Ordering Trees with Nearly Perfect Matchings by Algebraic Connectivity

Li ZHANG* Yue LIU*

Abstract Let \mathcal{T}_{2k+1} be the set of trees on 2k + 1 vertices with nearly perfect matchings and $\alpha(T)$ be the algebraic connectivity of a tree T. The authors determine the largest twelve values of the algebraic connectivity of the trees in \mathcal{T}_{2k+1} . Specifically, 10 trees T_2, T_3, \dots, T_{11} and two classes of trees T(1) and T(12) in \mathcal{T}_{2k+1} are introduced. It is shown in this paper that for each tree $T'_1, T''_1 \in T(1)$ and $T'_{12}, T''_{12} \in T(12)$ and each i, jwith $2 \leq i < j \leq 11$, $\alpha(T'_1) = \alpha(T''_1) > \alpha(T_i) > \alpha(T_j) > \alpha(T'_{12}) = \alpha(T''_{12})$. It is also shown that for each tree T with $T \in \mathcal{T}_{2k+1} \setminus (T(1) \cup \{T_2, T_3, \dots, T_{11}\} \cup T(12)), \alpha(T'_{12}) > \alpha(T)$.

Keywords Laplacian eigenvalue, Tree, Nearly perfect matching, Algebraic connectivity
 2000 MR Subject Classification 05C50

1 Introduction

Unless stated otherwise, all graphs in this paper are finite, undirected and simple. Let G = (V, E) be a graph with vertex set $V = \{v_1, v_2, \dots, v_n\}$ and edge set $E = \{e_1, e_2, \dots, e_m\}$. Denote the order of G by |G|. We will abuse the language by writing $v \in G$ and $uv \in G$, rather than $v \in V$ and $uv \in E$, to indicate that v is a vertex of G and uv is an edge of G, respectively. Denote the degree of a vertex v_i by $d(v_i)$. The Laplacian matrix L(G) = D(G) - A(G) is the difference of $D(G) = \text{diag}(d(v_1), d(v_2), \dots, d(v_n))$ and the adjacency matrix A(G) of G. It is well known that L(G) is positive semidefinite symmetric and singular. Denote its eigenvalues by

$$\mu_1(G) \ge \mu_2(G) \ge \dots \ge \mu_{n-1}(G) \ge \mu_n(G) = 0,$$

 $\mu_1(G)$ is called the Laplacian spectral radius of G, and $\mu_s(G)$ is called the s-th Laplacian eigenvalue of the graph G.

From the well-known Matrix-Tree Theorem, we deduce that $\mu_{n-1}(G) > 0$ if and only if G is connected. This observation led M. Fiedler to think of $\mu_{n-1}(G)$ as a quantitative measure of connectivity (cf. [2]) and thus $\mu_{n-1}(G)$ is called the algebraic connectivity of G, denoted by $\alpha(G)$. And if X is a unit eigenvector of G corresponding to $\alpha(G)$, we commonly call it a Fiedler vector of G. Let $\xi(G)$ be the set of all the Fiedler vectors of G throughout this paper.

Manuscript received December 19, 2006. Revised August 17, 2007. Published online December 24, 2007.

^{*}Department of Mathematics, Tongji University, Shanghai 200092, China; Department of Applied Mathemat-

ics, Shanghai Finance University, Shanghai 201209, China.

E-mail: zhanglizp@163.com banbuo@gmail.com

Let $X \in \xi(G)$ and X(v) denote the coordinate of X corresponding to the vertex v. It is obvious that $X^T e = 0$, where $e = (1, 1, \dots, 1)^T$ is an n dimensional column vector, and

$$\alpha(G) = X^T L(G) X = \sum_{\substack{v_i v_j \in E}} (X(v_i) - X(v_j))^2 = \min_{\substack{Y \in \mathbb{R}^n \setminus \{0\}\\ Y^T e = 0}} \frac{Y^T L(G) Y}{Y^T Y}.$$

Throughout this paper, we shall denote by $\Phi(B) = \Phi(B, x) = \det(xI - B)$ the characteristic polynomial of a square matrix B. If $v \in G$, let $L_v(G)$ be the principal submatrix of L(G)obtained by deleting the row and column corresponding to the vertex v. We denote by $\tau(M)$ the smallest eigenvalue of a real symmetric matrix M. Let P_n denote a path of order n and $K_{1,n-1}$ denote a star of order n.

Two distinct edges in a graph G are independent if they are not incident with a common vertex in G. A set of pairwisely independent edges of G is called a matching of G. A matching of maximum cardinality is called a maximum matching of G. The cardinality of a maximum matching of G is called the matching number of G. A matching M of G is called a nearly perfect matching of G if it satisfies 2|M| = |V(G)| - 1. For a fixed matching M, an edge which is in M is called a matched edge, and is called a free edge otherwise. A vertex on some matched edge of M is called a matched vertex, and is called a free vertex otherwise.

Let k be an integer and $k \ge 12$ throughout this paper.

Let \mathcal{T}_{2k+1} be the set of trees on 2k+1 vertices with nearly perfect matchings. In this paper, we determine the largest twelve values of the algebraic connectivity of the trees in \mathcal{T}_{2k+1} . Specifically, we introduce 10 trees T_2, T_3, \dots, T_{11} and two classes of trees T(1) and T(12) in \mathcal{T}_{2k+1} . We show in this paper that for each tree $T'_1, T''_1 \in T(1)$ and $T'_{12}, T''_{12} \in T(12)$, we have $\alpha(T'_1) = \alpha(T''_1) > \alpha(T_2) > \dots > \alpha(T_{11}) > \alpha(T'_{12}) = \alpha(T''_{12})$. Also, we show that for each tree Twith $T \in \mathcal{T}_{2k+1} \setminus (T(1) \cup \{T_2, T_3, \dots, T_{11}\} \cup T(12))$, we have $\alpha(T'_{12}) > \alpha(T)$.

2 Preliminaries

Let G be a graph and E_1 be a subset of E(G) with $|E_1| = t$. Let G' be the spanning subgraph of G obtained from G by deleting all the edges in E_1 . It follows by the well-known Courant-Weyl inequalities (cf. [1]) that the following is true.

Lemma 2.1 (cf. [1]) The Laplacian eigenvalues of G and G' interlace, that is,

$$\mu_i(G) \ge \mu_i(G') \ge \mu_{i+t}(G), \quad i = 1, 2, \cdots, n-t.$$

Corollary 2.1 If T' is a subtree of a tree T, then $\alpha(T') \ge \alpha(T)$.

Proof Let |V(T)| = n, |V(T')| = n' and write t = n - n'. Then we have

$$|E(T)| - |E(T')| = |V(T)| - |V(T')| = n - n' = t.$$

Let $E_1 = E(T) \setminus E(T')$ and $T^* = T - E_1$. Then $|E_1| = |E(T)| - |E(T')| = t$ and $T^* = T' \cup (n - n')K_1$ is a spanning subgraph of T, where K_1 is an isolated vertex. Then from Lemma 2.1 we have

$$\mu_{n'-1}(T') = \mu_{n'-1}(T^*) \ge \mu_{n'-1+t}(T) = \mu_{n-1}(T).$$

So $\alpha(T') \ge \alpha(T)$ holds.

Lemma 2.2 (cf. [1]) Let A be a Hermitian matrix of order n with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ and B have a principal submatrix of order m. Let B be eigenvalues $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_m$. Then the inequalities $\lambda_{n-m+i} \leq \mu_i \leq \lambda_i$ $(i = 1, 2, \cdots, m)$ hold.

Lemma 2.3 (cf. [2, 7]) Let T be a tree. Then $\alpha(T) \leq 1$ and equality holds if and only if T is a star.

Lemma 2.4 (cf. [9]) Let v_0, v_1, v_2 be vertices of a tree T with $d(v_1) = d(v_2) = 1$ and $v_0v_i \in E(T)$ (i = 1, 2). Let $T' = T - v_0v_1 + v_1v_2$ and $X \in \xi(T)$. If $X(v_0) \neq 0$, then $\alpha(T') < \alpha(T)$.

Lemma 2.5 (cf. [3]) Let T be a tree of order n with the vertex set $V = \{v_1, \dots, v_n\}$. Suppose $X \in \xi(T)$. Then two cases can occur.

Case I If $\widetilde{V} = \{v_i \in V \mid X(v_i) = 0\} \neq \emptyset$, then the graph $\widetilde{T} = \{\widetilde{V}, \widetilde{E}\}$ induced by T on \widetilde{V} is connected and there is exactly one vertex $v_j \in \widetilde{V}$ which is adjacent (in T) to a vertex not belonging to \widetilde{V} . Moreover, the values of X along any path starting at v_j are increasing, decreasing, or identically zero.

Case II If $X(v_i) \neq 0$ for all $v_i \in V$, then T contains exactly one edge $v_s v_t$ such that v_s and v_t have different signs, say $X(v_s) > 0$ and $X(v_t) < 0$. Moreover, the values of X along any path that starts at v_s and does not contain v_t increase while the values of X along any path that starts at v_t and does not contain v_s decrease.

We refer to a tree in which Case I (resp. Case II) occurs as a type I (resp. type II) tree. In Case I, the vertex v_j is called the characteristic vertex (cf. [7]) of T; in Case II, the edge $v_s v_t$ is called the characteristic edge (cf. [8]) of T.

T is a tree, $v \in T$, and T - v denotes the graph obtained by deleting v and all edges incident with it. A branch of T at v is a connected component of T - v. If B is a branch of T at v, we denote by r(B) the vertex of B which is adjacent (in T) to v. We view B as a root tree and r(B) as the root (cf. [10]).

Suppose that T is a rooted tree with vertex set $\{u_1, \dots, u_m\}$. Denote by $\widehat{L}(T) = (b_{ij})$ the *m*-by-*m* matrix where

$$b_{ij} = \begin{cases} d(u_i) + 1, & \text{if } i = j \text{ and } u_i \text{ is the root,} \\ d(u_i), & \text{if } i = j \text{ and } u_i \text{ is not the root,} \\ -1, & \text{if } u_i u_j \in T, \\ 0, & \text{otherwise.} \end{cases}$$

Suppose that all the branches of T at v are B_1, \dots, B_s . We say that a branch B_j at v is a Perron branch at v if $\tau(\hat{L}(B_j)) = \min\{\tau(\hat{L}(B_i)) \mid i = 1, \dots, s\}$ (cf. [5]).

Lemma 2.6 (cf. [5]) A tree T is a type I tree if and only if there is a vertex v of T at which there are two or more Perron branches. In that instance, v is the characteristic vertex and $\alpha(T) = \tau(\widehat{L}(B))$, where B is the Perron branch of T at v.

Lemma 2.7 (cf. [5]) A tree T is a type II tree with the characteristic edge $v_i v_j$ if and only if the branch at v_i containing v_j is the unique Perron branch at v_i , while the branch at v_j containing v_i is the unique Perron branch at v_j . **Lemma 2.8** (cf. [4]) Let T be a tree with vertex set $\{v_1, \dots, v_n\}$. Suppose $X \in \xi(T)$. If $X(v_i) = 0$, then either for any vertex $v \in N(v_i)$, X(v) = 0, or there are at least two vertices in $N(v_i)$ corresponding to nonzero coordinates in X.

Lemma 2.9 (cf. [6]) Let G be a connected graph. Let W be a set of vertices of G such that G - W is disconnected. Let G_1, G_2 be two components of G - W and let L_1 and L_2 be the principal submatrices of L(G) corresponding to G_1 and G_2 , respectively. If $\tau(L_1) < \tau(L_2)$, then $\alpha(G) < \tau(L_2)$.

3 Classifying Trees in \mathcal{T}_{2k+1} by Diameter

Let a, b, c, γ denote the smallest roots of the following equations

$$x^2 - 3x + 1 = 0, (3.1)$$

$$x^3 - 5x^2 + 6x - 1 = 0, (3.2)$$

$$x^4 - 7x^3 + 14x^2 - 8x + 1 = 0, (3.3)$$

$$x^3 - 5x^2 + 5x - 1 = 0, (3.4)$$

respectively.

By direct computations we can get

 $0.3819 < a < 0.3820, \quad 0.1980 < b < 0.1981, \quad 0.1729 < c < 0.1730, \quad 0.2679 < \gamma < 0.2680.$

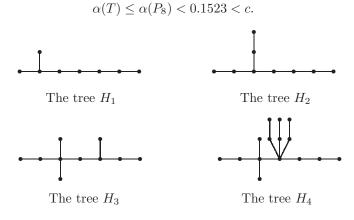
Let P_i^1 denote the rooted tree which is a path P_i with the root at a pendant vertex of P_i , and P_i^2 (i = 3, 4) denote the rooted tree, which is a path P_i with the root at a non-pendant vertex of P_i . Specifically, we let P_1^0 denote the rooted tree which is an isolated vertex P_1 with the root at the only vertex of P_1 .

Lemma 3.1 Let $P_1^0, P_2^1, P_3^1, P_3^2$ and P_4^2 be rooted trees as defined above. Then

$$\tau(\widehat{L}(P_1^0)) = 1 > \tau(\widehat{L}(P_2^1)) = a > \tau(\widehat{L}(P_3^2)) = \gamma > \tau(\widehat{L}(P_3^1)) = b > \tau(\widehat{L}(P_4^2)) = c.$$

Lemma 3.2 For any tree T with $d(T) \ge 7$, we have $\alpha(T) < c$.

Proof Any tree T with $d(T) \ge 7$ must contain P_8 as a subtree. By direct computations and Corollary 2.1, we have



Lemma 3.3 For any tree T containing one of H_1, H_2, H_3, H_4 (cf. Figure 1) as a subtree, we have $\alpha(T) < c$.

Proof By direct computations, we get

$$\alpha(H_1) < 0.1668, \quad \alpha(H_2) < 0.1709, \quad \alpha(H_3) < 0.1627, \quad \alpha(H_4) < 0.1729.$$

So by Corollary 2.1, we have

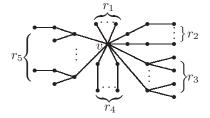
$$\alpha(T) \le \max\{\alpha(H_1), \ \alpha(H_2), \ \alpha(H_3), \ \alpha(H_4)\} < 0.1729 < c.$$

In the following we give two definitions.

Definition 3.1 Let r_1, r_2, \dots, r_5 be nonnegative integers. Let $G(r_1, r_2, r_3, r_4, r_5)$ (cf. Figure 2) be the tree which contains a vertex v such that

$$G(r_1, r_2, r_3, r_4, r_5) - v = r_1 P_1^0 \bigcup r_2 P_3^1 \bigcup r_3 P_3^2 \bigcup r_4 P_2^1 \bigcup r_5 P_4^2,$$

where P_1^0 , P_2^1 , P_3^1 , P_3^2 , P_4^2 are viewed as rooted trees as defined above.



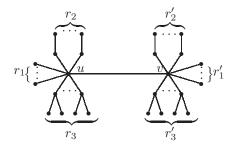
The tree $G(r_1, r_2, r_3, r_4, r_5)$

Figure 2

Definition 3.2 Let r_1 , r_2 , r_3 , r'_1 , r'_2 , r'_3 be nonnegative integers, and $F(r_1, r_2, r_3, r'_1, r'_2, r'_3)$ (cf. Figure 3) be the tree which contains an edge uv such that

$$F(r_1, r_2, r_3, r'_1, r'_2, r'_3) - \{u, v\} = r_1 P_1^0 \bigcup r_2 P_2^1 \bigcup r_3 P_3^2 \bigcup r'_1 P_1^0 \bigcup r'_2 P_2^1 \bigcup r'_3 P_3^2,$$

where $r_1P_1^0$, $r_2P_2^1$ and $r_3P_3^2$ are branches (viewed as rooted trees) of $F(r_1, r_2, r_3, r'_1, r'_2, r'_3)$ at u not containing v and $r'_1P_1^0$, $r'_2P_2^1$ and $r'_3P_3^2$ are branches (viewed as rooted trees) of $F(r_1, r_2, r_3, r'_1, r'_2, r'_3)$ at v not containing u.



The tree $F(r_1, r_2, r_3, r'_1, r'_2, r'_3)$ Figure 3

Note that $F(r'_1, r'_2, r'_3, r_1, r_2, r_3) \cong F(r_1, r_2, r_3, r'_1, r'_2, r'_3).$

Now let T(1) be the following set of two trees:

$$T(1) = \{ G(2,0,0,k-1,0), \ G(0,0,0,k,0) \},\$$

and let

$$\begin{split} T_2 &= G(1,0,1,k-2,0), & T_3 = F(1,k-2,0,0,1,0), \\ T_4 &= F(0,k-3,1,0,1,0), & T_5 = G(0,2,0,k-3,0), \\ T_6 &= F(2,k-3,0,1,1,0), & T_7 = F(1,1,0,0,k-2,0), \\ T_8 &= F(1,k-4,1,1,1,0), & T_9 = G(1,1,0,k-4,1), \\ T_{10} &= G(0,1,1,k-5,1), & T_{11} = G(0,2,0,k-5,1). \end{split}$$

Let T(12) be the following set of trees:

$$T(12) = \{ T \in \mathcal{T}_{2k+1} \mid T = G(r_1, r_2, r_3, r_4, r_5) \text{ with } r_5 \ge 2 \}.$$

Let

$$\mathcal{F}_{1} = \{T \mid T = F(1, r_{2}, 0, 0, r'_{2}, 0) \text{ with } r_{2} \ge 1, r'_{2} \ge 1 \text{ and } r_{2} + r'_{2} = k - 1\},\$$

$$\mathcal{F}_{2} = \{T \mid T = F(2, r_{2}, 0, 1, r'_{2}, 0) \text{ with } r_{2} \ge 1, r'_{2} \ge 1 \text{ and } r_{2} + r'_{2} = k - 2\},\$$

$$\mathcal{F}_{3} = \{T \mid T = F(0, r_{2}, 1, 0, r'_{2}, 0) \text{ with } r_{2} \ge 0, r'_{2} \ge 1 \text{ and } r_{2} + r'_{2} = k - 2\},\$$

$$\mathcal{F}_{4} = \{T \mid T = F(1, r_{2}, 1, 1, r'_{2}, 0) \text{ with } r_{2} \ge 0, r'_{2} \ge 1 \text{ and } r_{2} + r'_{2} = k - 3\}.$$

And let

 $F_1 = F(1, 2, 0, 0, 4, 0), \quad F_2 = F(1, 5, 0, 0, 2, 0), \quad F_3 = F(2, 1, 0, 1, 9, 0), \quad F_4 = F(0, 0, 1, 0, 4, 0).$

Lemma 3.4 For any tree T containing one of F_1, \dots, F_4 as a subtree, we have $\alpha(T) < c$.

Proof By direct computations, we have

$$\alpha(F_1) < 0.1726, \ \alpha(F_2) < 0.1727, \ \alpha(F_3) < 0.1724, \ \alpha(F_4) < 0.1727.$$

By Corollary 2.1, we have

$$\alpha(T) \le \max_{1 \le i \le 4} \alpha(F_i) < 0.1727 < c.$$

Let Q_5 denote the tree of order 5, which is obtained from a star $K_{1,3}$ by joining one of its degree 1 vertices to a new vertex by an edge, and let Q_5^3 denote the rooted tree, which is Q_5 with the root at the vertex of degree 3.

Lemma 3.5 The following two sets of conditions for a tree T are equivalent:

(1) T satisfies the following three conditions:

 $(1.1) \ T \in \mathcal{T}_{2k+1} \ (k \ge 12),$

$$(1.2) \ d(T) = 6$$

(1.3) T contains none of H_1, H_2, H_3, H_4 as a subtree;

(2) $T = G(r_1, r_2, r_3, r_4, r_5)$ for nonnegative integers r_1 , r_2 , r_3 , r_4 and r_5 satisfying the following three conditions:

(2.1) $r_3 \leq 1$, $r_1 + r_2 + r_3 = 0$ or 2,

 $(2.2) r_2 + r_5 \ge 2,$

 $(2.3) 1 + r_1 + 3r_2 + 3r_3 + 2r_4 + 4r_5 = 2k + 1.$

Proof (2) \Rightarrow (1) Let $\mathcal{G} = \{T \mid T \text{ satisfies Lemma 3.5(2)}\}$. It is not difficult to get $\mathcal{G} = \{T_5, T_9, T_{10}, T_{11}\} \cup T(12)$ and every tree in $\{T_5, T_9, T_{10}, T_{11}\} \cup T(12)$ satisfies Lemma 3.5(1). (1) \Rightarrow (2) $T \in \mathcal{T}_{2k+1}$, so for any vertex $u \in T$ there are at most $2P_1^0$ at u.

Since d(T) = 6, there exists a vertex v of T such that for any vertex $u \in T$ the distance between v and u is at most 3.

Let $W = \{w \in T \mid \text{the distance between } v \text{ and } w \text{ is } 2\}$. Since T does not contain H_1 as a subtree, for every vertex $w \in W$, we have $d(w) \leq 2$. At the same time, T does not contain H_2 as a subtree, so the branches of T at v does not contain P_5 as a subtree. Therefore all the possible branches of T at v are $r_1P_1^0$, $r_4P_2^1$, $r_2P_3^1$, $r_3P_3^2$, $r_5P_4^2$, xQ_5^3 . From $T \in \mathcal{T}_{2k+1}$ we get $r_1 \leq 2, r_2 \leq 2, r_3 \leq 1, x \leq 1$.

We now prove x = 0.

Suppose x = 1. If $r_5 \ge 1$, then T contains H_3 as a subtree, a contradiction. If $r_5 = 0$, in this case $r_4 > 3$ since $k \ge 12$, $r_1 \le 2$, $r_2 \le 2$, $r_3 \le 1$, so T contains H_4 as a subtree, a contradiction.

We now get $T = G(r_1, r_2, r_3, r_4, r_5)$ with $r_3 \le 1$.

It is easy to get (2.2) and (2.3). We now only need to prove $r_1 + r_2 + r_3 = 0$ or 2.

It is not difficult to get $r_1 + r_2 + r_3$ to be an even number. For any matching M of T, there are at least $r_1 + r_2 + r_3 - 1$ free vertices in $r_1 P_1^0 \cup r_2 P_3^1 \cup r_3 P_3^2$. But $T \in \mathcal{T}_{2k+1}$ means that for any a nearly perfect matching of T, there is only one free vertex, so we have $r_1 + r_2 + r_3 - 1 \leq 1$. Thus we get $r_1 + r_2 + r_3 \leq 2$.

So $r_1 + r_2 + r_3 = 0$ or 2.

Lemma 3.6 The following two sets of conditions for a tree T are equivalent:

(1) T satisfies the following two conditions:

- $(1.1) T \in \mathcal{T}_{2k+1},$
- (1.2) d(T) = 4;

(2) $T = G(r_1, 0, r_3, r_4, 0)$ for nonnegative integers r_1 , r_3 , r_4 satisfying the following conditions:

(2.1) $r_3 \leq 1$, $r_1 + r_3 = 0$ or 2,

(2.2) $r_3 + r_4 \ge 2$,

 $(2.3) \ 1 + r_1 + 3r_3 + 2r_4 = 2k + 1.$

Proof (2) \Rightarrow (1) Let $\mathcal{G}' = \{T \mid T \text{ satisfies Lemma 3.6(2)}\}$. It is not difficult to get $\mathcal{G}' = T(1) \cup \{T_2\}$. For any tree T in $T(1) \cup \{T_2\}$, we can easily see that T satisfies Lemma 3.6(1).

Using the methods similar to those used in proving Lemma 3.5, we can prove $(1) \Rightarrow (2)$.

Lemma 3.7 The following two sets of conditions for a tree T are equivalent:

(1) T satisfies the following two conditions:

(1.1)
$$T \in \mathcal{T}_{2k+1}$$
,

(1.2)
$$d(T) = 5;$$

(2) $T = F(r_1, r_2, r_3, r'_1, r'_2, r'_3)$ for nonnegative integers $r_1, r_2, r_3, r'_1, r'_2$ and r'_3 satisfying the following three conditions:

- (2.1) $r_3 + r'_3 \le 1$, $r_3 + r'_3 + \max\{r_1, r'_1\} \le 2$, $r_1 + r_3 + r'_1 + r'_3 = 1$ or 3,
- $(2.2) r_2 + r_3 \ge 1, r'_2 + r'_3 \ge 1,$
- $(2.3) \ 2 + r_1 + 2r_2 + 3r_3 + r_1' + 2r_2' + 3r_3' = 2k + 1.$

Proof (2) \Rightarrow (1) Let $\mathcal{F} = \{T \mid T \text{ satisfies Lemma } 3.7(2)\}$. It is easy to get $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3 \cup \mathcal{F}_4$. For each tree T in $(\mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3 \cup \mathcal{F}_4)$, we can easily prove that T satisfies Lemma 3.7(1).

(1) \Rightarrow (2) $T \in \mathcal{T}_{2k+1}$, so for any vertex $u \in T$ there are at most $2P_1^0$ at u.

Since d(T) = 5, there exists an edge e = uv of T such that $T - e = G_1 \bigcup G_2$ with $u \in G_1$, $v \in G_2$ and the distance between any vertex of G_1 (resp. G_2) and u (resp. v) is at most 2. So $T = F(r_1, r_2, r_3, r'_1, r'_2, r'_3)$.

It is easy to get (2.2) and (2.3). From $T \in \mathcal{T}_{2k+1}$, we get $r_3 + r'_3 \le 1$, $r_3 + r'_3 + \max\{r_1, r'_1\} \le 2$. We now only need to prove $r_1 + r_3 + r'_1 + r'_3 = 1$ or 3.

It is easy to know that $r_1 + r_3 + r'_1 + r'_3$ is an odd number. For any matching M of T, there are at least $r_1 + r_3 + r'_1 + r'_3 - 2$ free vertices in $r_1P_1^0 \cup r_3P_3^2 \cup r'_1P_1^0 \cup r'_3P_3^2$. But $T \in \mathcal{T}_{2k+1}$ means that for any a nearly perfect matching of T, there is only one free vertex, so we have $r_1 + r_3 + r'_1 + r'_3 - 2 \leq 1$. Thus we get $r_1 + r_3 + r'_1 + r'_3 \leq 3$.

So $r_1 + r_3 + r'_1 + r'_3 = 1$ or 3.

By the structures of trees, we can find that each tree in $(\mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3 \cup \mathcal{F}_4) \setminus \{T_3, T_4, T_6, T_7, T_8\}$ must contain one of F_1, \dots, F_4 as a subtree. So we get

 $\{T_3, T_4, T_6, T_7, T_8\}$

$$= \{T \mid T \in \mathcal{T}_{2k+1} \text{ with } d(T) = 5 \text{ and containing none of } F_1, \cdots, F_4 \text{ as a subtree} \}.$$

Write $T(i) = \{T_i\}$ for $i = 2, \cdots, 11$. Then we get twelve classes of trees $T(1), \cdots, T(12)$.

By Lemmas 3.5–3.7, we know that all the trees of $\bigcup_{i=1}^{12} T(i)$ have nearly perfect matchings. Since $k \ge 12$, for any tree $T \in \mathcal{T}_{2k+1}$ we have $d(T) \ge 4$.

By the above analysis and Lemmas 3.2–3.7, we can get the main result of the section.

Theorem 3.1 For any tree $T \in \mathcal{T}_{2k+1} \setminus \left(\bigcup_{i=1}^{12} T(i)\right)$, we have $\alpha(T) < c$.

4 Ordering Trees of T(1)-T(12) by Algebraic Connectivity

Theorem 4.1 (i) For any tree $T \in T(12)$, we have $\alpha(T) = c$;

- (ii) $\alpha(T_5) = b;$
- (iii) For each tree $T \in T(1)$, we have $\alpha(T) = a$.

Proof (i) The branches of $T (\in T(12))$ at v are $r_1P_1^0, r_2P_3^1, r_3P_3^2, r_4P_2^1, r_5P_4^2$ (see Figure 2). By Lemma 3.1,

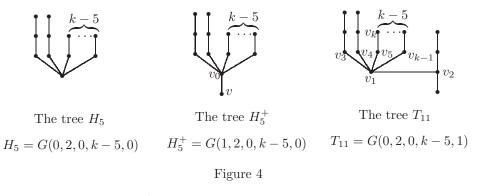
$$\tau(\widehat{L}(P_4^2)) < \min\{\tau(\widehat{L}(P_3^1)), \ \tau(\widehat{L}(P_3^2)), \ \tau(\widehat{L}(P_2^1)), \ \tau(\widehat{L}(P_1^0))\}$$

so P_4^2 is the Perron branch of T at v, since $r_5 \ge 2$. By Lemma 2.6, we have

$$\alpha(T) = \tau(\widehat{L}(P_4^2)) = c.$$

Using the similar methods we can get (ii) and (iii).

Lemma 4.1 For $H_5^+ = G(1, 2, 0, k - 5, 0)$, we have $\tau(L_v(H_5^+)) < a$ (cf. Figure 4).



Proof The branches of H_5^+ at v_0 are P_1^0 , $2P_3^1$, $(k-5)P_2^1$. By Lemma 3.1, $\tau(\widehat{L}(P_3^1)) < \min\{\tau(\widehat{L}(P_1^0)), \tau(\widehat{L}(P_2^1))\},\$

so P_3^1 is the Perron branch of H_5^+ at v_0 . By Lemmas 2.6 and 2.2, we have

$$\tau(L_v(H_5^+)) \le \alpha(H_5^+) = \tau(\widehat{L}(P_3^1)) = b < a.$$

Lemma 4.2 Let T be a type II tree of order n with characteristic edge $e = v_1v_2$. v_i, v_j and v_s are vertices of T such that v_1 is on the path from v_2 to v_j , v_s is not on the path from v_2 to v_j and the path from v_1 to v_s contains neither v_2 nor v_j , v_i is on the path from v_1 to v_s (including $v_i = v_1$) and $v_iv_s \in E(T)$. Let $T' = T - v_iv_s + v_jv_s$, $X \in \xi(T)$. We have

- (1) If $|X(v_j)| > |X(v_i)|$, then $\alpha(T') < \alpha(T)$;
- (2) If $X(v_j) = X(v_i)$, then $\alpha(T') \le \alpha(T)$.

Proof By Lemma 2.5, we can suppose $X(v_1) > 0$, so $X(v_s) > X(v_i) > 0$, and $X(v_j) > 0$. (1) If $X(v_j) > X(v_i)$, the proof is similar to [8, Theorem 7].

$$X^{T}L(T')X = X^{T}L(T)X - (X(v_{i}) - X(v_{s}))^{2} + (X(v_{j}) - X(v_{s}))^{2}$$

= $X^{T}L(T)X + [X(v_{j}) - X(v_{i})][X(v_{i}) + X(v_{j}) - 2X(v_{s})].$

If $X(v_s) > \frac{X(v_i) + X(v_j)}{2}$, then $\alpha(T') \le X^T L(T') X < X^T L(T) X = \alpha(T)$. If $X(v_s) = \frac{X(v_i) + X(v_j)}{2}$, then $X^T L(T') X = X^T L(T) X = \alpha(T)$. But (cf. Lemma 2.5),

If $X(v_s) = \frac{1}{2} \frac{1}{2} \frac{1}{2}$, then $X^* L(T)X = X^* L(T)X = \alpha(T)$. But (cf. Lemma 2.5), $X \notin \xi(T')$ because, if it were, the path $v_1 \longrightarrow \cdots \longrightarrow v_j \longrightarrow v_s$ would be increasing in X, meaning $X(v_j) < X(v_s)$. This contradicts $X(v_s) = \frac{X(v_i) + X(v_j)}{2} < X(v_j)$. So $\alpha(T') < \alpha(T)$. If $X(v_s) < \frac{X(v_i) + X(v_j)}{2}$, we may suppose $t = [X(v_j) - X(v_s)] - [X(v_s) - X(v_i)] > 0$. Suppose

If $X(v_s) < \frac{I(v_t) - I(v_t)}{2}$, we may suppose $t = [X(v_j) - X(v_s)] - [X(v_s) - X(v_i)] > 0$. Suppose that the branch of T at v_i containing v_s is S and |S| = p. Form a new vector Y by adding t to each of the p coordinates of X corresponding to a vertex of S and let Z = Y - (pt/n)e. It is not difficult to get $Z^T L(T')Z = X^T L(T)X = \alpha(T)$, but $Z^T Z = 1 + 2t \sum_{v \in S} X(v) + \frac{p(n-p)t^2}{n} > 1$

because X(v) > 0 for every vertex v of S. So $\alpha(T') \leq \frac{Z^T L(T')Z}{Z^T Z} = \frac{\alpha(T)}{Z^T Z} < \alpha(T)$.

(2) If $X(v_i) = X(v_i)$, we have

$$\alpha(T') \leq X^{T}L(T')X = X^{T}L(T)X - (X(v_{i}) - X(v_{s}))^{2} + (X(v_{j}) - X(v_{s}))^{2} = X^{T}L(T)X = \alpha(T).$$

Theorem 4.2 $\alpha(T_{11}) > c$.

Proof Through the following two steps we can get our conclusion.

(1) We first prove that T_{11} (cf. Figure 4) is a type II tree with the characteristic edge v_1v_2 . The branches of T_{11} at v_1 are $2P_3^1$, $(k-5)P_2^1$ and P_4^2 . By Lemma 3.1, we have $\tau(\hat{L}(P_4^2)) < \tau(\hat{L}(P_3^1)) < \tau(\hat{L}(P_2^1))$. So P_4^2 is the unique Perron branch of T_{11} at v_1 containing v_2 .

The branches of T_{11} at v_2 are P_1^0 , P_2^1 , H_5 . Since $\tau(\widehat{L}(H_5)) = \tau(L_v(H_5^+))$, by Lemma 4.1 and Lemma 3.1, we have $\tau(\widehat{L}(H_5)) < \tau(\widehat{L}(P_2^1)) < \tau(\widehat{L}(P_1^0))$. So H_5 is the unique Perron branch of T_{11} at v_2 containing v_1 .

By Lemma 2.7, we see that T_{11} is a type II tree with the characteristic edge v_1v_2 .

(2) We now prove $\alpha(T_{11}) > c$.

Let $X \in \xi(T_{11})$. By Lemma 2.5, we can suppose $X(v_1) > 0, X(v_2) < 0$.

Let $V_1 = \{v_3, v_4\}, V_2 = \{v_5, \dots, v_{k-1}\}$. Then two cases can occur.

(2.1) There exist two vertices, one in V_1 and the other in V_2 , such that they have different coordinates in X. Without loss of generality, suppose $X(v_3) > X(v_5)$ ($X(v_3) < X(v_5)$ is the same). We know that $T_{11} - v_5v_k + v_3v_k = G(1, 1, 0, k - 6, 2) \in T(12)$.

By Lemma 4.2 and Theorem 4.1, we have

$$\alpha(T_{11}) > \alpha(G(1, 1, 0, k - 6, 2)) = c.$$

$$(2.2) \ X(v_3) = X(v_4) = \dots = X(v_{k-1}).$$

$$\alpha(T_{11}) = X^T L(T_{11}) X = \sum_{v_i v_j \in E(T_{11})} (X(v_i) - X(v_j))^2$$

$$= X^T L(G(1, 1, 0, k - 6, 2)) X \ge \alpha(G(1, 1, 0, k - 6, 2)) = c.$$

$$(4.1)$$

If $\alpha(T_{11}) = \alpha(G(1, 1, 0, k - 6, 2)) = c$, by (4.1) we know

$$L(G(1, 1, 0, k - 6, 2))X = cX.$$

 So

$$X(v_1) = (1 - c)X(v_5).$$
(4.2)

By $L(T_{11})X = cX$, we can get

$$X(v_5) = (1-c)X(v_k), \quad X(v_1) = (c^2 - 3c + 1)X(v_k).$$

 So

$$X(v_1) = \left(\frac{c^2 - 3c + 1}{1 - c}\right) X(v_5).$$
(4.3)

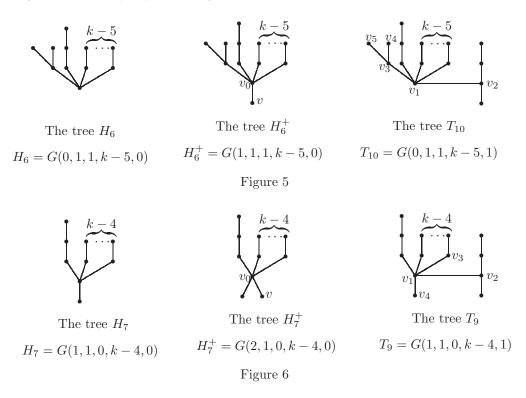
By (4.2) and (4.3), we get

$$1 - c = \frac{c^2 - 3c + 1}{1 - c},$$

so c = 0, a contradiction.

 So

$$\alpha(T_{11}) > \alpha(G(1, 1, 0, k - 6, 2)) = c.$$



Lemma 4.3 For $H_6^+ = G(1, 1, 1, k-5, 0)$ and $H_7^+ = G(2, 1, 0, k-4, 0)$, we have $\tau(L_v(H_i^+)) < a$ (cf. Figures 5, 6), where i = 6, 7.

Proof We first prove $\tau(L_v(H_6^+)) < a$. P_3^1 and P_2^1 are two of the branches of H_6^+ at v_0 . By Lemma 3.1, we know $\tau(\widehat{L}(P_3^1)) < \tau(\widehat{L}(P_2^1))$.

So by Lemmas 2.2 and 2.9, we have

$$\tau(L_v(H_6^+)) \le \alpha(H_6^+) < \tau(\widehat{L}(P_2^1)) = a.$$

Using the similar methods, we can get $\tau(L_v(H_7^+)) < a$.

Theorem 4.3 $\alpha(T_{10}) > \alpha(T_{11})$.

Proof Using the similar methods to Theorem 4.2(1), we can prove that T_{10} (cf. Figure 5) is a type II tree with the characteristic edge v_1v_2 . So for any $X \in \xi(T_{10}), X(v_3) \neq 0$.

From Figures 4 and 5, we know that $T_{10} - v_3v_5 + v_4v_5 = T_{11}$. By Lemma 2.4, we have

$$\alpha(T_{10}) > \alpha(T_{11}).$$

Theorem 4.4 $\alpha(T_9) > \alpha(T_{10})$.

Proof Using the methods similar to those used in proving Theorem 4.2(1), we can prove that T_9 (cf. Figure 6) is a type II tree with the characteristic edge v_1v_2 .

From Figures 5 and 6, we know that $T_9 - v_1v_4 + v_3v_4 = T_{10}$. By Lemma 4.2,

$$\alpha(T_9) > \alpha(T_{10}).$$

Lemma 4.4 Let v_1, v_2 be vertices of a graph G with $d(v_1) = 1$ and $v_1v_2 \in E(G)$. Let $X \in \xi(G)$.

(1) Suppose $\alpha(G) < 1$. If one of $X(v_1), X(v_2)$ is 0, then

$$X(v_1) = X(v_2) = 0.$$

(2) Suppose $\alpha(G) < \frac{3-\sqrt{5}}{2}$, $v_3 \in V(G)$, $v_2v_3 \in E(G)$, $d(v_2) = 2$. If one of $X(v_1), X(v_2)$, $X(v_3)$ is 0, then

$$X(v_1) = X(v_2) = X(v_3) = 0.$$

Proof Let $\alpha(G) = \alpha$. By $L(G)X = \alpha X$, we can complete the proof as follows.

If G satisfies the conditions of (1), then $X(v_2) = f_1(\alpha)X(v_1)$, where $f_1(\alpha) = 1 - \alpha$. So (1) holds.

If G satisfies the conditions of (2), then $X(v_2) = f_1(\alpha)X(v_1)$, $X(v_3) = f_2(\alpha)X(v_1)$, where $f_2(\alpha) = \alpha^2 - 3\alpha + 1$. Since $\alpha(G) < \frac{3-\sqrt{5}}{2}$, $f_1(\alpha) > 0$ and $f_2(\alpha) > 0$. So (2) holds.

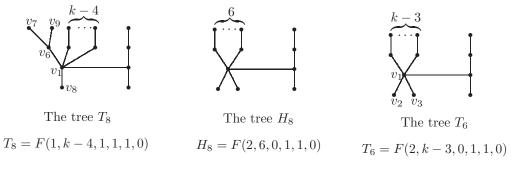


Figure 7

Theorem 4.5 $\alpha(T_8) > \alpha(T_9), \ \alpha(T_6) > \alpha(T_7), \ \alpha(T_4) > \alpha(T_5), \ \alpha(T_2) > \alpha(T_3).$

Proof We first prove $\alpha(T_8) > \alpha(T_9)$.

 P_2^1 and P_4^2 are two of the branches of T_8 at v_1 (cf. Figure 7). By Lemma 3.1, we know that

$$\tau(\widehat{L}(P_4^2)) < \tau(\widehat{L}(P_2^1)) = a = \frac{3 - \sqrt{5}}{2}$$

So by Lemma 2.9, we have

$$\alpha(T_8) < \tau(\widehat{L}(P_2^1)) = a = \frac{3 - \sqrt{5}}{2}.$$

Let $X \in \xi(T_8)$. If $X(v_6) = 0$, using Lemmas 2.8 and 4.4 repeatedly, we can get for any $v \in T_8$, X(v) = 0, a contradiction. So $X(v_6) \neq 0$.

From Figures 6 and 7, we know $T_8 - v_6v_9 + v_7v_9 = T_9$. By Lemma 2.4, we have

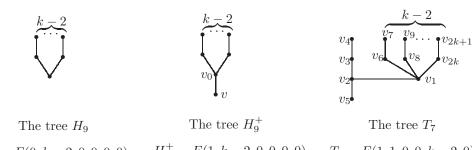
$$\alpha(T_8) > \alpha(T_9).$$

Using the similar methods, we can get $\alpha(T_6) > \alpha(T_7)$, $\alpha(T_4) > \alpha(T_5)$, $\alpha(T_2) > \alpha(T_3)$.

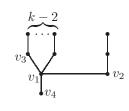
Theorem 4.6 $\alpha(T_5) > \alpha(T_6)$.

Proof Since $k \ge 12$, T_6 must contain H_8 (cf. Figure 7) as a subtree. By direct computations, we have $\alpha(H_8) < 0.1963$. By Corollary 2.1 and Theorem 4.1, we have

$$\alpha(T_6) \le \alpha(H_8) < 0.1963 < b = \alpha(T_5).$$



 $H_9 = F(0, k - 2, 0, 0, 0, 0)$ $H_9^+ = F(1, k - 2, 0, 0, 0, 0)$ $T_7 = F(1, 1, 0, 0, k - 2, 0)$



The tree H_{10}

The tree T_3

 $H_{10} = F(1, k - 2, 0, 0, 0, 0) \qquad H_{10}^+ = F(2, k - 2, 0, 0, 0, 0) \qquad T_3 = F(1, k - 2, 0, 0, 1, 0)$ Figure 8

The tree H_{10}^+

Lemma 4.5 For $H_9^+ = F(1, k - 2, 0, 0, 0, 0)$ and $H_{10}^+ = F(2, k - 2, 0, 0, 0, 0)$, we have $\tau(L_v(H_i^+)) < a \text{ (cf. Figure 8), where } i = 9, 10.$

Proof We first prove $\tau(L_v(H_9^+)) < a$.

$$\Phi(L_v(H_9^+)) = \Phi(L(H_9)) - (x^2 - 3x + 1)^{k-2}$$

= $x(x^2 - 3x + 1)^{k-3}(x^2 - (k+1)x + 2k - 3) - (x^2 - 3x + 1)^{k-2}$
= $(x^2 - 3x + 1)^{k-3}g_1(x),$

where $g_1(x) = x^3 - (k+2)x^2 + 2kx - 1$.

Since
$$g_1(\frac{3}{10}) = \frac{510k - 1153}{1000} > 0$$
, we have $\tau(L_v(H_9^+)) < 0.3 < a$.
We now prove $\tau(L_v(H_{10}^+)) < a$.

$$\Phi(L_v(H_{10}^+))$$

$$= \Phi(L(H_{10})) - (x-1)(x^2 - 3x + 1)^{k-2}$$

$$= x(x^2 - 3x + 1)^{k-3}(x^3 - (k+3)x^2 + (3k+1)x - (2k-2)) - (x-1)(x^2 - 3x + 1)^{k-2}$$

$$= (x^2 - 3x + 1)^{k-3}g_2(x),$$

where $g_2(x) = x^4 - (k+4)x^3 + (3k+5)x^2 - (2k+2)x + 1.$ Since $g_2(\frac{3}{10}) = \frac{-3570k+7501}{10000} < 0$, we have $\tau(L_v(H_{10}^+)) < 0.3 < a.$ **Theorem 4.7** $\alpha(T_7) > \alpha(T_8), \ \alpha(T_3) > \alpha(T_4).$

Proof Using the methods similar to those used in proving Theorems 4.2 and 4.4, respectively, we can complete the proof.

Theorem 4.8 For any tree $T \in T(1)$, we have $\alpha(T) > \alpha(T_2)$.

Proof Since $T_2 = G(1, 0, 1, k - 2, 0)$ and $k \ge 12$, T_2 has only one vertex u such that $d(u) = \Delta(T_2)$. P_2^1 and P_3^2 are two of the branches of T_2 at u. By Lemma 3.1, $\tau(\widehat{L}(P_3^2)) < \tau(\widehat{L}(P_2^1)) = a$.

By Lemma 2.9, we have

$$\alpha(T_2) < \tau(L(P_2^1)) = a = \alpha(T).$$

From the above theorems, we can get the main result of this paper:

Theorem 4.9 For any tree $T \in T_{2k+1} \setminus (T(1) \cup \{T_2, \dots, T_{11}\} \cup T(12))$, any tree $T_1 \in T(1)$ and any tree $T_{12} \in T(12)$, we have

$$\alpha(T_1) = a > \alpha(T_2) > \alpha(T_3) > \alpha(T_4) > \alpha(T_5) = b$$

> $\alpha(T_6) > \alpha(T_7) > \alpha(T_8) > \alpha(T_9) > \alpha(T_{10}) > \alpha(T_{11})$
> $\alpha(T_{12}) = c > \alpha(T).$

References

- Cvetković, D. M., Doob, M. and Sachs, H., Spectra of Graphs-Theory and Applications, VEB Deutscher Verlag d. Wiss./Academic Press, Berlin/New York, 1979.
- [2] Fiedler, M., Algebraic connectivity graphs, Czech. Math. J., 23(98), 1973, 298–305.
- [3] Fiedler, M., A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory, *Czech. Math. J.*, 25(100), 1975, 619–633.
- [4] Fiedler, M., Eigenvectors of acyclic matrices, Czech. Math. J., 25(100), 1975, 607-618.
- [5] Kikland, S., Neumann, M. and Shader, B. L., Characteristic vertices of weighted trees via Perron values, Linear Multilinear Algebra, 40, 1996, 311–325.
- [6] Bapat, R. B. and Pati, S., Algebraic connectivity and the characteristic set of a graph, *Linear Multilinear Algebra*, 45, 1998, 247–273.
- [7] Merris, R., Characteristic vertices of trees, Linear Multilinear Algebra, 22, 1987, 115–131.
- [8] Grone, R. and Merris, R., Ordering trees by algebraic connectivity, Graphs Combi., 6, 1990, 229–237.
- Yin, S.-H., Shu, J.-L. and Wu, Y.-R., Graft and algebraic connectivity of trees (in Chinese), J. East China Norm. Univ. (Natur. Sci.), 2, 2005, 6–15.
- [10] Grone, R. and Merris, R., Algebraic connectivity of trees, Czech. Math. J., 37(112), 1987, 660-670.