) The angular momentum Ω is necessarily zero for a triple collision

motion.

Proof First, by translation and (possibly) reversal of time, we shall rather assume (in all

Section 6) there is a triple explosion at t = 0. Using the Lagrange-Jacobi equation (1.5), it

follows from I → 0 that Ï → ∞ and hence İ > 0 for t ∈ (0, t0) and t0 suitably small. Sundman

discovered and made use of the rightmost inequality in (6.1). Namely, for a given value |Ω| > 0

it is not so difficult to see that I(t) has a positive lower bound.

However, we shall proceed with a slightly different proof since (6.1) also involves the in-

dividual momenta Ωi, and this will enable us to prove a stronger version of the lemma (see

Corollary 6.1). For that purpose, we set

C(t) = |δ ∧ δ̇|2, C0 = inf C for t ∈ (0, t0).
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Now, multiplying the Lagrange-Jacobi equation by İ gives the inequality

İ Ï = İ(2T + 2h) =
İ

I
C + 2hİ +

1

4I
İ3 ≥ İ

I
C + 2hİ,

which by integration yields

∫ t0

t

İ Ï dt ≥
∫ t0

t

İ

I
Cdt+ 2h(I0 − I),

1

2
İ2
0 ≥ 1

2
(İ2

0 − İ2) ≥ C0 ln
(I0
I

)
+ 2h(I0 − I),

C0 ≤ 2hI − 2hI0 + 1
2 İ

2
0

ln( I0
I )

→ 0, as t→ 0.

Hence, C0 = 0 and the constant sum Ω =
∑

Ωi is zero.

Remark 6.1 Clearly, the above proof also gives inf |Ωi| = 0 for each i, but one cannot yet

conclude that Ωi → 0. See Corollary 6.1 for this last step.

The major results of Sundman and Siegel concerning a general triple collision motion δ(t)

can be summarized as follows.

(1) (Sundman) t−
2

3 δ(t) tends to a limit whose shape is that of an equilateral triangle or an

Euler configuration.

(2) (Siegel) The magnified or “big triangle” t−
2

3 δ(t) approaches a fixed m-triangle δ̃0 in the

Euclidean configuration space M.

Standard references for proofs of these statements are [11, 12]. One finds that results proved

by Sundman are, typically, seen to express properties at the moduli space level, that is, state-

ments about the moduli curve δ(t). Siegel improved his results by lifting them up to the

configuration space level, where he studied the motion of the “big triangle” in the Hamiltonian

setting and performed a series of successive canonical transformations to simplify the analysis.

A major step was to establish the validity of the above asymptotic estimates (6.5), and with

the following proposition we shall provide a proof of this — in the spirit of Sundman and Siegel.

Moreover, for the sake of completeness, in the last subsection we shall extend the proof to the

higher order asymptotic estimates, k > 2 in (6.6), using ideas due to Wintner.

Proposition 6.1 For a 3-body motion δ(t) with I(t) → 0 as t→ 0, the asymptotic estimates

in (6.5) hold, where K is the expression in (6.3) with µ = limU∗(δ∗(t)).

Proof For a ray solution, I = ρ2 ∼ Kt
4

3 and ρρ̇2 ∼ 4
9K

3

2 . This suggests a study of the

asymptotic behavior of ρρ̇2 for triple collisions in general, using equation (1.5) and kinematic

geometry. Now, Ω = 0 and the kinetic energy has the splitting

T =
1

2

(ds

dt

)2

= T ρ + T σ =
1

2
ρ̇2 +

1

8
ρ2v2 (cf. (2.10)), (6.8)

and we set

R(t) = ρT ρ, S̃(t) =
1

2
S(t) = ρT σ, (6.9)
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where S is the Siegel function (see (3.32), (3.41)). By the energy integral U∗ = ρT − ρh, we

can also write

U∗ ∼ R(t) + S̃(t), as t→ 0. (6.10)

Our first claim is that

R(t) → µ > 0 and S̃(t) → 0, (6.11)

as t → 0. Let us differentiate R and substitute for Ï using (1.5), or equivalently (3.3)(i), to

obtain

Ṙ =
d

dt

(ρ
2
ρ̇2

)
= −1

2
ρ̇3 + ρ̇(U + 2h) = ρ̇(T σ + h),

∫ t0

t

Ṙ dt = R(t0) − R(t) =

∫ t0

t

ρ̇T σdt+ h(ρ(t0) − ρ(t)). (6.12)

Since R ≥ 0 and the integral on the right side is ≥ 0, limR(t) = µ ≥ 0 must exist, that is,

R = µ+ o(1) for small t.

Suppose µ = 0. Since minU∗ > 0, the equation (3.3)(i) implies

ρ̈ρ2 = U∗ + 2hρ− 2R = U∗ + o(1) ≥ C > 0

and consequently

ρ̇ρ̈ =
ρ̇

ρ2
(ρ̈ρ2) =

ρ̇

ρ2
(U∗ + o(1)) ≥ C

ρ̇

ρ2
,

ρ̇(t0)
2 − ρ̇(t)2 = 2

∫ t0

t

ρ̇ρ̈dt ≥ 2C

∫ t0

t

ρ̇

ρ2
dt = 2C

( 1

ρ(t)
− 1

ρ(t0)

)
→ ∞.

This is clearly impossible, so we conclude µ > 0.

Next, we deduce successively

1

2
ρρ̇2 = µ+ o(1) =⇒ ρ̇2 =

1

ρ
(2µ+ o(1)) =⇒ ρ̇ =

√
2µ ρ−

1

2 + o(ρ−
1

2 ), (6.13)

2

3
ρ

3

2 =

∫ ρ

0

√
ρdρ =

∫ t

0

ρ̇
√
ρ dt =

∫ t

0

(
√

2µ+ o(1))dt =
√

2µ t+ o(t) (6.14)

and hence by (6.13) and (6.14)

I = ρ2 ∼ Kt
4

3 , K =
(9

2
µ
) 2

3

, (6.15)

İ = 2ρρ̇ ∼ 4

3
Kt

1

3 , T ρ =
1

2
ρ̇2 ∼ µ

ρ
. (6.16)

Next we show S̃(t) → 0. The integral on the right side of (6.12) exists, but the integrand is

ρ̇T σ =
ρ̇

ρ
S̃ ∼ 2

3

S̃

t

and the integral of 1
t is divergent, hence lim inf S̃(t) = 0.

It is, however, more difficult to show lim sup S̃(t) = 0, but let us apply an idea of Siegel

[11]. Namely, suppose to the contrary, that lim sup S̃(t) > 0. Then, for a given ǫ > 0 there is
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an infinite decreasing sequence of numbers in (0, t0), ǫ > t1 > t2 > · · · > tk > 0, lim ti = 0, so

that

ǫ ≤ S̃(t) ≤ 3ǫ for t ∈ Jk = [t2k, t2k−1],

S̃(t2k) = ǫ, S̃(t2k−1) = 3ǫ, (6.17)

|R(t2k) − R(t2k−1)| ≤ ǫ.

By (6.10), in each interval Jk, U∗ and hence also the norm of ∇U∗ are bounded by the same

constant C1, and then it is not difficult to show

Ṫ = U̇ = O(t−
5

3 ) for t ∈ Jk.

But for small t we also have

T = U + h =
1

ρ
(U∗ + hρ) ≤ C2

ρ
(6.18)

for a suitable constant C2, consequently
∣∣∣
d

dt
(ρT )

∣∣∣ = |ρṪ + ρ̇T | ≤ C2

t
for t ∈ Jk. (6.19)

By (6.17) and (6.19),

2ǫ = S̃(t2k−1) − S̃(t2k) = (ρT − R)t=t2k−1
− (ρT − R)t=t2k

≤ C2

∫ t2k−1

t2k

dt

t
+ ǫ,

which implies ∫ t2k−1

t2k

S̃(t)

t
dt ≥ ǫ

∫ t2k−1

t2k

dt

t
≥ ǫ2

C2
for each k, (6.20)

and hence the sum of the integrals is infinite. On the other hand,

S̃(t)

t
=
ρT σ

t
∼ 3

2
ρ̇T σ,

and the integral of ρ̇T σ on [0, t0] exists by (6.12), so this is a contradiction.

Having proved that S̃(t) → 0, it follows from (6.10) that U∗ → µ, and now the Lagrange-

Jacobi equation yields

Ï ∼ 2T ∼ 2T ρ = ρ̇2 ∼ 4

9
Kt−

2

3 , (6.21)

where K is the expression from (6.15). This completes the proof.

Corollary 6.1 The quantity |δ ∧ δ̇|2 in (6.1) tends to zero at the triple collision. In partic-

ular, the individual angular momenta Ωi as well as the “mixed” momentum term Ωmix tend to

zero.

Since S(t) → 0, the above statement follows immediately from

|δ ∧ δ̇|2 = 2IT − 1

4
İ2 = 2IT σ = 2ρS̃ → 0 (cf. (6.1)). (6.22)

By “infinite magnification” at the triple collision the solution δ(t) coincides with one of the

ray solutions in Subsection 6.1. This is the idea behind the classical asymptotic theorem, and

now we give a simple proof of this in the setting of kinematic geometry.
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Theorem 6.1 (Sundman-Siegel) Any triple collision orbit is asymptotic to one of the ray

solutions.

Proof By (3.20) and (6.21),

2T =
(ds

dt

)2

∼ 4

9
Kt−

2

3 ∼
(dρ

dt

)2

= 2T ρ,

cos2 α =
(dρ

ds

)2

→ 1, as t→ 0, (6.23)

which simply means that the moduli curve δ(t) of the given triple collision motion δ(t) is tangent

to a ray or, equivalently, the limit of its infinite magnification exists. It also follows that the

limit ray must itself be a geodesic in Mh, namely one of those rays representing the shape of a

Lagrange or Euler configuration.

However, the claim is also that δ(t) itself approaches a ray in M . To see this, consider as

above the angle α̃ between the radial and tangential direction in M , that is, the angle between

the vectors δ(t) and δ̇(t). It follows that

cos α̃ =
δ · δ̇
|δ||δ̇|

=
ρ̇

|δ̇|
=

ρ̇√
2T

→ 1, as t→ 0. (6.24)

The limit ray in M projects to a geodesic ray in Mh, namely a ray consisting of the homo-

thetic images of either a fixed equilateral triangle or a fixed degenerate triangle of Euler’s type.

As shown in Subsection 6.1, these are the rays which admit triple collision motions, and thus

the given motion δ(t) will be asymptotic to the corresponding limit ray solution with the same

energy h.

Corollary 6.2 The shape curve δ∗(t) converges to a Lagrange or Euler point δ∗0 on the

2-sphere, and the “ big triangle” t−
2

3 δ(t) converges to an m-triangle δ̃0 with the shape δ∗0 and

moment of inertia

Ĩ0 = K =
(9µ

2

) 2

3

, µ = U∗(δ∗0). (6.25)

Remark 6.2 Actually, a limiting shape of Euler’s type cannot be reached unless the whole

3-body motion itself is collinear (cf. e.g. [12, §13]), which refines and improves the classical

Sundman-Siegel approach. The latter is described in detail in Siegel’s lectures (cf. [11]) of

about 240 pages. In [11, p. 138], he writes: “The difficulty of the problem consists in the fact

that we cannot yet prove (this will be proved only at the end) that the big triangle referred to

a fixed coordinate system has a limiting position as t → 0; all that we have proved so far is

the existence of a limiting configuration relative to a rotating coordinate system. The triangle

itself may go on rotating about its centre of gravity, · · · ”

However, although finiteness of the rotation of the “big triangle” was proved via the con-

vergence of the “big triangle”, neither an estimate of the actual angle of rotation nor its precise

definition was addressed in the above studies of the triple collision. In reality, the “big trian-

gle” is approaching its final shape and position quite fast and in a monotonic way. To make

this precise, we propose to measure how much the equilateral limiting triangle δ̃0 deviates in
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position from some natural reference equilateral m-triangle ζ, depending on the given collision

motion δ(t), but also ζ = ζ(t) will be a function depending on the chosen time interval [0, t]

under consideration. This goes as follows.

We may assume the shape curve δ∗(t) is on the northern hemisphere and hence starts at

the Lagrange point p0 = δ∗0 . Let δ1 = δ(t1) be the m-triangle at a given time t1 > 0 and write

δ∗1 = δ∗(t1). Then there is a unique linear m-triangle motion

Z(t) =
(t1 − t)

t1
ζ1 +

t

t1
δ1, t ∈ [0, t1],

with vanishing angular momentum, connecting δ1 to some equilateral m-triangle ζ1 = ζ(t1) (cf.

[5, Subsection 3.3]). The shape curve of this (virtual) motion is the geodesic arc on the sphere

S2(1) from the Lagrange point p0 to the point δ∗1 , and together with the curve segment of δ∗(t)

from δ∗1 to p0 they constitute a closed curve C1 on the sphere. We define the rotation angle

ψ(t1) of δ(t) at the triple collision, measured from time t = t1, to be half of the signed area

ψ(t1) =
1

2
Area(D1) =

∫

C1

ω (6.26)

of the region D1 enclosed by C1. This is motivated by the kinematic Gauss-Bonnet theorem (cf.

[5]) for 3-body motions with zero angular momentum, where traversal of a loop on the 2-sphere

amounts to a net rotation (i.e. a geometric phase) of the m-triangle in the configuration space,

which can be calculated as the line integral of a kinematic 1-form ω (depending on the mass

distribution and region of S2). Moreover, dω = 1
2dA, where dA is the area form of the unit

sphere.

Now, for t1 not too large, the shape curve δ∗(t) will stay on one side of the geodesic arc since

its curvature will have a fixed sign. So the rotation angle (6.26) decreases monotonically to zero

as t1 → 0, and hence the kinematic geometric approach explains Siegel’s angle of rotation and

yields as well a recipe for how to measure it quantitatively.

6.3 Higher order asymptotic estimates at a triple collision

The asymptotic formulae for the energy functions Ξ = T, T ρ, U and their time derivatives

up to order k can be developed inductively together with those formulae for I up to order k+2.

However, from the three identities

T ρ =
İ2

8I
, T = U + h =

1

2
Ï − h, (6.27)

it is easy to show that the three cases of Ξ, for a given order k, yield the same asymptotic

formula. Therefore, the final description of the asymptotic behavior of the above quantities can

be stated as follows.

Theorem 6.2 For a 3-body motion δ(t), t ≥ 0, with a triple collision at t = 0, the following

asymptotic estimates hold as t→ 0 :

dk

dtk
I ∼ dk

dtk
(Kt

4

3 ),
dk

dtk
T ∼ dk

dtk

(µ
ρ

)
∼ dk

dtk

(2

9
Kt−

2

3

)
for all k ≥ 0,
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where K = (9µ
2 )

2

3 , µ = U∗(δ∗0), and δ∗0 is the limiting shape.

From the initial cases k = 0, 1, 2, proved in the previous subsection, we shall complete the

proof of the above theorem for k > 2 by deducing the following equivalent formulae for the

behavior of ρ =
√
I,

dk

dtk
ρ ∼ dk

dtk
(
√
Kt

2

3 ), k ≥ 3. (6.28)

In fact, they will follow inductively as a rather direct consequence of Newton’s equation (1.2)

and its energy integral, namely,

∇U(δ) =
d2

dt2
δ, T = U + h, (6.29)

but only after an appropriate transformation of space and time. This is the composition of a

time dependent space transformation and a pure time transformation, as follows:

(1) Magnification of the motion δ(t) = (a1(t),a2(t),a3(t)) by the time factor t−
2

3 , as in the

works of Sundman and Siegel, to assure convergence at t = 0 of the magnified motion. We use

the notation

δ̃(t) = t−
2

3 δ(t) = (ã1,ã2, ã3), ãi(t) = t−2/3ai(t), (6.30)

f(t) = f(δ(t)), f̃(t) = f(δ̃(t)), δ̃0 = lim
t→0

δ̃(t), (6.31)

where f is any (homogeneous) function on M or its tangent bundle which we shall evaluate

along the trajectory.

(2) A logarithmic transformation of time; set

u = − log t (or t = e−u)

and hence t→ 0 means u→ ∞. This transforms a function g(t) to the function ğ(u) = g(e−u).

The composition of the two transformations yields the motion u→ δ̂(u) in M , and we write

δ̂(u) = δ̃(e−u) = (â1, â2, â3), âi(u) = e
2

3
uai(e

−u),

f̂(u) = f(δ̂(u)), ρ̂(u) = |δ̂(u)| = e
2

3
uρ(e−u), δ̂0 = δ̃0.

(6.32)

This motion is, of course, a solution of the transformed equations in (6.29), which can be stated

as

∇Û =
d2

du2
δ̂ − 1

3

d

du
δ̂ − 2

9
δ̂, (6.33)

T̂ = Û + he−
2

3
u − 2

9
ρ̂2 +

1

3
ρ̂

d

du
ρ̂, (6.34)

with the appropriate interpretation of T̂ , Û and ∇Û (cf. (6.37), (6.38)). For example, from the

above definitions

Û(u) = U(δ̂(u)) = e−
2

3
uU(δ(e−u)) = t

2

3U(t).
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To derive the above equations and prepare for its usage, we shall make a few more definitions

and establish some useful identities for differential operators generated by d
dt and d

du . For

functions of t (or u) it is convenient to write

f1 ≈ f2 ⇐⇒ (f1 − f2) = o(1), as t→ 0 (or u→ ∞),

and, for example, since the magnified motion converges,

δ̂ ≈ δ̂0, ρ̂ ≈ |δ̃0| =
√
K. (6.35)

We say f(t) has order q at t = 0 if

f(t)

tq
→ f0 6= 0, as t→ 0,

and then the notation

f̃(t) = t−qf(t) ≈ f0 (6.36)

is consistent with (6.31) since a homogeneous function g of degree d on M , with g(δ̃0) 6= 0, has

order q = 2d
3 at t = 0.

The transformed potential function, kinetic energy, and gradient are given by

Û = U(δ̂) =
∑

i<j

mimj

|âi − âj |
, T̂ =

1

2

∑
mi

∣∣∣
d

du
âi

∣∣∣
2

, (6.37)

∇Û =
( 1

m1

∂Û

∂â1
, · · ·

)
= t

4

3∇U, (6.38)

and by substituting these expressions together with

d2

dt2
δ =

d2

dt2
(t

2

3 δ̃) = t−
4

3

(
− 2

9
δ̂ − 1

3

d

du
δ̂ +

d2

du2
δ̂
)

into the equations (6.29) one obtains the system (6.33)–(6.34).

Lemma 6.2 If f(t) has order q at t = 0, with f̃(t) ≈ f0 and q /∈ {0, 1, 2, · · · }, then there

is the equivalence

[
1 ≤ k ≤ m, tk

dk

dtk
f̃(t) ≈ 0

]
⇐⇒

[
1 ≤ k ≤ m,

dk

dtk
f(t) ∼ dk

dtk
(f0t

q)
]
.

Proof By applying the Leibniz formula

dm

dtm
f̃(t) =

dm

dtm
(t−qf(t)) =

m∑

i=0

(
m

i

)
dm−i

dtm−i
(t−q)

di

dti
f(t),

one proves the above equivalence by induction on m. We refer to [13, Lemma 6.1] for a detailed

proof.

Moreover, using the operator identity

tk
dk

dtk
= (−1)k

(
nk,1

d

du
+ · · · + nk,k

dk

duk

)
, nk,k = 1, nk,i ∈ Z, (6.39)
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associated with the logarithmic time change, t → u = − log t, one can verify the following

equivalence
[
1 ≤ k ≤ m, tk

dk

dtk
g ≈ 0

]
⇐⇒

[
1 ≤ k ≤ m,

dk

duk
ğ ≈ 0

]
. (6.40)

The reason for introducing the change of variable t → u is the following useful lemma of

Tauberian type.

Lemma 6.3 (cf. [16, #363]) Let f(u) be defined for u > 0 and assume f(u) has a limit

and d2

du2 f(u) is bounded as u→ ∞. Then d
duf(u) → 0 as u→ ∞.

Finally, we turn to the proof of the asymptotic formulae (6.28). The “initial” data needed

to start up are provided by Proposition 6.1 and (6.35), which by Lemma 6.2 and (6.40) can be

restated as

ρ̂ ≈
√
K, Û ≈ µ√

K
,

d

du
ρ̂ ≈ d2

du2
ρ̂ ≈ 0. (6.41)

Then, by the equation (6.34), we first deduce T̂ ≈ 0, or equivalently d
du âi ≈ 0 for each i.

Moreover, by (6.41) each âi is bounded, Û is bounded and hence |âi − âj | has a lower bound

when i 6= j. It follows that all partial derivatives of Û , with respect to components of âi and of

any order, are bounded (as functions of u). In particular, in the equation (6.33) ∇Û is bounded

and hence also d2

du2 δ̂ is bounded.

Now, apply the operator d
du repeatedly to the equation (6.33) and deduce

dk

duk
∇Û is bounded =⇒ dk+1

duk+1
δ̂ is bounded, for all k ≥ 1.

By the above Tauberian lemma, it follows that

dk

duk
δ̂ ≈ 0 for all k ≥ 1.

Similarly, apply d
du successively to the equation (6.34) and deduce that the highest derivative

of ρ̂ is always bounded. Hence by the Tauberian lemma

dk

duk
ρ̂ ≈ 0 for all k ≥ 3. (6.42)

By the equivalence (6.40) and Lemma 6.2, the statement (6.42) is equivalent to the statement

of (6.28), and this completes the proof of Theorem 6.2.

Remark 6.3 The asymptotic estimates in Theorem 6.2 are also valid for a general collision

(i.e. total collapse) of an n-body motion, for any n ≥ 2. The proof is esssentially the same as

above and the previous subsection, since we have used only the Riemannian cone structure of

the moduli space M and, for example, the angle α is similarly defined for any n > 2. In fact, the

actual structure of the shape space is irrelevant as far as the asymptotic behavior of the radial

motion is concerned. Moreover, the exponent ν of t in the formula I ∼ Ktν is independent

of n, but depends on the degree −e of homogenity of the potential function, U ∼ 1
re , namely

ν = 4
2+e where we assume 0 < e < 2, and e = 1 is the Newtonian case. We refer to [13].
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7 A Brief Discussion of Some Open Problems

In this concluding section, we shall formulate and explain some natural open problems in

the present geometric setting. Recall that the trajectories of 3-body motions with zero angular

momentum are already uniquely determined up to congruence by their associated moduli curves,

which can be characterized (geometrically) as geodesic curves in (Mh, ds
2
h). Furthermore, these

geodesics together with their time evolution are essentially determined by their shape curve on

the 2-sphere. Finally, we recall two major results concerning shape curves, namely the unique

parametrization theorem and the monotone m-latitude theorem (cf. Subsections 4.2 and 5.3).

Therefore, from now on shape curve means geometric shape curve, unless otherwise specified,

and we also assume they are oriented.

The geometric behavior of these spherical curves raises many interesting questions for an

in depth understanding of 3-body motions. Here we propose a few natural problems of basic

importance.

7.1 Shape curves of periodic motions with vanishing angular momentum

The study of periodic orbits is naturally a central topic of the 3-body problem as a whole.

Clearly, the moduli curve and the shape curve of such a motion are periodic, but the converse

may not be true. Therefore, we say the 3-body motion is congruence periodic or shape periodic if

the moduli curve or shape curve, respectively, is periodic with respect to time. However, it is an

important consequence of the unique parametrization property that the time parametrization

of these curves is dictated by the geometry of the shape curve, whenever the latter is non-

exceptional. Then the notion of congruence periodic is the same as shape periodic, and this

means the shape curve is periodic in a geometric sense which we explain as follows.

Since it is natural to allow binary collision points, periodic shape curves can be characterized

as the topologically closed shape curves. Namely, the curve is either the immersion of a circle,

and we call it circular periodic, or the immersion of a closed interval (of length > 0) and is

contractible, and we call it string periodic. In the latter case the curve is a “string” with two

end points which are either a reversing cusp (i.e. at the Hill’s boundary) or a collision point,

and in order to qualify as a periodic curve it is tacitly assumed that we take two copies of the

“string” with the opposite orientation.

Remark 7.1 A shape curve consisting of a single point p is an exceptional case, and there

are additional string periodic moduli curves of the fixed shape p. Namely, p must be a Lagrange

or an Euler point, and the ray solution with negative energy, starting at rest from (ρ0, p) on the

Hill’s boundary (cf. Subsection 7.4), leads directly to the triple collision point O. By traversing

this ray segment in both directions we obtain a string periodic moduli curve.

Next, we shall describe the distinction between periodic 3-body motions and shape periodic

motions (i.e. of circular or string type). Let γ∗ be a closed (piecewise smooth) curve on the

2-sphere which is the shape curve of a motion γ(t), t0 ≤ t ≤ t1, of m-triangles with vanishing

angular momentum, and assume γ∗ is periodic as above. Then γ(t0) and γ(t1) are congruent
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m-triangles and hence differ only by a rotation angle ∆ψ, which we can calculate as a line

integral along the shape curve, according to the kinematic Gauss-Bonnet theorem (see (6.26)).

In particular, ∆ψ is zero if the shape curve is string periodic, and hence the given motion γ(t)

must also be periodic. Thus the notions of “periodic” and “shape periodic” are identical in this

case. On the other hand, a circular periodic curve γ∗ encloses a signed area ∆A (depending on

orientation and self-intersections), and the above line integral can also be expressed as a surface

integral which yields

∆ψ =
1

2
∆A. (7.1)

Therefore, the motion γ(t) is periodic if and only if the angle (7.1) is a rational multiple of 2π,

say ∆ψ = (p
q )2π with (p, q) = 1, and hence the number q(t1 − t0) is the period of the motion.

Thus the study of periodic 3-body trajectories is completely reduced to the study of closed

shape curves on the 2-sphere, and it is a challenge to describe or characterize the various types

of these curves in terms of simple geometric invariants. For example, due to the monotonicity

theorem it is natural to regard the number of eclipse points (counted with multiplicity) as a

measure of the complexity of the curve, and hence the simplest curves are characterized by a

small number of eclipse points.

Problem 7.1 What is the minimal number of eclipse points on a (string or circular) periodic

shape curve ? What even numbers can be realized ? What are those periodic curves with a small

number of eclipse points, say up to 10 ?

The homotopy classes of closed curves inside P = S2 − {b1,b2,b3} are elements of the

fundamental group π1(P ), namely the free group of two generators.

Problem 7.2 What are those homotopy classes of closed curves in P which can be repre-

sented by circular periodic shape curves ?

Definition 7.1 We propose to define the chaoticity of γ∗ to be the following value

ch(γ∗) =
Area(D(γ∗))

Area(S2)
,

where D(γ∗) ⊂ S2 is the closure of the set γ∗, and we say γ∗ is chaotic or non-chaotic if

ch(γ∗) > 0 or ch(γ∗) = 0, respectively.

Problem 7.3 What are the possible values of chaoticity for shape curves representing mo-

tions with Ω = 0 ?

Problem 7.4 What are the non-chaotic shape curves other than the periodic ones ?

7.2 Triple collisions

The works of Sundman and Siegel show that triple collisions is the only type of essential

singularity of 3-body motions, while the binary collisions can be regularized analytically (cf.

[15, 8]). Recall that the singularities of the Newtonian potential function U in the moduli

space M ≃ R3 consists of the triple of rays {−→Obi, i = 1, 2, 3}, where the base point (or origin)
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O represents the triple collision and the rays represent the three types of binary collisions.

Moreover, the moduli curves of triple collision motions with total energy h are exactly those

geodesic curves in (Mh, ds
2
h) with the point O as a limit. The following are some pertinent

problems on the geometry of such geodesics.

Problem 7.5 The existence (resp. uniqueness) problem on the shortest path in (Mh, ds
2
h)

linking a given point p in Mh to the base point O.

By the scaling symmetry we may assume h = 0,±1, where the case of h = −1 is most

difficult and also most interesting. The existence of such a shortest geodesic curve between O

and a given point p in Mh can be proved by Hilbert’s direct method when h = 0 or 1, whereas

for the case of h = −1 the existence will depend on the position of p in the Hill’s region Mh.

Note that Hilbert’s direct method also applies for those p with

d(p,O) < d(p, ∂Mh) + d(∂Mh, O).

The uniqueness problem is, however, much more interesting than the existence problem, but

it is also much more difficult and subtle. For a geodesic γ starting from O, the question is how

far out γ is the unique shortest geodesic from O. We remark that for points lying in the eclipse

plane, the shortest geodesic is not in the eclipse plane, and hence the limiting shape at O of

the shortest geodesic must be a Lagrange point, say p0. By the monotonicity of its shape curve

γ will eventually reach the eclipse plane, but after the first eclipse γ ceases to be of shortest

length. Hence, the best we can hope for is uniqueness up to the first eclipse point.

We propose to investigate first the case of h = 0, due to the scaling invariance of this energy

level. Then the general uniqueness of a shortest geodesic between any point p and O reduces

to the uniqueness for eclipse points p lying at the distance ρ = 1 from O, namely for points on

the eclipse circle E∗. Thus the problem is reduced from the moduli space M to the shape space

M∗, namely we ask about the uniqueness of such shape curves between points on E∗ and p0.

Problem 7.6 For the case of energy level h = 0 and for a given mass distribution, let S be

the set of triple collision moduli curves emanating from O, whose shape curve starts out from

the Lagrange point p0 on the upper hemisphere of M∗ = S2. Let S∗ be the initial arcs of the

shape curves from p0 (but p0 not included ) to their first point on the equator circle E∗. Is the

family of curves S∗ a foliation of the punctured upper hemisphere S2
+ − {p0}?

In the case that there exists a unique shortest geodesic in (Mh, ds
2
h) linking a given m-

triangle δ to the collapsedm-triangle O, it is certainly interesting to actually estimate its length,

initial direction and total rotation angle of the triangle in terms of its geometric invariants. See

also the last part of Subsection 6.2.

7.3 Binary collisions and nearby trajectories

The base point O is, of course, the only singularity for (M, ds2). But the Riemannian

manifold (Mh, ds
2
h) has another kind of singularity along the triple of rays {−→Obi, i = 1, 2, 3}

minus the initial point O, say, of binary collision type. One expects that understanding of the
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geometry of geodesic curves in the vicinity of this type of singularity will be an important topic

in the study of the global geometry of geodesics on (Mh, ds
2
h).

Problem 7.7 What kind of local analysis will enable us to provide an effective control on

the local geometry of geodesic curves in the vicinity of a singular ray of a given binary collision

type?

Let us make some further remarks. In the vicinity of the ray
−→
Obi the gradient vector field

∇U is closely approximated by the field ∇Ui, where

U =
∑

Ui, Ui =
mjmk

rjk
=

(mjmk)
3

2

√
1 −mi

1

di

and di = di(x) = ρ sinσi is the distance in (M, ds2) between x and the ray
−→
Obi (cf. (2.16)).

Thus, there is a suitable rotationally symmetric metric which provides a good approximation

of ds2h when we are close to such a ray singularity. Application of Noether’s theorem to this

simpler metric yields a first integral of its geodesic equation which is almost constant along a

geodesic segment of (Mh, ds
2
h) near

−→
Obi. This will serve as a useful auxiliary function whose

analysis will provide an effective control on the above local geometry.

7.4 Trajectories starting at the boundary of the Hill’s region

In the case of negative energy, say h = −1, the variety Mh is the Hill’s region, namely the

proper subset of the moduli space from which the moduli curves of the 3-body motions cannot

leave. The region is enclosed by its boundary, namely Hill’s surface ∂Mh which is the smooth

surface defined by ρ = U∗(ϕ, θ), with the (kinematic) gradient field ∇U as a normal field.

Here, we shall focus on those geodesics of the metric ds2h starting at the surface ∂Mh,

where the metric becomes identically zero. Hence, a curve lying on ∂Mh has zero length, and a

minimizing curve containing a segment on ∂Mh is only virtual and cannot, of course, represent

an actual trajectory of a 3-body motion. Therefore, in the study of variational problems of this

kind one often needs a certain estimate or geometrical control of those geodesic curves starting

at ∂Mh, that is, the moduli curves of those 3-body motions with no kinetic energy at t = t0.

They constitute a family {γx0
} of geodesics parametrized by their initial points x0 ∈ ∂Mh.

Following Jacobi, it is natural to study the variational vector fields along γx0
with respect to

variations within the above family of geodesics. These vector fields are solutions of the Jacobi

equation along γx0
with their initial vectors belonging to Tx0

(∂Mh).

Problem 7.8 Let x0 be a generic point of ∂Mh, h = −1, and let γx0
be the geodesic curve

with initial point x0. How do we obtain an effective (that is, simple and useful ) lower bound

estimate of the distance between x0 and the first zero point of Jacobi vector fields of the above

type, in terms of the geometric invariants at x0?

7.5 On the problem of fundamental segments

For a fixed energy level h = 0,±1, consider the family Σ(h) of all oriented geometric shape

curves, with the exceptional ones removed, of 3-body motions with zero angular momentum.
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According to the monotone m-latitude theorem the curve γ∗ can be viewed as a union of its

segments Ci = (pi, qi), between two consecutive points pi and qi of extremal m-latitude. We

shall refer to them as the fundamental segments. Thus the end points pi, qi lie on opposite

hemispheres, unless one of them is a binary collision point (and hence lies on the equator

circle), and moreover, the m-latitude is strictly monotonic along the segment. Clearly, a global

shape curve can be regarded as being pieced together by such fundamental segments, and a

periodic shape curve has only a finite number of them.

Conversely, we may try to construct curves by connecting Ci to Ci+1 in a “smooth” way.

Here Ci and Ci+1 belong to Σ(h), so “smooth” means their union also belongs to Σ(h). For

simplicity, assume we are using only regular fundamental segments C = (p, q), that is, p and q

are regular points. Observe that C is tangential to the m-latitude circle at p, so its direction will

be completely specified by an index ε = 0, 1 representing “eastward” or “westward” respectively.

Thus we can associate to the starting point p = (ϕ, θ) the following 5-tuple of numbers

[p] = (ϕ, θ,S0,S1, ε), (7.2)

which determines C completely and therefore also the 5-tuple [q] associated to its end point.

In (7.2) S0,S1 are the Siegel numbers of C at p, as explained in Subsections 4.1 and 4.2.

Roughly speaking, the relationship between the initial data and terminal data for a funda-

mental segment with regular end points provides a type of correspondence

[p] = (ϕ, θ,S0,S1, ε) → [q] = (π − ϕ′, θ′,S′
0,S

′
1, ε

′)

on a dense open set of S2 × R+ × R× {0, 1}. Moreover, since p and q are points on opposite

hemispheres, let us compose the above correspondence with the reflectional symmetry with

respect to the equator circle, namely we replace [q] by [p′] = (ϕ′, θ′,S′
0,S

′
1, ε

′). Finally, we

assume p (and hence also p′) lies on the upper hemisphere, thus arriving at the fundamental

correspondence

Θ : T0 ∪ T1 → T0 ∪ T1, [p] → [p′], (7.3)

where the Ti are identical copies of the 4-dimensional space T = S2
+ ×R+ ×R. The correspon-

dence is defined on a dense, open set, where it is also invertible. In fact, with some more labour

it would be possible to extend the fundamental correspondence to include irregular points (i.e.

cusps and collisions) as well.

Remark 7.2 A periodic shape curve is the assemblage of a finite number of fundamen-

tal segments whose initial data constitute a periodic orbit of the above correspondence (7.3).

Namely, if [p] has even order 2k, then the orbit of [p] defines 2k fundamental segments which

join together to a periodic curve. On the other hand, if the order is 2k+ 1, then the end of the

curve lies in the southern hemisphere, so by running through the orbit twice the order will be

4k + 2, and the associated curve will be periodic.

Thus, the correspondence (7.3) provides a natural way to a systematic study of the geometry

of global shape curves.
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