On Representations Associated with Completely n-Positive Linear Maps on Pro- C^* -Algebras**

Maria JOIŢA*

Abstract It is shown that an $n \times n$ matrix of continuous linear maps from a pro- C^* -algebra A to L(H), which verifies the condition of complete positivity, is of the form $[V^*T_{ij}\Phi(\cdot)V]_{i,j=1}^n$, where Φ is a representation of A on a Hilbert space K, V is a bounded linear operator from H to K, and $[T_{ij}]_{i,j=1}^n$ is a positive element in the C^* -algebra of all $n \times n$ matrices over the commutant of $\Phi(A)$ in L(K). This generalizes a result of C. Y. Suen in Proc. Amer. Math. Soc., **112**(3), 1991, 709–712. Also, a covariant version of this construction is given.

1 Introduction and Preliminaries

topologically isomorphic with A. In the literature, pro- C^* -algebras have been given by different name such as b^* -algebras (by C. Apostol), LMC^* -algebras (by G. Lessner, K. Schmüdgen) or locally C^* -algebras (by A. Inoue, M. Fragoulopoulou, etc.). Besides an intrinsic interest in pro- C^* -algebras as topological algebras comes from the fact that they provide an important tool in investigation of certain aspect of C^* -algebras (like multipliers of Pedersen ideal; tangent algebra of a C^* -algebra) and quantum field theory.

Manuscript received February 26, 2007. Published online December 24, 2007.

^{*}Department of Mathematics, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta nr. 4-12, Bucharest, Romania. E-mail: mjoita@fmi.unibuc.ro

^{**}Project supported by the grant CNCSIS (Romanian National Council for Research in High Education)-code A 1065/2006.

A continuous *-morphism from a pro- C^* -algebra A to another pro- C^* -algebra B is called a morphism of pro- C^* -algebras. An isomorphism of pro- C^* -algebras is a bijective map $\Phi : A \to B$ such that Φ and Φ^{-1} are morphisms of pro- C^* -algebras.

A representation of a pro- C^* -algebra A on a Hilbert space H is a continuous *-morphism φ from A to L(H), the C^* -algebra of all bounded linear operators on H. A representation (φ, H) of A is nondegenerate if $\varphi(A)H$ is dense in H (see [3]).

A continuous action of a locally compact group G on a pro- C^* -algebra A is a morphism of groups $\alpha : G \to \operatorname{Aut}(A)$. Here $\operatorname{Aut}(A)$ is the group of all isomorphisms of pro- C^* -algebras from A onto A, such that the map $(g, a) \mapsto \alpha_g(a)$ from $G \times A$ to A is jointly continuous. The action α is an inverse limit action if we can write A as an inverse limit $\lim_{\substack{\delta \in \Delta}} A_{\delta}$ of C^* -algebras in such

a way that there are continuous actions $\alpha^{(\delta)}$ of G on A_{δ} , $\delta \in \Delta$ such that $\alpha_g = \lim_{\delta \in \Delta} \alpha_g^{(\delta)}$ for all $g \in G$ (see [15]). If G is a compact group, then any continuous action of G on A is an inverse

 $g \in G$ (see [15]). If G is a compact group, then any continuous action of G on A is an inverse limit action (see [15]).

A covariant representation of a dynamical system (A, G, α) is a triple (φ, u, H) , where (φ, H) is a representation of A and (u, H) is a unitary representation of G, such that

$$\varphi(\alpha_g(a)) = u_g \varphi(a)(u_g)^*$$

for all $a \in A$ and for all $g \in G$. A covariant representation (φ, u, H) is nondegenerate if (φ, H) is nondegenerate.

A pro- C^* -dynamical system is a triple (A, G, α) , where A is a pro- C^* -algebra, G is a locally compact group and α is a continuous inverse limit action of G on A.

Let (A, G, α) be a pro- C^* -dynamical system. The set $C_c(G, A)$ of continuous functions from G to A with compact support is a *-algebra with multiplication of two elements defined by $(f, h) \mapsto f \times h$,

$$(f \times h)(s) = \int_G f(t)\alpha_t(h(t^{-1}s))\mathrm{d}t,$$

and involution $f \mapsto f^{\#}$,

$$f^{\#}(s) = \gamma(s)^{-1} \alpha_s(f(s^{-1})^*),$$

where γ is the modular function on G. The Hausdorff completion of $C_c(G, A)$ with respect to the topology defined by the family of submultiplicative *-seminorms $\{N_p\}_{p \in S(A)}$ $(N_p$ is defined by

$$N_p(f) = \int_G p(f(t)) \mathrm{d}t,$$

 $f \in C_c(G, A)$ is a complete locally *m*-convex *-algebra $L^1(A, G, \alpha)$ with bounded approximate unit. The enveloping algebra of $L^1(A, G, \alpha)$ is a pro-*C**-algebra, denoted by $A \times_{\alpha} G$ and called the crossed product of A by α (see [7]).

If A is a pro- C^* -algebra, then $M_n(A)$, the set of all $n \times n$ matrices over A with the algebraic operations and the topology obtained by regarding it as a direct sum of n^2 copies of A is a pro- C^* -algebra. The concept of matricial order plays an important role to understand the infinite-dimensional noncommutative structure of operator algebras. Completely positive linear maps as the natural ordering attached to this structure have been extensively studied in [1, 4–6, 8–12, 16, 17]. A completely *n*-positive linear map from A to L(H) is an $n \times n$ matrix $[\rho_{ij}]_{i,j=1}^n$ of continuous linear maps from A to L(H) such that the map $\rho: M_n(A) \to M_n(L(H))$ defined by

$$\rho([a_{ij}]_{i,j=1}^n) = [\rho_{ij}(a_{ij})]_{i,j=1}^n$$

is completely positive. We say that a completely *n*-positive linear map $[\rho_{ij}]_{i,j=1}^n$ from A to L(H) is nondegenerate if for some approximate unit $\{e_{\lambda}\}_{\lambda \in \Lambda}$ of A, the nets $\{\rho_{ii}(e_{\lambda})\}_{\lambda \in \Lambda}$, $i = 1, 2, \dots, n$, converge strictly to the identity operator on H (see [6]).

In [17], Suen showed that each unital completely *n*-positive linear map $[\rho_{ij}]_{i,j=1}^n$ from a unital C^* -algebra A to L(H) is of the form $[V^*T_{ij}\Phi(\cdot)V]_{i,j=1}^n$ where Φ is a unital representation of A on a Hilbert space K, V is a partial isometry from H to K, and $[T_{ij}]_{i,j=1}^n$ is a positive element in $M_n(\Phi(A)')$. $\Phi(A)'$ denotes the commutant of $\Phi(A)$ in L(K).

In this paper, using a Radon-Nikodym type theorem for completely positive linear maps from a pro- C^* -algebra A to L(H), we extend the result of Suen in the context of pro- C^* -algebras (see Theorem 2.1). Moreover, we prove that the representation associated with a completely n-positive linear map is unique up to unitary equivalence and give a necessary and sufficient criterion of irreducibility for this representation (see Corollary 2.1). In Section 3, we prove a covariant version of Theorem 2.1. Also we prove that a u-covariant, nondegenerate completely n-positive linear map $[\rho_{ij}]_{i,j=1}^n$ from A to L(H) induces a nondegenerate completely n-positive linear map $[\theta^{\rho}_{ij}]_{i,j=1}^n$ from $A \times_{\alpha} G$ to L(H) such that the representation of $A \times_{\alpha} G$ induced by $[\theta^{\rho}_{ij}]_{i,j=1}^n$ is unitarily equivalent with the representation of $A \times_{\alpha} G$ associated with the covariant representation of (A, G, α) induced by $[\rho_{ij}]_{i,j=1}^n$ (see Proposition 3.1 and Remark 3.2).

2 Representations Associated with Completely *n*-Positive Linear Maps

Remark 2.1 Let A be a C*-algebra. If $\rho = [\rho_{ij}]_{i,j=1}^n$ is a completely n-positive linear map from A to L(H), then for each $i = 1, \dots, n$, the map ρ_{ii} is completely positive and for each $i, j \in \{1, \dots, n\}$ with $i \neq j$, $\rho_{ji} = \rho_{ij}^*$ (ρ_{ij}^* is a linear map from A to L(H) defined by $\rho_{ij}^*(a) = (\rho_{ij}(a^*))^*$ for all $a \in A$). Moreover, the linear maps $(\rho_{ii} + \rho_{jj}) \pm 2\text{Re} \rho_{ij}$ and $(\rho_{ii} + \rho_{jj}) \pm 2\text{Im} \rho_{ij}$ are completely positive for each $i, j \in \{1, \dots, n\}$ with $i \neq j$ (see, for example, [13]). Then the linear maps $\sum_{k=1}^n \rho_{kk}, \sum_{k=1}^n \rho_{kk} \pm 2\text{Re} \rho_{ij}$ and $\sum_{k=1}^n \rho_{kk} \pm 2\text{Im} \rho_{ij}, i, j \in \{1, 2, \dots, n\}$ with $i \neq j$ are completely positive.

Remark 2.2 If $\rho = [\rho_{ij}]_{i,j=1}^n$ is a continuous completely *n*-positive linear map from a pro- C^* -algebra A to L(H), then there is $p \in S(A)$ and a completely *n*-positive linear map $\rho^p = [\rho_{ij}^p]_{i,j=1}^n$ from A_p to L(H) such that $[\rho_{ij}]_{i,j=1}^n = [\rho_{ij}^p \circ \pi_p]_{i,j=1}^n$ (see [5]). From this fact and Remark 2.1 we deduce that for each $i = 1, \dots, n$, the continuous linear map ρ_{ii} is completely positive and for each $i, j \in \{1, \dots, n\}$ with $i \neq j$, the continuous linear maps $\sum_{k=1}^n \rho_{kk} \pm 2 \operatorname{Re} \rho_{ij}$ and $\sum_{k=1}^n \rho_{kk} \pm 2 \operatorname{Im} \rho_{ij}$, are completely positive.

The following theorem is a generalization of [17, Proposition 2.7].

Theorem 2.1 Let A be a pro-C^{*}-algebra, let H be a Hilbert space, and let $\rho = [\rho_{ij}]_{i,j=1}^n$ be a completely n-positive linear map from A to L(H).

(1) Then there is a representation Φ_{ρ} of A on a Hilbert space H_{ρ} , a bounded linear operator $V: H \to H_{\rho}$, and a positive element $[T_{ij}^{\rho}]_{i,j=1}^n \in M_n(\Phi(A)')$ with $\sum_{i=1}^n T_{ii}^{\rho} = n \operatorname{id}_{H_{\rho}}$ such that

- (a) $\rho_{ij}(a) = V_{\rho}^* T_{ij}^{\rho} \Phi_{\rho}(a) V_{\rho}$ for all $a \in A$ and $i, j = 1, \cdots, n$;
- (b) $\{\Phi_{\rho}(a)V_{\rho}\xi; a \in A, \xi \in H\}$ is dense in H_{ρ} .

(2) If Φ is another representation of A on a Hilbert space $K, V : H \to K$ is a bounded linear operator and $[S_{ij}]_{i,j=1}^n$ is a positive element in $M_n(\Phi(A)')$ with $\sum_{i=1}^n S_{ii} = n \operatorname{id}_K$ such that

- (a) $\rho_{ij}(a) = V^* S_{ij} \Phi(a) V$ for all $a \in A$ and $i, j = 1, 2, \cdots, n;$
- (b) $\{\Phi(a)V\xi; a \in A, \xi \in E\}$ is dense in K;

then there is a unitary operator $U: H_{\rho} \to K$ such that

- (i) $\Phi(a) = U \Phi_{\rho}(a) U^*$ for all $a \in A$;
- (ii) $V = UV_{\rho};$
- (iii) $S_{ij} = UT_{ij}^{\rho}U^*$ for all $i, j = 1, 2, \cdots, n$.

Proof (1) Let $\tilde{\rho} = \frac{1}{n} \sum_{k=1}^{n} \rho_{kk}$. By Remark 2.2, $\tilde{\rho}$ is completely positive. Let $(\Phi_{\rho}, V_{\rho}, H_{\rho})$ be the Stinespring representation associated with $\tilde{\rho}$ (see [9, Theorem 2.2]). Then $\{\Phi_{\rho}(a)V_{\rho}\xi; a \in A, \xi \in H\}$ generates a dense subspace in H_{ρ} .

Let $i, j \in \{1, 2, \dots, n\}$ with $i \neq j$. Since $\tilde{\rho} - \frac{1}{2}(\tilde{\rho} + \frac{2}{n}\operatorname{Re}\rho_{ij}) = \frac{1}{2}(\tilde{\rho} - \frac{2}{n}\operatorname{Re}\rho_{ij})$ and $\tilde{\rho} - \frac{1}{2}(\tilde{\rho} + \frac{2}{n}\operatorname{Im}\rho_{ij}) = \frac{1}{2}(\tilde{\rho} - \frac{2}{n}\operatorname{Im}\rho_{ij})$ and since the linear maps $\tilde{\rho} - \frac{2}{n}\operatorname{Re}\rho_{ij}$ and $\tilde{\rho} - \frac{2}{n}\operatorname{Im}\rho_{ij}$ are completely positive (see Remark 2.2), by Radon Nikodym type theorem for completely positive linear maps [9, Theorem 3.5], there are two positive operators $T_{ij}^{(1)}, T_{ij}^{(2)} \in \Phi_{\rho}(A)'$ such that

$$(\operatorname{Re} \rho_{ij})(a) = V_{\rho}^{*} \left(nT_{ij}^{(1)} - \frac{n}{2} \operatorname{id}_{H_{\rho}} \right) \Phi_{\rho}(a) V_{\rho},$$

$$(\operatorname{Im} \rho_{ij})(a) = V_{\rho}^{*} \left(nT_{ij}^{(2)} - \frac{n}{2} \operatorname{id}_{H_{\rho}} \right) \Phi_{\rho}(a) V_{\rho}$$

for all $a \in A$. Moreover, the positive bounded linear operators $T_{ij}^{(1)}, T_{ij}^{(2)} \in \Phi_{\rho}(A)'$ are unique with the above properties. Let $T_{ij}^{\rho} = (nT_{ij}^{(1)} - \frac{n}{2}\mathrm{id}_{H_{\rho}}) + i(nT_{ij}^{(2)} - \frac{n}{2}\mathrm{id}_{H_{\rho}})$. Clearly, $T_{ij}^{\rho} \in \Phi_{\rho}(A)'$ and

$$\rho_{ij}(a) = V_{\rho}^* T_{ij}^{\rho} \Phi_{\rho}(a) V_{\rho}$$

for all $a \in A$. It is not difficult to check that T_{ij}^{ρ} is unique with the above property. Moreover, $(T_{ij}^{\rho})^* = T_{ii}^{\rho}$.

Let $i \in \{1, \dots, n\}$. Since $\frac{1}{n}\rho_{ii} \leq \tilde{\rho}$, by Radon Nikodym type theorem for completely positive linear maps (see [9, Theorem 3.5]), there is a unique positive element $T_{ii}^{\rho} \in \Phi_{\rho}(A)'$ such that

$$\rho_{ii}(a) = V_{\rho}^* T_{ii}^{\rho} \Phi_{\rho}(a) V_{\rho}$$

for all $a \in A$. From

$$\widetilde{\rho}(a) = \frac{1}{n} \sum_{i=1}^{n} \rho_{ii}(a) = \frac{1}{n} \sum_{i=1}^{n} V_{\rho}^* T_{ii}^{\rho} \Phi_{\rho}(a) V_{\rho} = V_{\rho}^* \left(\frac{1}{n} \sum_{i=1}^{n} T_{ii}^{\rho}\right) \Phi_{\rho}(a) V_{\rho}$$

and [9, Theorem 3.5], we conclude that $\sum_{i=1}^{n} T_{ii}^{\rho} = n \operatorname{id}_{H_{\rho}}$.

On Representations Associated with Completely n-Positive Linear Maps

From

$$\langle [T_{ij}^{\rho}]_{i,j=1}^{n} (\Phi_{\rho}(a_{k})V_{\rho}\xi_{k})_{k=1}^{n}, (\Phi_{\rho}(a_{k})V_{\rho}\xi_{k})_{k=1}^{n} \rangle$$

$$= \sum_{i,j=1}^{n} \langle T_{ij}^{\rho}\Phi_{\rho}(a_{j})V_{\rho}\xi_{j}, \Phi_{\rho}(a_{i})V_{\rho}\xi_{i} \rangle$$

$$= \sum_{i,j=1}^{n} \langle V_{\rho}^{*}T_{ij}^{\rho}\Phi_{\rho}(a_{i}^{*}a_{j})V_{\rho}\xi_{j}, \xi_{i} \rangle$$

$$= \sum_{i,j=1}^{n} \langle \rho_{ij}(a_{i}^{*}a_{j})\xi_{j}, \xi_{i} \rangle$$

for all $\xi_1, \dots, \xi_n \in H$ and for all $a_1, \dots, a_n \in A$, and taking into account that $\rho = [\rho_{ij}]_{i,j=1}^n$ is completely positive and $\{\Phi_{\rho}(a)V_{\rho}\xi; a \in A, \xi \in E\}$ generates H_{ρ} , we conclude that $[T_{ij}^{\rho}]_{i,j=1}^n$ is a positive element in $M_n(\Phi_{\rho}(A)')$.

(2) We consider the linear map U_0 : $\operatorname{Sp}\{\Phi_{\rho}(a)V_{\rho}\xi; a \in A, \xi \in H\} \to \operatorname{Sp}\{\Phi(a)V\xi; a \in A, \xi \in E\}$ defined by

$$U(\Phi_{\rho}(a)V_{\rho}\xi) = \Phi(a)V\xi$$

Since

$$\begin{split} \langle U_0(\Phi_\rho(a)V_\rho\xi), U_0(\Phi_\rho(a)V_\rho\xi) \rangle &= \langle \Phi(a)V\xi, \Phi(a)V\xi \rangle = \langle V^*\Phi(a^*a)V\xi, \xi \rangle \\ &= \frac{1}{n} \Big\langle V^*\Big(\sum_{i=1}^n S_{ii}\Big) \Phi(a^*a)V\xi, \xi \Big\rangle = \frac{1}{n} \sum_{i=1}^n \langle \rho_{ii}(a^*a)\xi, \xi \rangle \\ &= \frac{1}{n} \sum_{i=1}^n \langle V_\rho^* T_{ii}^\rho \Phi_\rho(a^*a)V_\rho\xi, \xi \rangle = \langle V_\rho^* \Phi_\rho(a^*a)V_\rho\xi, \xi \rangle \\ &= \langle \Phi_\rho(a)V_\rho\xi, \Phi_\rho(a)V_\rho\xi \rangle \end{split}$$

for all $a \in A$ and for all $\xi \in E$, U_0 extends to a unitary operator U from H_ρ to K. It is easy to verify that $U\Phi_\rho(a) = \Phi(a)U$ for all $a \in A$ and $UV_\rho = V$. Let $i, j \in \{1, 2, \dots, n\}$ and $a \in A$. Clearly, $U^*S_{ij}U \in \Phi_\rho(A)'$. From

$$\rho_{ij}(a) = V^* S_{ij} \Phi(a) V = V_{\rho}^* U^* S_{ij} \Phi(a) U V_{\rho} = V_{\rho}^* U^* S_{ij} U \Phi_{\rho}(a) V_{\rho}$$

and taking into account that T_{ij}^{ρ} is the unique element in $\Phi_{\rho}(A)'$ such that

$$\rho_{ij}(a) = V_{\rho}^* T_{ij}^{\rho} \Phi_{\rho}(a) V_{\rho}$$

for all $a \in A$, we deduce that $U^*S_{ij}U = T_{ij}^{\rho}$ and the theorem is proved.

Remark 2.3 If $\rho = [\rho_{ij}]_{i,j=1}^n$ is nondegenerate, then V_{ρ} is an isometry, since for some approximate unit $\{e_{\lambda}\}_{\lambda \in \Lambda}$ of A, we have

$$\xi = \frac{1}{n} \sum_{i=1}^{n} \lim_{\lambda} \rho_{ii}(e_{\lambda}) \xi = \frac{1}{n} \sum_{i=1}^{n} \lim_{\lambda} V_{\rho}^* T_{ii}^{\rho} \Phi_{\rho}(e_{\lambda}) V_{\rho} \xi = \lim_{\lambda} V_{\rho}^* \Phi_{\rho}(e_{\lambda}) V_{\rho} \xi$$
$$= V_{\rho}^* V_{\rho} \xi \quad (by \ [5, Proposition \ 4.2])$$

for all $\xi \in H$.

Corollary 2.1 Let A be a pro-C^{*}-algebra, let H be a Hilbert space, and let $\rho = [\rho_{ij}]_{i,j=1}^n$ be a continuous completely n-positive linear map from A to L(H). The representation (Φ_{ρ}, H_{ρ}) of A associated with ρ is irreducible if and only if there is a pure completely positive linear map θ from A to L(H) and a positive matrix $[\lambda_{ij}]_{i,j=1}^n$ in $M_n(\mathbb{C})$ with $\sum_{k=1}^n \lambda_{kk} = n$ such that $\rho = [\lambda_{ij}\theta]_{i,j=1}^n$.

Proof First we suppose that (Φ_{ρ}, H_{ρ}) is irreducible. Then $\tilde{\rho}$ is pure and for each $i, j \in \{1, 2, \dots, n\}$ there is $\lambda_{ij} \in \mathbb{C}$ such that $T_{ij}^{\rho} = \lambda_{ij} \operatorname{id}_{H_{\rho}}$ (see [9, Corollary 3.6]). Moreover, $[\lambda_{ij}]_{i,j=1}^n$ is a positive matrix in $M_n(\mathbb{C})$ with $\sum_{k=1}^n \lambda_{kk} = n$, and since

$$\rho_{ij}(a) = \lambda_{ij} V_{\rho}^* \Phi_{\rho}(a) V_{\rho} = \lambda_{ij} \widetilde{\rho}(a)$$

for all $a \in A$ and for all $i, j = 1, 2, \cdots, n$,

$$\rho = [\lambda_{ij}\widetilde{\rho}]_{i,j=1}^n.$$

Conversely, if $\rho = [\lambda_{ij}\theta]_{i,j=1}^n$ and $\sum_{k=1}^n \lambda_{kk} = n$, then $\tilde{\rho} = \theta$ and since θ is pure, the representation of A associated with $\tilde{\rho}$ is irreducible (see [9, Corollary 3.6]). Therefore the representation (Φ_{ρ}, H_{ρ}) of A associated with ρ is irreducible.

3 Covariant Representations Associated with Covariant Completely *n*-Positive Linear Maps

Definition 3.1 Let A be a pro-C^{*}-algebra, let (G, A, α) be a pro-C^{*}-dynamical system and let u be a unitary representation of G on a Hilbert space H. We say that a completely n-positive linear map $\rho = [\rho_{ij}]_{i,j=1}^n$ from A to L(H) is u-covariant with respect to the pro-C^{*}-dynamical system (G, A, α) if

$$\rho_{ij}(\alpha_g(a)) = u_g \rho_{ij}(a)(u_g)^*$$

for all $a \in A$ and for all $g \in G$.

The following theorem is a covariant version of Theorem 2.1.

Theorem 3.1 Let A be a pro-C^{*}-algebra, let (G, A, α) be a pro-C^{*}-dynamical system, let u be a unitary representation of G on a Hilbert space H, and let $\rho = [\rho_{ij}]_{i,j=1}^n$ be a u-covariant nondegenerate completely n-positive linear map from A to L(H).

(1) Then there is a covariant representation $(\Phi_{\rho}, v^{\rho}, H_{\rho})$ of (G, A, α) , an isometry V_{ρ} in $L(H, H_{\rho})$ and a positive element $[T_{ij}^{\rho}]_{i,j=1}^{n}$ in $M_n(\Phi_{\rho}(A)' \cap v^{\rho}(G)')$ with $\sum_{i=1}^{n} T_{ii}^{\rho} = n \operatorname{id}_{H_{\rho}}$ such that

(a) ρ_{ij}(a) = V^{*}_ρT^ρ_{ij}Φ_ρ(a)V_ρ for all a ∈ A and for all i, j = 1, 2, · · · , n;
(b) {Φ_ρ(a)V_ρξ; a ∈ A, ξ ∈ H} spans a dense subspace of H_ρ;
(c) v^{*}_ρV_ρ = V_ρu_g for all g ∈ G.

(2) If (Φ, v, K) is a covariant representation of (G, A, α) , V is an isometry in L(H, K), and $[S_{ij}]_{i,j=1}^n$ is a positive element in $M_n(\Phi(A)' \cap v(G)')$ with $\sum_{i=1}^n S_{ii} = n \operatorname{id}_K$ such that

On Representations Associated with Completely n-Positive Linear Maps

- (a) $\rho(a) = V^* S_{ij} \Phi(a) V$ for all $a \in A$ and for all $i, j = 1, 2, \cdots, n$;
- (b) $\{\Phi(a)V\xi; a \in A, \xi \in H\}$ spans a dense subspace of K;
- (c) $v_q V = V u_q$ for all $g \in G$,

then there is a unitary operator U in $L(H_{\rho}, K)$ such that

- (i) $\Phi(a) = U\Phi_{\rho}(a)U^*$ for all $a \in A$;
- (ii) $v_q = U v_q^{\rho} U^*$ for all $g \in G$;
- (iii) $V = UV_{\rho};$

(iv)
$$S_{ij} = UT^{\rho}_{ij}U^*$$
 for all $i, j = 1, 2, \cdots, n$

Proof (1) Let $\tilde{\rho} = \frac{1}{n} \sum_{i=1}^{n} \rho_{ii}$. Clearly, $\tilde{\rho}$ is a *u*-covariant nondegenerate continuous completely positive linear map from A to L(H). Let $(\Phi_{\rho}, v^{\rho}, V_{\rho}, H_{\rho})$ be the covariant Stinespring construction associated with $\tilde{\rho}$ (see, for example, [8, Theorem 3.6]). Moreover, the triple $(\Phi_{\rho}, v^{\rho}, H_{\rho})$ is the Stinespring representation associated with $\tilde{\rho}$. Therefore the quadruple $(\Phi_{\rho}, v^{\rho}, V_{\rho}, H_{\rho})$ verifies the relations Theorem 3.1(1)(a) and Theorem 3.1(1)(c) and by the proof of Theorem 2.1, there is a positive element $[T^{\rho}_{ij}]_{i,j=1}^{n}$ in $M_n(\Phi_{\rho}(A)')$ with $\sum_{i=1}^{n} T^{\rho}_{ii} = n \operatorname{id}_{H_{\rho}}$, such that

$$\rho_{ij}(a) = V_{\rho}^* T_{ij}^{\rho} \Phi_{\rho}(a) V_{\rho} \quad \text{for all } a \in A \text{ and for all } i, j = 1, 2, \cdots, n.$$

Let $i, j \in \{1, 2, \dots, n\}$. To show that $T_{ij}^{\rho} \in v^{\rho}(G)'$, let $a \in A$. From

$$\rho_{ij}(a) = u_g^* \rho_{ij}(\alpha_g(a)) u_g = u_g^* V_\rho^* T_{ij}^\rho \Phi_\rho(\alpha_g(a)) V_\rho u_g$$
$$= V_\rho^* (v_g^\rho)^* T_{ij}^\rho v_g^\rho \Phi_\rho(a) (v_g^\rho)^* v_g^\rho V_\rho$$
$$= V_\rho^* (v_g^\rho)^* T_{ij}^\rho v_g^\rho \Phi_\rho(a) V_\rho$$

for all $g \in G$ and the uniqueness of T_{ij}^{ρ} such that $\rho_{ij}(a) = V_{\rho}^* T_{ij}^{\rho} \Phi_{\rho}(a) V_{\rho}$, we deduce that $T_{ij}^{\rho} = (v_q^{\rho})^* T_{ij}^{\rho} v_q^{\rho}$ for all $g \in G$ and so $T_{ij}^{\rho} \in v^{\rho}(G)'$.

(2) Since

$$\widetilde{\rho}(a) = \frac{1}{n} \sum_{i=1}^{n} \rho_{ii}(a) = \frac{1}{n} \sum_{i=1}^{n} V^* S_{ii} \Phi(a) V = V^* \left(\frac{1}{n} \sum_{i=1}^{n} S_{ii}\right) \Phi(a) V = V^* \Phi(a) V$$

for all $a \in A$, $\{\Phi(a)V\xi; a \in A, \xi \in H\}$ spans a dense subspace of K and since $v_g V = V u_g$ for all $g \in G$, (Φ, v, K) is a covariant representation of (A, G, α) associated with $\tilde{\rho}$ and then there is a unitary operator $U : H_{\rho} \to K$ (see [8, Theorem 3.6]) such that

(a) $\Phi(a) = U\Phi_{\rho}(a)U^*$ for all $a \in A$; (b) $v_g = Uv_g^{\rho}U^*$ for all $g \in G$; (c) $V = UV_{\rho}$. Let $i, j \in \{1, 2, \cdots, n\}$. From

$$\rho_{ij}(a) = V^* S_{ij} \Phi(a) V = V_{\rho}^* U^* S_{ij} \Phi(a) U V_{\rho} = V_{\rho}^* (U^* S_{ij} U) \Phi_{\rho}(a) V_{\rho}$$

for all $a \in A$ and the uniqueness of the bounded linear operator $T_{ij}^{\rho} \in \Phi_{\rho}(A)'$ such that $\rho_{ij}(a) = V_{\rho}^* T_{ij}^{\rho} \Phi_{\rho}(a) V_{\rho}$ for all $a \in A$, we deduce that $T_{ij}^{\rho} = U^* S_{ij} U$ and the theorem is proved.

Remark 3.1 Any *u*-covariant completely *n*-positive linear map $\rho = [\rho_{ij}]_{i,j=1}^n$ from A to L(H) with respect the pro-C^{*}-dynamical system (G, A, α) induces a nondegenerate covariant

representation $(\Phi_{\rho}, v^{\rho}, H_{\rho})$ of (G, A, α) and so a nondegenerate representation $(\Phi_{\rho} \times v^{\rho}, H_{\rho})$ of $A \times_{\alpha} G$ (see [7]).

Proposition 3.1 Let (G, A, α) be a pro- C^* -dynamical system, let H be a Hilbert space, and let u be a unitary representation of G on H. If $\rho = [\rho_{ij}]_{i,j=1}^n$ is a u-covariant nondegenerate completely n-positive linear map from A to L(H), then there is a unique completely n-positive linear map $\theta^{\rho} = [\theta_{ij}^{\rho}]_{i,j=1}^n$ from $A \times_{\alpha} G$ to L(H) such that

$$\theta^{\rho}_{ij}(f) = \int_{G} \rho_{ij}(f(g)) u_g \mathrm{d}g$$

for all $f \in C_c(G, A)$ and for all $i, j \in \{1, 2, \dots, n\}$. Moreover, θ^{ρ} is nondegenerate.

Proof Let $(\Phi_{\rho}, v^{\rho}, V_{\rho}, H_{\rho}, [T_{ij}^{\rho}]_{i,j=1}^{n})$ be the construction associated with ρ by Theorem 3.1. Since $T_{ij}^{\rho} \in \Phi_{\rho}(A)' \cap v^{\rho}(G)'$, it is not difficult to verify that $T_{ij}^{\rho} \in (\Phi_{\rho} \times v^{\rho})(A \times_{\alpha} G)'$ for all $i, j \in \{1, 2, \dots, n\}$.

For each $i, j \in \{1, 2, \dots, n\}$, we consider the linear map $\theta_{ij}^{\rho} : A \times_{\alpha} G \to L(H)$ defined by

$$\theta_{ij}^{\rho}(x) = V_{\rho}^* T_{ij}^{\rho} (\Phi_{\rho} \times v^{\rho})(x) V_{\rho}$$

Clearly, θ_{ij}^{ρ} is continuous. To show that $\theta^{\rho} = [\theta_{ij}^{\rho}]_{i,j=1}^{n}$ is completely *n*-positive, it is sufficient to show that the map $S(\theta^{\rho}) : A \times_{\alpha} G \to M_n(L(H))$ defined by

$$S(\theta^{\rho})(x) = [\theta_{ij}^{\rho}(x)]_{i,j=1}^{n}$$

is completely positive (see [9, Remark 2.1] and [4, Theorem 1.4]). Let $x_1, \dots, x_m \in A \times_{\alpha} G$ and $(\xi_{1i})_{i=1}^n, \dots, (\xi_{mi})_{i=1}^n \in \bigoplus_{i=1}^n H$. Then

$$\begin{split} &\sum_{l,k=1}^{m} \langle S(\theta^{\rho})(x_{l}^{*}x_{k})(\xi_{ki})_{i=1}^{n}, (\xi_{li})_{i=1}^{n} \rangle \\ &= \sum_{l,k=1}^{m} \langle [\theta_{ij}^{\rho}(x_{l}^{*}x_{k})]_{i,j=1}^{n}(\xi_{ki})_{i=1}^{n}, (\xi_{li})_{i=1}^{n} \rangle \\ &= \sum_{l,k=1}^{m} \sum_{i,j=1}^{n} \langle \theta_{ij}^{\rho}(x_{l}^{*}x_{k})\xi_{ki}, \xi_{lj} \rangle \\ &= \sum_{l,k=1}^{m} \sum_{i,j=1}^{n} \langle V_{\rho}^{*}T_{ij}^{\rho}(\Phi_{\rho} \times v^{\rho})(x_{l}^{*}x_{k})V_{\rho}\xi_{ki}, \xi_{lj} \rangle \\ &= \sum_{l,k=1}^{m} \sum_{i,j=1}^{n} \langle T_{ij}^{\rho}(\Phi_{\rho} \times v^{\rho})(x_{k})V_{\rho}\xi_{ki}, (\Phi_{\rho} \times v^{\rho})(x_{l})V_{\rho}\xi_{lj} \rangle \\ &= \sum_{i,j=1}^{n} \left\langle T_{ij}^{\rho} \sum_{k=1}^{m} (\Phi_{\rho} \times v^{\rho})(x_{k})V_{\rho}\xi_{ki}, \sum_{l=1}^{m} (\Phi_{\rho} \times v^{\rho})(x_{l})V_{\rho}\xi_{lj} \right\rangle. \end{split}$$

From this fact and taking into account that $[T_{ij}^{\rho}]_{i,j=1}^n$ is a positive element in $M_n(\Phi_{\rho}(A)')$, we conclude that θ^{ρ} is completely *n*-positive.

On Representations Associated with Completely n-Positive Linear Maps

Let $i, j \in \{1, 2, \dots, n\}$ and $f \in C_c(G, A)$. Then

$$\theta_{ij}^{\rho}(f) = V_{\rho}^{*} T_{ij}^{\rho} (\Phi_{\rho} \times v^{\rho})(f) V_{\rho} = V_{\rho}^{*} T_{ij}^{\rho} \int_{G} \Phi_{\rho}(f(g)) v_{g}^{\rho} V_{\rho} \mathrm{d}g$$
$$= \int_{G} V_{\rho}^{*} T_{ij}^{\rho} \Phi_{\rho}(f(g)) V_{\rho} u_{g} \mathrm{d}g = \int_{G} \rho_{ij}(f(g)) u_{g} \mathrm{d}g.$$

From this fact and taking into account that $C_c(G, A)$ is dense in $A \times_{\alpha} G$, we conclude that θ^{ρ} is unique such that

$$\theta_{ij}^{\rho}(f) = \int_{G} \rho_{ij}(f(g)) u_g \mathrm{d}g$$

for all $f \in C_c(G, A)$ and for all $i, j \in \{1, 2, \cdots, n\}$.

Let $\{f_{\delta}\}_{\delta \in \Delta}$ be an approximate unit of $A \times_{\alpha} G$, $\{e_{\lambda}\}_{\lambda \in \Lambda}$ an approximate unit for A such that the nets $\{\rho_{ii}(e_{\lambda})\}_{\lambda \in \Lambda}$, $i = 1, 2, \dots, n$, converge strictly to the identity operator on H, and $\xi \in H$. Then

$$\lim_{\delta} \theta_{ii}^{\rho}(f_{\delta})\xi = \lim_{\delta} V_{\rho}^{*} T_{ii}^{\rho} (\Phi_{\rho} \times v^{\rho})(f_{\delta}) V_{\rho}\xi = V_{\rho}^{*} T_{ii}^{\rho} V_{\rho}\xi$$
$$= \lim_{\lambda} V_{\rho}^{*} T_{ii}^{\rho} \Phi_{\rho}(e_{\lambda}) V_{\rho}\xi = \lim_{\lambda} \rho_{ii}(e_{\lambda})\xi = \xi$$

for all $i = 1, 2, \dots, n$. Therefore, θ^{ρ} is nondegenerate.

Remark 3.2 Let (G, A, α) be a pro- C^* -dynamical system, let $\rho = [\rho_{ij}]_{i,j=1}^n$ be a *u*covariant nondegenerate completely *n*-positive linear map from A to L(H), and let $(\Phi_{\rho}, v^{\rho}, V_{\rho}, H_{\rho}, [T_{ij}^{\rho}]_{i,j=1}^n)$ be the construction associated with ρ by Theorem 3.1. Then $\Phi_{\rho} \times v^{\rho}$ is a nondegenerate representation of $A \times_{\alpha} G$ on H_{ρ} (see [7]). Moreover, $[T_{ij}^{\rho}]_{i,j=1}^n$ is a positive element in $M_n((\Phi_{\rho} \times v^{\rho})(A \times_{\alpha} G)')$ such that

$$\theta_{ij}^{\rho}(x) = V_{\rho}^* T_{ij}^{\rho}(\Phi_{\rho} \times v^{\rho})(x) V_{\rho}$$

for all $x \in A \times_{\alpha} G$ and for all $i, j \in \{1, 2, \dots, n\}$ and $\{(\Phi_{\rho} \times v^{\rho})(x)V_{\rho}\xi; \xi \in H, x \in A \times_{\alpha} G\}$ spans a dense subspace of H_{ρ} , since

$$(\Phi_{\rho} \times v^{\rho})(a \times f)V_{\rho}\xi = \int_{G} \Phi_{\rho}(af(g))v_{g}^{\rho}V_{\rho}\xi dg = \Phi_{\rho}(a)V_{\rho}\int_{G} f(g)u_{g}\xi dg$$

for all $a \in A$ for all $f \in C_c(G, A)$ and for all $\xi \in H$, and since $\{\Phi_\rho(a)V_\rho\xi; a \in A, \xi \in H\}$ spans a dense subspace of H_ρ . From these facts and Theorem 2.1, we conclude that there is a unitary operator $U : H_\rho \to H_{\theta^\rho}$ such that

(1) $(\Phi_{\rho} \times v^{\rho})(x) = U\Phi_{\theta^{\rho}}(x)U^*$ for all $x \in A \times_{\alpha} G$; (2) $V_{\rho} = UV_{\theta^{\rho}}$; (3) $T_{ij}^{\rho} = UT_{ij}^{\theta^{\rho}}U^*$ for all $i, j \in \{1, 2, \cdots, n\}$.

Therefore the representation of $A \times_{\alpha} G$ induced by θ^{ρ} is unitarily equivalent to the representation $\Phi_{\rho} \times v^{\rho}$ induced by the covariant nondegenerate completely *n*-positive linear map $\rho = [\rho_{ij}]_{i,j=1}^{n}$.

Suppose that (G, A, τ) is a trivial pro- C^* -dynamical system (that is, $\tau_g = \operatorname{id}_A$ for all $g \in G$). Then the pro- C^* -algebras $A \times_{\tau} G$ and $A \otimes_{\max} C^*(G)$, where $C^*(G)$ is the universal C^* -algebra associated with G, are isomorphic (see [7, 2, 3, 12]). By Theorem 3.1, any *u*-covariant

nondegenerate completely *n*-positive linear map $\rho = [\rho_{ij}]_{i,j=1}^n$ from A to L(H) with respect to (G, A, τ) induces a nondegenerate covariant representation of (G, A, τ) and so it induces a nondegenerate representation of $A \otimes_{\max} C^*(G)$ on a Hilbert space K.

Corollary 3.1 Let $\rho = [\rho_{ij}]_{i,j=1}^n$ be a u-covariant nondegenerate completely n-positive linear map from A to L(H) with respect to the trivial pro-C^{*}-dynamical system (G, A, τ) . Then, ρ induces a completely n-positive linear map $\theta^{\rho} = [\theta_{ij}^{\rho}]_{i,j=1}^n$ from $A \otimes_{\max} C^*(G)$ to L(H). Moreover, the representation of $A \otimes_{\max} C^*(G)$ induced by ρ is unitarily equivalent to the representation induced by θ^{ρ} .

References

- [1] Arveson, W., Subalgebras of C*-algebras, Acta Math., 123, 1969, 141-224.
- [2] Blackadar, B., Operator Algebras, Theory of C*-Algebras and von Neumann Algebras, Encilopedia of Mathematical Sciences, Vol. 112, Operator Algebras and Non-Commutative Geommetry (III), J. Cuntz and V. F. R. Jones (eds.), Springer-Verlag, Berlin, 2006.
- [3] Fragoulopoulou, M., Topological algebras with involution, North-Holland Mathematics Studies, 200, Elsevier Science B. V., Amsterdam, 2005, xvi+495. ISBN: 0-444-52025-2.
- [4] Heo, J., Completely multi-positive linear maps and representations on Hilbert C*-modules, J. Operator Theory, 41, 1999, 3–22.
- Joiţa, M., Strict completely positive maps between locally C*-algebras and representations on Hilbert modules, J. London Math. Soc. (2), 66, 2002, 421–432.
- [6] Joiţa, M., Completely multi-positive linear maps between locally C*-algebras and representations on Hilbert modules, Studia Math., 172, 2006, 181–196.
- [7] Joiţa, M., Crossed products of locally C*-algebras, Rocky Mountain J. Math., 37, 2007, 1623–1644.
- [8] Joiţa, M., Covariant completely positive linear maps between locally C*-algebras, Houston J. Math., 33, 2007, 1067–1078.
- [9] Joita, M., A Radon-Nikodym theorem for completely multi-positive linear maps from a pro- C^* -algebra to L(H) and its applications, *Publ. Math. Debrecen*, **72**, 2008, to appear.
- [10] Kaplan, A., Multi-states on C*-algebras, Proc. Amer. Math. Soc., 106, 1989, 437-446.
- [11] Kaplan, A., Covariant completely positive maps and liftings, Rocky Mountain J. Math., 23, 1993, 939-946.
- [12] Pedersen, G. K., C^{\ast} -algebras and their automorphism groups, Academic Press, London, New York, San Francisco, 1979.
- [13] Paulsen, V. I. and Suen, C. Y., Commutant representations of completely bounded maps, J. Operator Theory, 13, 1985, 87–101.
- [14] Phillips, N. C., Inverse limit of C*-algebras, J. Operator Theory, 19, 1988, 159–195.
- [15] Phillips, N. C., Representable K-theory for σ -C^{*}-algebras, K-Theory, **3**(5), 1989, 441–478.
- [16] Stinespring, W., Positive functions on C*-algebras, Proc. Amer. Math. Soc., 6, 1955, 211-216.
- [17] Suen, C. Y., An $n \times n$ matrix of linear maps of a C*-algebras, Proc. Amer. Math. Soc., **112**(3), 1991, 709–712.