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On Galois Extension of Hopf Algebras

Guohua LIU* Shenglin ZHU**

Abstract Let H be a cosemisimple Hopf algebra over a field k&, and # : A — H be a
surjective cocentral bialgebra homomorphism of bialgebras. The authors prove that if A
is Galois over its coinvariants B = LH Ker 7 and B is a sub-Hopf algebra of A, then A is
itself a Hopf algebra. This generalizes a result of Cegarra [3] on group-graded algebras.
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1 Introduction

Let H be a bialgebra over a field k and (A4, p) be a right H-comodule algebra. Then the
coinvariant A% is defined as

AP =lac A|pla)=a®1}.

The algebra A is said to be a right H-Galois extension of its coinvariants B = A®“H | if the
Galois map 3 : AQp A — A® H, a®d Zaa'<0> ® a'<1>, is a bijection. This notion of
Hopf-Galois extensions unifies the notions of classical Galois extensions over any field, strongly
group-graded algebras, and affine algebraic principal homogeneous spaces.

The idea of using Galois extension to construct an antipode on a bialgebra is an old one.
Schauenburg [9] proved that a bialgebra H is itself a Hopf algebra if H admits a Galois extension
A/JAH - Another interesting result on this topic was given by Cegarra [3]. He showed that if A
is a strongly group G-graded bialgebra over a field £ such that each homogeneous component A,
of A is a sub-coalgebra of A, and specially A; is a finite-dimensional sub-Hopf algebra of A, then
A is a Hopf algebra. His argument, without giving an explicit construction of the antipode, is
tendinous and depends heavily on a theory of graded extensions (see [2]) of monoidal category.

Let us check Cegarra’s assumption in detail. In his setting, A can be viewed as a natural
right kG-comodule algebra via p: A - A® kG, ag — a4 ® g where ay € Ay. The coinvariant
AKC s nothing else but A;, and the condition that A is strongly G-graded is equivalent
to the statement that A/A; is right kG-Galois. If we define 7 : A — kG via 7(ay) = ¢
Vag, € Ag, then that each homogeneous component A, is a sub-coalgebra of A implies that 7 is
a Hopf algebra homomorphism. Moreover, the map 7 : A — kG satisfies an additional identity

Yomlany) ® ap) =Y m(az)) ® agy (termed cocentral in [1]) for any a € A.
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In this note, we will generalize Cegarra’s result to a slightly more general case. We prove

that, for his special case, the antipode can be constructed explicitly as

Sala) = Z £4(a;)SB(bi1ya)bia),

i=1

n n
where a € Ay, > a; ®b; is chosen in Ay ®p A,—1 and satisfies ) a;b; = 1.
i=1 i=1

2 The Main Theorem

Main Theorem Let (H,Ay,eg, My, un,Sy) be a Hopf algebra over a field k and let
(A, Ax,e4,Ma,us) be a bialgebra. Assume that w: A — H is a surjective cocentral bialgebra
homomorphism. View A as a natural right H-comodule algebra via: p: A — A® H, sending
acAto) aq ®@m(aw)). Then

(1) B = A" s q sub-bialgebra of A,

(2) The extension k — B -+ A "> H — k is ezact,

(3) Assume further that H is cosemisimple and A/B is Galois, then A is a Hopf algebra if
and only if B is a Hopf algebra.

Throughout this paper, k is a field. We use ® to stand for ®j. For a general theory of Hopf
algebras, we refer to the standard books (see [8, 10]). We use Sweedler’s “sigma” notation (see
[10]): A(c) = > c(1) @ ¢y for an element ¢ in a coalgebra (C, A, ¢), and p(a) = > a( @ ag
for an element a in a right C-comodule (4, p).

We first prove the first statement of the main theorem.

Lemma 2.1 Let H, A, p be as in Main Theorem. Then A is a sub-bialgebra of A.

Proof Clearly B = A is a subalgebra of A. It suffices to show that B is also a
subcoalgebra of A.
For any a € A,
(p®@p)Aala) = aq) ®7(a@e) @ as) @ T(aw))
= Z any ®@m(ag)) ® ap) @ m(ay)) (7 is cocentral)
=Y (1@r®1)(am) ®am) @ m(ag)a) © (o))
=(1@7e1)(Aa® An)p(a),
that is,
(p@p)Ba=(107e1) (A4 An), (2.1)

ie, p: A— A® H is a coalgebra homomorphism.

m
For any nonzero element b € B, write A4(b) = > x; @ y; with m being chosen as small as

=1
possible. Then one easily check that {x1,---,2,,} and {y1, - ,ym} are linearly independent.
For the finite set {1, -, Zm, Y1, ,Ym}, we have a finite-dimensional subspace L of H such
that

P({xl,"' y Ly Y1, 0 7ym}) §A®L
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Take a basis {h; =1,--- , h,} for L, and for each i (1 <4 < m) write

n

plz;) = inj ® h; and plyi) = Zyij ® hj.
Jj=1

j=1
Then
D o) @py) = (1070 1)(As@Ax)(be1)
i=1
= in@)l@yi@l by (2.1),
i=1
that is,

m n n

ZZZW@W@%I@M=2x¢®h1®yi®h1.

i=1 j=1 I=1 i=1

By the linearly independence of {hy,--- , hy},
Zzwij ® hj @ ya = 5112% ® h1 @ yi,
i=1 j=1 i=1

and again,

Z Tij ® ya = 6101 Z T @ Yi (2.2)
i=1 i=1

for any 4,1 (1 < j,1 <m). Taking j =1 =1, we have
dza@yn =Y 3 @y = Aa(b).
i=1 1=1

By the minimality of m, we see that {11, ,2m1} and {y11, -+, Ym1 } are linearly independent
as well.
Fix j = 1. For any [ (2 <1 <m), by (2.2)

an ® yir = 5112% ®y; =0.
i=1 i=1

Since {x11, - ,Tm1} is linearly independent, y; = 0 for any ¢ (1 <4 < m). Therefore

ply:) = Zyil Q@h =y ®@h1 =yi1 ®1,
=1
and by the counital property y;1 = y;, i.e., y; € B for all i (1 <i <m). Similarly all x; € B.
Thus A4(B) € B® B, and B is a subcoalgebra of A.

The second statement of Main Theorem can be checked by the definition of B.

For completing the proof of Main Theorem, we recall some properties of a cosemisimple
Hopf algebra H.

A fundamental theorem (see [10, 14.0.3] and [8, 2.4.6]) is that H is cosemisimple if and only
if there exists a two-sided integral A € H* such that (A, 1) # 0. Moreover, if H is cosemisimple,
then H has a bijective antipode (see [7]).
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Lemma 2.2 (cf. [6]) Let H be a cosemisimple Hopf algebra and X € H* be the integral
with A(1) = 1. Let A be a right H-comodule algebra. Then the map

P:A— A aw— Z AMaqy)
is an A H_AH _bimodule projection of A onto A,

Proof It is clear that the map ¢ : H — A, h — A(h)1l4 is a total integral. By the
cosemisimplicity of H, Ao Sy = A. So the given map P is the trace function in the sense of

Doi [6], and the statement of the lemma is clear.
Lemma 2.3 (cf. [5]) Let H be a Hopf algebra with bijective antipode Sg, A be a right
H-comodule algebra, and B = A®H . Let
B:A®p A — AR H, a®a’l—>2aa’<0> ®a’<1>,
B ApA—ARH, a®ad — Za<0>a'®a<1>.

Then
(1) B is injective if and only if 3 is injective,

2) B is surjective if and only if 3 is surjective.
J Y J

Proof Tt is easily checked that 8/ = (1® My)o(p®Sg)ofand f=(1® (MyoT))o(p®
S;Il) o (. The conclusion is obvious.

Proof of Main Theorem We only need to prove the third statement. The “only if” part
is obvious, as one can see by the cocentralness of 7 that B is stable under S4.

Now we prove the “if” part. Assume further that H is cosemisimple, A/B is Galois and
that B is a Hopf algebra with the antipode Sp. Let A € H* be the integral of H* such that
A1) =1,and P:aw Y apA(agny) = > amA(m(ae))) be the projection onto B. Then, since

7 is cocentral,

= A(Za(l))\(ﬂ(a(g ) Z/\ agy @ agg) = ZP(a(l)) ® a(a)-
Hence, we have

ZP a)q) ® P(a)) = ZP(a(l)) ®agp) = Za(l) ® P(a)). (2.3)
For any ¢ € A, define

P AR, A— A via a®d HZ&A )))aéz).
Then for any b € B and a,d’ € A,

(a ® ba’) Z ea(a)Sp(P(bya(;yc))be)as
= Z EA(a)SB(b(l)P(a(l) ))b(g)a’@) (P is a B-B-bimodule map)

= Z ca(a)Sp(P
(

= ZeA(a Sp(P(afyyc))ea(b)ay
= (ab®@d).

(af1)€))SB(ba))b@yalyy (Sp is the antipode)
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Thus @, induces a homomorphism ® : (A®p A) ® A — A which assigns:

Plawd ®c)=d.(a®d) ZEA P(afy)c))ags)-
Define: S': A — A,

Z(I) 1A®S (a(l ®(L0> Z(I) 1A®S ( (a(g))))@)a(l)).

Then by introducing the notation

ﬂ (1A®S Z al®a'za
(8;h)

for simplification, we have
S widlyy @ wlaly) = 3 aidl @l :ﬂ(Zm@aQ):lA@S;Il(h)-
(B.h) (B.h) (B.h)
By applying €4 ® 1 to it,
> ealaid)yy)m(aiy) = Sg' (h) (2.4)
(B,h)
for any h € H.
Thus for any a € A,

S 1) a(2
2.8

| |
R?

(67114 ® Sz (n(a@))) ® aqy)ag)
@(ai X a; X a(l))a(g)

I
(]

,\

I
3

A
2
&

I
(]

ea(ai)S(P(ajyaq)))ajas)

,\

I
3

A
2
&

= Z ea(a;)Sp(P(ajyya@))ajzae) (7 is cocentral)
= Z ca(ai)SB(Paja@) 1)) Plaiae) e  (by (2.3))
= Y eala)ea(Plaja))la

= D calm)ealoin)a@)AT(@imam)ia

(B, (ay))

= > ealaid)y))ealaq) M (alyae))la

,\

I
3

A
2
&

|
1

calaq))A(ea (aia;(l))ﬂ'(a;(m)7'('((1,(3)))1,4

(B.m(acz)))
= Z EA(a(l)))\(fA(az‘a;u))W(ag(z))ﬂ(a(z)))lA
(B.m(aes)))
=Y ealag) Sy (w(ag))m(a)]ta  (by (24))
=cea(a)\(1)14

= Z-ZA(a)lA;
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that is, S'*Ida = 414, S is a left convolution-inverse of Id 4. Similarly, we have a well-defined

homomorphism
U: (AppA)®A— A via a®d @cr— Z a@)Se(P(cag))eala),
and the map S": A — A,

=> V(BT 1® Su(aw)) @ ay),

is a right convolution-inverse of Id4. Then S! = S” is the required antipode of A.

Remark 2.1 Back to Cegarra’s case, for any ac Ay B~ (14 ® g7 1) can be chosen as an
element Z a; ®b; € Ay ®@p Ag-1 such that Z a;b; = 1. Thus as in the proof, the antipode on

i=1 1=1
Ais B
Sa(a) = Sl(a) = ZgA(ai)SB(bi(l)a)bi(2)~
i=1
Remark 2.2 The surjectivity and cocentralness of 7 in Main Theorem are sufficient for the

Hopf algebra H being cocommutative.
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