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Abstract Let H be a cosemisimple Hopf algebra over a field k, and π : A → H be a
surjective cocentral bialgebra homomorphism of bialgebras. The authors prove that if A

is Galois over its coinvariants B = LH Ker π and B is a sub-Hopf algebra of A, then A is
itself a Hopf algebra. This generalizes a result of Cegarra [3] on group-graded algebras.
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1 Introduction

Let H be a bialgebra over a field k and (A, ρ) be a right H-comodule algebra. Then the

coinvariant Aco H is defined as

Aco H = {a ∈ A | ρ(a) = a ⊗ 1}.

The algebra A is said to be a right H-Galois extension of its coinvariants B = Aco H , if the

Galois map β : A ⊗B A → A ⊗ H, a ⊗ a′ 7→
∑

aa′
〈0〉 ⊗ a′

〈1〉, is a bijection. This notion of

Hopf-Galois extensions unifies the notions of classical Galois extensions over any field, strongly

group-graded algebras, and affine algebraic principal homogeneous spaces.

The idea of using Galois extension to construct an antipode on a bialgebra is an old one.

Schauenburg [9] proved that a bialgebra H is itself a Hopf algebra if H admits a Galois extension

A/Aco H . Another interesting result on this topic was given by Cegarra [3]. He showed that if A

is a strongly group G-graded bialgebra over a field k such that each homogeneous component Ag

of A is a sub-coalgebra of A, and specially A1 is a finite-dimensional sub-Hopf algebra of A, then

A is a Hopf algebra. His argument, without giving an explicit construction of the antipode, is

tendinous and depends heavily on a theory of graded extensions (see [2]) of monoidal category.

Let us check Cegarra’s assumption in detail. In his setting, A can be viewed as a natural

right kG-comodule algebra via ρ : A → A ⊗ kG, ag 7→ ag ⊗ g where ag ∈ Ag. The coinvariant

Aco kG is nothing else but A1, and the condition that A is strongly G-graded is equivalent

to the statement that A/A1 is right kG-Galois. If we define π : A → kG via π(ag) = g

∀ag ∈ Ag, then that each homogeneous component Ag is a sub-coalgebra of A implies that π is

a Hopf algebra homomorphism. Moreover, the map π : A → kG satisfies an additional identity
∑

π(a(1)) ⊗ a(2) =
∑

π(a(2)) ⊗ a(1) (termed cocentral in [1]) for any a ∈ A.
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In this note, we will generalize Cegarra’s result to a slightly more general case. We prove

that, for his special case, the antipode can be constructed explicitly as

SA(a) =

n
∑

i=1

εA(ai)SB(bi(1)a)bi(2),

where a ∈ Ag,
n
∑

i=1

ai ⊗ bi is chosen in Ag ⊗B Ag−1 and satisfies
n
∑

i=1

aibi = 1.

2 The Main Theorem

Main Theorem Let (H, ∆H , εH , MH , uH , SH) be a Hopf algebra over a field k and let

(A, ∆A, εA, MA, uA) be a bialgebra. Assume that π : A → H is a surjective cocentral bialgebra

homomorphism. View A as a natural right H-comodule algebra via: ρ : A → A ⊗ H, sending

a ∈ A to
∑

a(1) ⊗ π(a(2)). Then

(1) B = Aco H is a sub-bialgebra of A,

(2) The extension k −→ B
ι

−→ A
π

−→ H −→ k is exact,

(3) Assume further that H is cosemisimple and A/B is Galois, then A is a Hopf algebra if

and only if B is a Hopf algebra.

Throughout this paper, k is a field. We use ⊗ to stand for ⊗k. For a general theory of Hopf

algebras, we refer to the standard books (see [8, 10]). We use Sweedler’s “sigma” notation (see

[10]): ∆(c) =
∑

c(1) ⊗ c(2) for an element c in a coalgebra (C, ∆, ε), and ρ(a) =
∑

a〈0〉 ⊗ a〈1〉

for an element a in a right C-comodule (A, ρ).

We first prove the first statement of the main theorem.

Lemma 2.1 Let H, A, ρ be as in Main Theorem. Then Aco H is a sub-bialgebra of A.

Proof Clearly B = Aco H is a subalgebra of A. It suffices to show that B is also a

subcoalgebra of A.

For any a ∈ A,

(ρ ⊗ ρ)△A(a) =
∑

a(1) ⊗ π(a(2)) ⊗ a(3) ⊗ π(a(4))

=
∑

a(1) ⊗ π(a(3)) ⊗ a(2) ⊗ π(a(4)) (π is cocentral)

=
∑

(1 ⊗ τ ⊗ 1)(a(1) ⊗ a(2) ⊗ π(a(3))(1) ⊗ π(a(3))2)

= (1 ⊗ τ ⊗ 1)(△A ⊗△H)ρ(a),

that is,

(ρ ⊗ ρ)△A = (1 ⊗ τ ⊗ 1)(△A ⊗△H), (2.1)

i.e., ρ : A → A ⊗ H is a coalgebra homomorphism.

For any nonzero element b ∈ B, write ∆A(b) =
m
∑

i=1

xi ⊗ yi with m being chosen as small as

possible. Then one easily check that {x1, · · · , xm} and {y1, · · · , ym} are linearly independent.

For the finite set {x1, · · · , xm, y1, · · · , ym}, we have a finite-dimensional subspace L of H such

that

ρ({x1, · · · , xm, y1, · · · , ym}) ⊆ A ⊗ L.
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Take a basis {h1 = 1, · · · , hn} for L, and for each i (1 ≤ i ≤ m) write

ρ(xi) =

n
∑

j=1

xij ⊗ hj and ρ(yi) =

n
∑

j=1

yij ⊗ hj.

Then

m
∑

i=1

ρ(xi) ⊗ ρ(yi) = (1 ⊗ τ ⊗ 1)(∆A ⊗ ∆H)(b ⊗ 1)

=

m
∑

i=1

xi ⊗ 1 ⊗ yi ⊗ 1 by (2.1),

that is,
m

∑

i=1

n
∑

j=1

n
∑

l=1

xij ⊗ hj ⊗ yil ⊗ hl =

m
∑

i=1

xi ⊗ h1 ⊗ yi ⊗ h1.

By the linearly independence of {h1, · · · , hn},

m
∑

i=1

n
∑

j=1

xij ⊗ hj ⊗ yil = δl1

m
∑

i=1

xi ⊗ h1 ⊗ yi,

and again,
m

∑

i=1

xij ⊗ yil = δj1δl1

m
∑

i=1

xi ⊗ yi (2.2)

for any j, l (1 ≤ j, l ≤ m). Taking j = l = 1, we have

m
∑

i=1

xi1 ⊗ yi1 =

m
∑

i=1

xi ⊗ yi = ∆A(b).

By the minimality of m, we see that {x11, · · · , xm1} and {y11, · · · , ym1} are linearly independent

as well.

Fix j = 1. For any l (2 ≤ l ≤ m), by (2.2)

m
∑

i=1

xi1 ⊗ yil = δl1

m
∑

i=1

xi ⊗ yi = 0.

Since {x11, · · · , xm1} is linearly independent, yil = 0 for any i (1 ≤ i ≤ m). Therefore

ρ(yi) =

n
∑

l=1

yil ⊗ hl = yi1 ⊗ h1 = yi1 ⊗ 1,

and by the counital property yi1 = yi, i.e., yi ∈ B for all i (1 ≤ i ≤ m). Similarly all xi ∈ B.

Thus ∆A(B) ⊆ B ⊗ B, and B is a subcoalgebra of A.

The second statement of Main Theorem can be checked by the definition of B.

For completing the proof of Main Theorem, we recall some properties of a cosemisimple

Hopf algebra H .

A fundamental theorem (see [10, 14.0.3] and [8, 2.4.6]) is that H is cosemisimple if and only

if there exists a two-sided integral λ ∈ H∗ such that 〈λ, 1〉 6= 0. Moreover, if H is cosemisimple,

then H has a bijective antipode (see [7]).
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Lemma 2.2 (cf. [6]) Let H be a cosemisimple Hopf algebra and λ ∈ H∗ be the integral

with λ (1) = 1. Let A be a right H-comodule algebra. Then the map

P : A → A, a 7→
∑

a〈0〉λ(a〈1〉)

is an Aco H-Aco H-bimodule projection of A onto Aco H .

Proof It is clear that the map φ : H → A, h 7→ λ(h)1A is a total integral. By the

cosemisimplicity of H , λ ◦ SH = λ. So the given map P is the trace function in the sense of

Doi [6], and the statement of the lemma is clear.

Lemma 2.3 (cf. [5]) Let H be a Hopf algebra with bijective antipode SH, A be a right

H-comodule algebra, and B = Aco H . Let

β : A ⊗B A → A ⊗ H, a ⊗ a′ 7→
∑

aa′
〈0〉 ⊗ a′

〈1〉,

β′ : A ⊗B A → A ⊗ H, a ⊗ a′ 7→
∑

a〈0〉a
′ ⊗ a〈1〉.

Then

(1) β is injective if and only if β′ is injective,

(2) β is surjective if and only if β′ is surjective.

Proof It is easily checked that β′ = (1⊗MH) ◦ (ρ⊗SH) ◦ β and β = (1⊗ (MH ◦ τ)) ◦ (ρ⊗

S−1
H ) ◦ β′. The conclusion is obvious.

Proof of Main Theorem We only need to prove the third statement. The “only if” part

is obvious, as one can see by the cocentralness of π that B is stable under SA.

Now we prove the “if” part. Assume further that H is cosemisimple, A/B is Galois and

that B is a Hopf algebra with the antipode SB. Let λ ∈ H∗ be the integral of H∗ such that

λ(1) = 1, and P : a 7→
∑

a〈0〉λ(a〈1〉) =
∑

a(1)λ(π(a(2))) be the projection onto B. Then, since

π is cocentral,

∆(P (a)) = ∆
(

∑

a(1)λ(π(a(2)))
)

=
∑

λ(π(a(3)))a(1) ⊗ a(2) =
∑

P (a(1)) ⊗ a(2).

Hence, we have

∑

P (a)(1) ⊗ P (a)(2) =
∑

P (a(1)) ⊗ a(2) =
∑

a(1) ⊗ P (a(2)). (2.3)

For any c ∈ A, define

Φc : A ⊗k A → A via a ⊗ a′ 7→
∑

εA(a)SB(P (a′
(1)c))a

′
(2).

Then for any b ∈ B and a, a′ ∈ A,

Φc(a ⊗ ba′) =
∑

εA(a)SB(P (b(1)a
′
(1)c))b(2)a

′
(2)

=
∑

εA(a)SB(b(1)P (a′
(1)c))b(2)a

′
(2) (P is a B-B-bimodule map)

=
∑

εA(a)SB(P (a′
(1)c))SB(b(1))b(2)a

′
(2) (SB is the antipode)

=
∑

εA(a)SB(P (a′
(1)c))εA(b)a′

(2)

= Φc(ab ⊗ a′).
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Thus Φc induces a homomorphism Φ : (A ⊗B A) ⊗ A → A which assigns:

Φ(a ⊗ a′ ⊗ c) = Φc(a ⊗ a′) =
∑

εA(a)SB(P (a′
(1)c))a

′
(2).

Define: Sl : A → A,

Sl(a) =
∑

Φ(β−1(1A ⊗ S−1
H (a〈1〉)) ⊗ a〈0〉) =

∑

Φ(β−1(1A ⊗ S−1
H (π(a(2)))) ⊗ a(1)).

Then by introducing the notation

β−1(1A ⊗ S−1
H (h)) =

∑

(β,h)

ai ⊗ a′
i,

for simplification, we have
∑

(β,h)

aia
′
i(1) ⊗ π(a′

i(2)) =
∑

(β,h)

aia
′
i〈0〉 ⊗ a′

i〈1〉 = β
(

∑

(β,h)

ai ⊗ a′
i

)

= 1A ⊗ S−1
H (h).

By applying εA ⊗ 1 to it,
∑

(β,h)

εA(aia
′
i(1))π(a′

i(2)) = S−1
H (h) (2.4)

for any h ∈ H.

Thus for any a ∈ A,
∑

Sl(a(1))a(2) =
∑

Φ(β−1(1A ⊗ S−1
H (π(a(2)))) ⊗ a(1))a(3)

=
∑

(β,π(a(2)))

Φ(ai ⊗ a′
i ⊗ a(1))a(3)

=
∑

(β,π(a(2)))

εA(ai)SB(P (a′
i(1)a(1)))a

′
i(2)a(3)

=
∑

(β,π(a(1)))

εA(ai)SB(P (a′
i(1)a(2)))a

′
i(2)a(3) (π is cocentral)

=
∑

(β,π(a(1)))

εA(ai)SB(P (a′
ia(2))(1))P (a′

ia(2))(2) (by (2.3))

=
∑

(β,π(a(1)))

εA(ai)εA(P (a′
ia(2)))1A

=
∑

(β,π(a(1)))

εA(ai)εA(a′
i(1)a(2))λ(π(a′

i(2)a(3)))1A

=
∑

(β,π(a(2)))

εA(aia
′
i(1))εA(a(1))λ(π(a′

i(2)a(3)))1A

=
∑

(β,π(a(2)))

εA(a(1))λ(εA(aia
′
i(1))π(a′

i(2))π(a(3)))1A

=
∑

(β,π(a(3)))

εA(a(1))λ(εA(aia
′
i(1))π(a′

i(2))π(a(2)))1A

=
∑

εA(a(1))λ[S−1
H (π(a(3)))π(a(2))]1A (by (2.4))

= εA(a)λ(1)1A

= εA(a)1A;
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that is, Sl ∗ IdA = εA1A, Sl is a left convolution-inverse of IdA. Similarly, we have a well-defined

homomorphism

Ψ : (A ⊗B A) ⊗ A → A via a ⊗ a′ ⊗ c 7→
∑

a(1)SB(P (ca(2)))εA(a′),

and the map Sr : A → A,

Sr(a) =
∑

Ψ(β′−1(1 ⊗ SH(a〈1〉)) ⊗ a〈0〉),

is a right convolution-inverse of IdA. Then Sl = Sr is the required antipode of A.

Remark 2.1 Back to Cegarra’s case, for any a ∈ Ag, β−1(1A ⊗ g−1) can be chosen as an

element
n
∑

i=1

ai ⊗ bi ∈ Ag ⊗B Ag−1 such that
n
∑

i=1

aibi = 1. Thus as in the proof, the antipode on

A is

SA(a) = Sl(a) =

n
∑

i=1

εA(ai)SB(bi(1)a)bi(2).

Remark 2.2 The surjectivity and cocentralness of π in Main Theorem are sufficient for the

Hopf algebra H being cocommutative.
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