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Remarks on Thurston’s Construction of Pseudo-Anosov
Maps of Riemann Surfaces
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Abstract It is well known that certain isotopy classes of pseudo-Anosov maps on a
Riemann surface S of non-excluded type can be defined through Dehn twists t5 and s

along simple closed geodesics a and 5 on 5, respectively. Let G be the corresponding

Fuchsian group acting on the hyperbolic plane H so that H/G =2 S. For any point a € S,
define S = §\{a} In this article, the author gives explicit parabolic elements of G from
which he constructs pseudo-Anosov classes on S that can be projected to a given pseudo-
Anosov class on S obtained from Thurston’s construction.
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1 Introduction and Statement of Results

Let S be a Riemann surface of genus p and n punctures. We assume that 3p —3+n > 0
and n > 1. Let a € S be an arbitrary point and let § = S\{a}. The relationship between
the mapping class groups Mods and Modg of S and S was extensively studied in [5, 8] and
literature given there.

In [3], Bers developed a complex analytic method to investigate the two groups and their
relationships. We denote by Mod$ the subgroup of Modgs consisting of mapping classes fixing
a. There is a natural group epimorphism i : Modg — Modgz defined by filling in the puncture a.
Bers [3] used his method to show that the kernel of 7 is isomorphic to a Fuchsian group G that
uniformizes S (the result is also known in [5]). Later in [9], Kra classified all pseudo-Anosov
mapping classes that project to the trivial class on S as a is filled in. Kra also considered more
general questions of finding pseudo-Anosov classes on the Riemann surface S that fix @ and can
be projected to classes with given types, and obtained important results by using methods of
(3, 4].

In this paper, we continue to study this problem. We consider a pair {, B } of simple closed
geodesics on S that fills S in the sense that S \{a, 3 } consists of disks and once punctured disks.
It was shown by Thurston in [13] (see also [7, 8]) that t2 ot_"" represents a pseudo-Anosov class
for any positive integers n and m. More generally, the following theorem is well known:

Theorem 1.1 (see [10, 12, 13]) Let S be a Riemann surface of type (p,n) with 3p—3+n > 0.
Let (&, 8) be a pair of simple closed geodesics that fills S, and let {(n;,m;)} be a finite number
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of pairs of non-negative integers such that at least one n; and one m; are non-zero. Then the
finite product

[Ty otz (1.1)

i
represents a pseudo-Anosov class on S.

For general information of constructions of pseudo-Anosov class, see, for example, [7, 8, 10,
12, 13].

A question arises as to whether there is a pseudo-Anosov map on S that projects to a map
isotopic to (1.1).

If S is compact, then every map of S that projects to a map isotopic to (1.1) is pseudo-
Anosov (see [14]). Let us consider the case that S is non-compact, that is, S contains some
punctures. Note that a and E can be thought of as closed curves a and  on S. If there
is a disk component D of 5\{&, B} and a is positioned in D, then D\{a} is a newly created
once punctured disk among the components of S\{«, 3}, and it is obvious that {«, 8} still
fills S. Thus (1.1) intimately represents a pseudo-Anosov class on S that projects to the class
represented by (1.1) in a trivial way when a is filled in. But this case does not always occur.
For example, if S \{a, B} only consists of once punctured disks, then any positioning of a that
is off the curves will provide a twice punctured disk. In this case, the naturally defined map
(1.1) represents a reducible class on S yet it still projects to the pseudo-Anosov class on S
represented by (1.1).

Another way of producing pseudo-Anosov classes on S based on an existing pseudo-Anosov
class on S is due to Kra [9]. Since (1.1) represents a pseudo-Anosov class, we can find a surface
S so that S is minimal for the class (see [4] for the definition and terminology). Let w : S-S
be an extremal Teichmiiller mapping that is isotopic to a map of form (1.1).

Let ¢ be the corresponding quadratic differential. If p > 2, ¢ must have zeros invariant
under w. We assume, by taking a suitable power if necessary, that w fixes a zero on S denoted
by a. It turns out that the restriction w|S = w|§ \{«a} is pseudo-Anosov and has a required
property. This construction is, however, contingent upon the assumption that ¢ has a zero on
S fixed by w. It was shown in [17] that if S\{a, 3} only consists of once punctured disks, then
all zeros of ¢ are punctures of S. Thus the construction of Kra [9] does not apply in the current
situation.

The question remains as to whether or not there exist pseudo-Anosov classes on S projecting
to a class represented by (1.1) under any circumstances. In this paper, we answer this question
in a positive way by proving the following result:

Theorem 1.2 Let S be a Riemann surface of type (p,n) with 3p — 3 +n > 0. There are
(infinitely many) pseudo-Anosov classes on S that project to the pseudo-Anosov class repre-
sented by (1.1).

The idea of the proof is the following. We first lift a and 3 in a natural way to curves « and
B on S. Note that the pair («, 5) may not fill S. But based on [ one constructs a non-trivial
curve & that becomes trivial on S so that (,0) fills S. Furthermore, we show that the image
curve ' of 3 under the positive Dehn twist along ¢ has the properties: (1) (o, 8') fills S; (2) &
is isotopic to 3 on S. Finally we prove the theorem by invoking Theorem 1.1 on the Riemann

surface S.
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The same method can also be used to study pseudo-Anosov classes on S projecting to a
given Dehn twist. Some results are discussed in Section 4.

2 Preliminaries

In this section, we review some definitions and basic facts on Teichmiiller theory. For general
information about the structure of Teichmiiller space, the reader is referred to [1, 3, 4, 9].

Let R be a compact Riemann surface of genus p with n > 1 points removed. Assume that
3p— 3+ n > 0. The Teichmiiller space T'(R) is defined as a space of conformal structures p on
R modulo an equivalence relation, where two structures u, v are called equivalent, if there is an
isometry h between them such that h is isotopic to the identity as a self-map of the underlying
surface. The equivalence class of y1 is denoted by [u].

Let H = {z € C; Im z > 0} denote the hyperbolic plane and ¢ : H — S the universal
covering with covering group G. Associate to each p is a quasiconformal map w* of C (see [2])
that fixes 0,1; is conformal on H* = {z € C, Im z < 0}; and has Beltrami coefficient p on H.
It was shown in [3] that the domain w*(H) depends only on [u]. Therefore, we can form a total
space F(R) = {([u],2), [¢] € T(R), and z € w"(H)}, which is called a Bers fiber space over
T(R).

The group of isotopy classes of self-maps (mapping classes) of R forms a mapping class group
and is denoted by Modg. An element x in Modg acts on T'(R) in the form [u] — [u-w™!],
where w : R — R is a representative of y. w is said to represent a pseudo-Anosov class x if
there is a point xy € T(R) such that (zg, x(x0)) is a positive minimum for (z, x(x)) when z
ranges over all points in T(R), where (, ) denotes the Teichmiiller metric on T'(R).

Denote by i(c,¢’) the infimum of the geometric intersections of two simple closed curves ¢
and ¢’ on R running over their homotopy classes. Let t. denote the positive Dehn twist along the
geodesic representative homotopic to ¢. Assume that w : R — R represents a pseudo-Anosov
class. It was shown in [10] that 7 o w represents a pseudo-Anosov class except for only a finite
number of values of n. This result was refined by Fathi [6]. To be more precise, we first note
that the set {c,w(c),---,w"(c),---} of closed curves always fills R. Let k > 0 be an integer
such that py, :=i(c,w*(c)) > 0 and i(c,w'(¢)) = 0 for [ = 0,1,--- ,k — 1. From [6, Proposition
5.1], there are real numbers z; and y > 0 such that for any real number A,

Mk
i(t2 o w(e), wH(e)) =y + Y L2 — M,
j=1
where ¢} denotes the interpolated twist along ¢ by the factor A. See [6] for more information.
Let

1223

Ao = (ZZJ) (p—i) ™",

j=1
and let I be the interval with center A\g and length 2 + p% [6, Theorem 5.1] tells us that if
n € Z\I, then the map ¢! o w also represents a pseudo-Anosov class. In particular, since the
length of I is < 6, ¢ o w represents a pseudo-Anosov class except for 7 consecutive values of n.
Let S and S be defined as in the introduction. Let w, @' : H — H be two maps that project
to self-maps w and w’ of S, respectively. @ and @’ are called equivalent (the equivalence class
is denoted by [w]) if

-1

Wogo (W) t=aogo (@) foreverygeGd.
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The group mod S is the collection of [@] for all w : S — S. Elements in the set of restrictions
W are one-to-one corespondent with elements in mod S. Every element [@] of mod S acts on

F(S) by the formula:
[@] (Iu], 2) = (W], w” o @ o (w") 7} (2)),

where v is the Beltrami coefficient of w* o @~!. We see that [w] acts on F(S) as a fiber-
preserving biholomorphism. By [3, Theorem 9], there is a biholomorphic map ¢ : F(S) — T'(S)
that is called a Bers isomorphism in the literature. From [3, Theorem 10], the isomorphism ¢

A~

induces an isomorphism sending elements [@] € mod S onto the elements [@w]* € Mody.

Example 2.1 Take a simple closed geodesic a C S that avoids a. The Dehn twist tz can
be lifted to a map t4 of H along a geodesic & C H with o(@) = a. It was shown in [16] that [t5]*
is represented by a Dehn twist t,, where « is a simple closed curve on S that descends to a as
a is filled in. Among the lifts of t5 there is a lift (also called t5) such that [t5]* is represented
by t, that is obtained just from t5 by deleting a. In what follows, we use the same notation
to denote a self-map of a Riemann surface as well as its mapping class. In this convention, we

simply write [tz]* = tq.

Every element g € G naturally acts on F(S) by

9(lu], 2) = ([u], w" 0 g o (wh) 7} ().

In this way, G =2 7r1(§, a) can be regarded as a normal subgroup of mod S. We use the letter
G to denote the Fuchsian group as well as the normal subgroup of mod S. Note that ¢g* is an
element of Mod% that projects to the trivial class of Modg. Theorem 2 of [9, 11] states that

*

g* is represented by a Dehn twist along a boundary curve ¢ of a twice punctured disk on S
enclosing a (write as ¢* = t..) if and only if g € G is parabolic.

To proceed, we let by, - - , b, denote the punctures on S. Then, of course, S has punctures
avblv" ! ;bn-

Lemma 2.1 Let D; be an arbitrary twice punctured disk on S enclosing a and b; and let
¢ = 0D;. Let {T;} denote the conjugacy class in G corresponding to the puncture b;. Then
there is a parabolic element g; € G in {T;} such that g} is represented by t..

Proof Since ¢ becomes a trivial loop as a is filled in. i(t.) is a trivial mapping class. This
means that Z. lies in the kernel of the homomorphism i : Mod§ — Modg. By [3, Theorem 10],
there is an element g € G such that g* = t.. It follows from Theorem 2 of [9, 11] that g is a
parabolic element. Since ¢ shrinks to the puncture b; as a is filled in, g is in {T;}.

3 Filling Curves and Pseudo-Anosov Maps

Let S* be the compactification S U {b1,++,bp} with marked points by, -- ,b,, and let S
be S* with one more marked point a added. Let P, denote the set of equivalence classes of
paths P; on S connecting from a to another marked point b; and no any other marked points
are on P;, where two paths P; and P/ are considered equivalent if both paths connect a and b;
and P; is homotopic to P/ by a homotopy fixing a and b; without interfering with any other b;,
J# i

Let o C S be defined as in the example in Section 2. Let b = b; be an arbitrary puncture.
We have
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Lemma 3.1 Assume that there is a simple closed geodesic B such that {a, B} fills S. There
is an element T in P, connecting a and b such that each component of SI\{T',a} is either a
disk or a disk with only one marked point enclosed.

Proof By hypothesis, {a, B} fills S* = SU {b1,---,by}. For any marked point b = b;, let
Q; be the disk component of $*\{a, 3} that includes b.

There is a subarc Iy of 3 that serves as a boundary portion of Q. Let {4, B} be the
endpoints of 'y, i.e., I'oNa = {A, B}.

Cut off 'y in the middle point, and denote by C, D the endpoints resulted from the cutting.
I’y breaks down to two smaller arcs, one of which connects from D to B, denoted by I';; and
the other connects from A to C' and is denoted by I's. We parametrize I'1, I's by I'y = I'1(s)
and T'3(s), respectively, where 0 < s < 1. Similarly, the subarc T's = B\FO can be parametrized
by I'2(s), 0 < s <1, such that I';(0) = B, and I';(1) = A. Finally, we draw a small arc I'y that
connects C' and b without leaving ;. T'y can be parametrized as T'4(s), 0 < s < 1.

Now we construct a path I' originating at D and terminating at b by the formula:

1
T'1(4s), Ogsgz,
1 1
Iy(ds—1), - <s<—,
4 2
T(s) = 1 3
I'3(4s — 2 — < =
3( S )7 9 <s =< 1’
3
F4(48—3), Z <8§1.

Obviously, I' = T'(s) is a path on S* connecting from D to b, and no marked points other than
b lie on I'. If necessary, a quasiconformal mapping of S* onto S can be made to send b; to b;
and D to a. One may assume that D = a. Since I'(0) = @ and I'(1) = b, we obtain a path I in
Pa-

To see that Si\{T',a} consists of disks and disks with only one marked point enclosed, we
note that T'y is a common boundary segment of two components ; and Q5 of S*\{a, B}, and
no other components of S\ {a, B} take I'g as a boundary segment. Observe that €25 is either a
disk or a disk with one marked point enclosed. Let 2 denote the interior of Q; U Q. If Qs is
a disk with one marked point, then Q\T" is also a topological disk with the same marked point.
If Q9 is a disk, so is Q\T'.

Finally, let ' be any component of S;\{&,g} other than Q; and €. In this case, all
boundary segments of £’ are portions of @ and 5, which means that €’ is either a disk or a
disk with one marked point enclosed. Since components of S¥\{a, B} other than €; and {25 are
one-to-one correspondent with components of S¥\{I',a} away from €2, we conclude that every
component of S*\{I',a} is either a disk or a disk with one marked point enclosed. So I is as
required.

Let &, denote the set of equivalence classes of twice punctured disks on S enclosing a and
another puncture, where two such disks are considered equivalent if both enclose the same
punctures and both boundaries are homotopic to each other. There is a bijection

J:Pa—&a
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defined as follows. For any path P; € P, connecting a and b;, fattening P; and then deleting
a and all b;, 1 < i < n. We thus obtain a twice punctured disk on S. Conversely, any twice
punctured disk A; € &, defines a disk ﬁl on S with two marked points a and b; enclosed if all
points a and b;, 1 <7 < n, are filled in. One obtains a path P; in P, defined to be a deformation
retract of A; on Sx.

Let «, 8 C S be natural lifts of & and B that are obtained from deleting the point a.

Lemma 3.2 For each puncture b = b; of S, there is a twice punctured disk A on S that
satisfies:

(1) A encloses a and b,

(2) & = OA together with o fills S.

Proof Let I" be given as in Lemma 3.1, and let A = j(I'). Then A C S is a twice punctured
disk enclosing @ and b. A schematic diagram is drawn in Figure 1.

o
B
T 5
Q
B
) I
/ o
A / o
Figure 1

Clearly, § C S is a non-peripheral simple closed curve. We need to show that a U § fills
S. By definition of A, & crosses I' at a point z if and only if o cuts A transversally along
a segment passing through x. Note that « cuts A into several regions in order that they are
all quadrilaterals except for the first one H;, which is an a-punctured disk; and the last one
Hs, which is a b-punctured disk. Let , ' be defined as in Lemma 3.1. Each component of
S\{a, d} falls into one of the following collections:

( I ) H1 and HQ;

(IT) components of A\{a} that are not H; and Hy;

(IIT) components of S\{«, A} corresponding to €';

(IV) the (unique) component of S\{«a, A} that corresponds to the interior of Q\{H;, Hs}.

As noted above, a type I component is a once punctured disk, and a type II component is a
quadrilateral that is isotopic to a disk of course. Every type III component can be deformed
into an ', which is a disk or a once punctured disk. Finally, let Q* C S denote the (unique)
component of type IV. Then * can be deformed to Q\I' as defined in Lemma 3.1. It follows
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from Lemma 3.1 that Q* is either a disk or a once punctured disk. Overall, we conclude that
each component of S\{a, d} is either a disk or a once punctured disk, which means that {«,d}
fills S.

Lemma 3.3 Let § and A be given as in Lemma 3.2, and let t5(3) be the image loop of 3
under the Dehn twist along the boundary curve 0 of A. Then ts(3) is a non-peripheral simple
closed curve with the properties: (1) t5(8) is homotopic to 3 on S; (2) {ts(8),a} fills S.

Proof Without loss of generality, we assume that a and b lie in different sides of 3 as
shown in Figure 1. The curve t5(3) is drawn in Figure 2. Following the same notations as in
Lemmas 3.1 and 3.2, let S = S\Q. Tt is clear that S’N{t5(0)} is a disjoint union of simple arcs.
These subarcs are almost parallel and placed in A in a nice position after a suitable homotopy
is performed.

t5(8)

Figure 2

We need to examine each component of S\{«,ts(3)}. Any type III component (defined in
Lemma 3.2) can be deformed to a component of S\{«a,ts(3)}. So these components are either
disks or once punctured disks. Any type II component is divided by S’ N {t5(5)} into two
smaller quadrilaterals, each of which is still a topological disk.

Finally, observe that {ts(3)} N Q divides Q into four regions, among which one is an a-
punctured disk; one is a b-punctured disk; and the rest two components are homeomorphic to
disks (see Figure 2).

Since ts5() is an image of a simple non-peripheral closed curve under a homeomorphism, it
is simple and non-peripheral as well. Finally, notice that § is peripheral on S , t5 is trivial on
S, and thus ts5(03) is homotopic to 8 on S.

Proof of Theorem 1.2 By Lemma 3.3, the two simple closed curves o = t5(3) and « fills
S. Therefore by Theorem 1.1, the finite product

[Tt otsm) (3.1)

%

represent a pseudo-Anosov class. But t, = t50tgo0 tgl. By Lemma 2.1, there is a parabolic
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element g € G such that g* = t5. Together with (3.1), we see that

[It ot o(g) " ota™) (3.2)

(2

represents a pseudo-Anosov class on S. By [3, Theorem 10], i(¢*) = id. Hence the class (3.2)
projects to the class represented by (1.1) under the epimorphism i : Modg — Modg. This
completes the proof of Theorem 1.2.

4 Pseudo-Anosov Maps Obtained from Parabolic Elements

In this section, we use the parabolic elements g of G obtained from Section 3 to study
pseudo-Anosov classes in Mod¢ that project to a simple Dehn twist. We also discuss some
properties of these classes. For convenience, o C S is called to pair with a geodesic B c Sif
{a, B} fills S.

Associate to each simple geodesic a C S with i(t,) = t5 is a primary simple hyperbolic
element g, of G such that g} commutes with t,. We denote by A, the axis of a hyperbolic
element g of G in H. It was shown in [15, 16] that if g has the property that o(A,) fills §,
then t, o g* € Mod§ represents a pseudo-Anosov class. If g is simple hyperbolic and there is
a fundamental region F' C H of G such that I catches portions of A, and A, _, then t, o g* is
pseudo-Anosov if and only if {&, p(A4,)} fills S. On the other hand, if ¢ is parabolic with fixed
point being a vertex of F' that catches a portion of A, , then ¢, can be defined so that ¢, o g*
is not pseudo-Anosov.

Theorem 4.1 Let S be a Riemann surface of type (p,n) with 3p —3+n >0 and n > 1.
Let a be a simple closed geodesic on S that pairs with a simple closed geodesic. Then for each
puncture b;, there are elements g; € G in the conjugacy class of b; such that to 0 gF € Modg are
pseudo-Anosov and project to the class represented by the Dehn twist tg.

Proof By Lemma 3.2, there is a non-peripheral closed curve § on S that satisfies the
conditions: (1) § becomes a trivial loop around b; on S if a is filled in; (2) & together with o
fills S. By Thurston’s construction of pseudo-Anosov maps (see also [7]), the product ¢, o t(;_1
represents a pseudo-Anosov class in Mod$. By Lemma 2.1, we can find a parabolic element g
of G so that ¢g* is represented by té_l, which tells us that t, o g* represents a pseudo-Anosov
class in Mod$, while it still projects to the Dehn twist ¢5. This completes the proof of Theorem
4.1.

Theorem 4.1 can be used to discuss some properties of mapping classes in Mod$.

Theorem 4.2 There are infinitely many pseudo-Anosov classes 6,, € Mod$ and a fized
parabolic element g of G such that i(0,, o g*) € Modg and 6, o g* € Modg are all distinct
pseudo-Anosov classes.

Proof Let & C S be a curve that pairs with a curve B Let a and B C S be natural lifts
of & and 6, respectively. By Theorem 4.1, we can find a parabolic element g € G so that for
any positive integer m, t,™ o g* is a pseudo-Anosov class in Mod$. Since [ is a non-peripheral
closed curve on S, from [6, Theorem 5.1] (see also Section 2 for an exposition), ;™ o g* ot} is
pseudo-Anosov except for at most 7 consecutive positive values of n. This particularly implies
that ¢, o g* oty = (t;™ 0 g* o t}) o (g%) " 0 g* is pseudo-Anosov for infinitely many values of
n.
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Let 0, =t;™og*o lj o (¢*)~!. By Lemma 3.3 and the same argument of Theorem 1.2,
we see that 6, are pseudo-Anosov for infinitely many values of n. It is also easy to see that
i(0pog*)=t"o t’ﬁl. By Theorem 1.1, i(6,, o g*) is pseudo-Anosov. Note also that for n # n’,
t="" ot” is not isotopic to ¢ ot" on S, that is, (0, 09g) is not isotopic to i(6, 0 g*). It follows
that 6,, o ¢* and 6, o g* lie in different fibers. In particular, this implies that ,, o g* # 6, o g*.
We conclude that all 8,, o g* for different values of n are distinct. This completes the proof of
Theorem 4.2.

As another application of Theorem 4.1, we intend to represent some pseudo-Anosov maps

by virtue of products of Dehn twists along a pair of filling geodesics on S. Let ¥ = {(aq, 1),

-, (ax, Br)} denote a non-empty finite set of pairs of simple closed geodesics on S such that

each pair fills S. From Theorem 4.1, there is an integer N > 0 (depending on a fixed integer
m) such that for any n > N, the map

fon=1t50t,"og" (4.1)

represents a pseudo-Anosov class in Mod¢, where g* is defined in Theorem 4.2. We ask if there
is such a non-empty finite set > so that for each n > N, f,, is isotopic to

t o tdn (4.2)
for (v, 8;) € X and certain integers ¢, d,, € Z. We will give a negative answer to this question
by proving;:

Theorem 4.3 There does not exist any non-empty finite set 3 of pairs of simple closed
geodesics on S such that any pseudo-Anosov map f, in (4.1) are isotopic to a map of form
(4.2).

Proof By taking a subsequence if needed, we may assume that
fo =t ot (4.3)

where (o, 3') is a fixed pair in 3. Since f, projects to t% ot=", o/ and (' are isotopic on S

to a and B, respectively. It follows that ¢, = n, d,, = —m, and there are maps fi; and f5 of
S, isotopic to the identity on S, such that f1(8) = 3’ and fa(a) = /. We write f; = u* and
fo = v* for some elements u,v € G. Then

u*(B)=p" and v*(a) =d. (4.4)
Hence (4.3) can be written as fn = ;. 4 © t;f&), or
fo=(u"oto () o (v otg™o () 7). (4.5)

As we remarked in Section 2, geodesics @, B C H can be chosen with the properties: (1) o(a) = &
and o(3) = 3; (2) there are lifts t5 and %Vg along @ and (3, respectively, such that t,, = [t5]* and

tg = [t5]". Therefore, using Bers isomorphism, together with (4.3) and (4.1) we obtain

[t5]" o [ta] ™ 0g = (uoltz]" ou") o (volta] ™ ov™h), (4.6)
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which is equivalent to

%" ou~! ofg =(utov)o(t;"ov tog ot?) onR. (4.7)

Note that u,, = %E” ou"lo Z’é, w=u"tov,and w =1"ov ' og ! ofZ are all elements of
G. From (4.7), we get u, = wow'. Denote ' = w o w’. This says that u,, is a fixed element
u’ of G that is independent of n.

Let 2 be a fixed point of u. Then for all n, %”(m) is fixed by %" ou~lto Z’é, and thus it is

fixed by v’ also. But this is impossible unless %"(x) = z. This implies that v commutes with
fg. It follows that u*(8) = 5. By (4.4) we get 5= (.

Now (4.1) together with (4.3) yields t,™ o g* = t_/". By Theorem 4.1, t;™ o g* is pseudo-
Anosov, while ¢_/™ is a power of a Dehn twist. This contradiction proves Theorem 4.3.
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