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Abstract This study focuses on the anisotropic Besov-Lions type spaces Bl
p,θ(Ω; E0, E)

associated with Banach spaces E0 and E. Under certain conditions, depending on l =
(l1, l2, · · · , ln) and α = (α1, α2, · · · , αn), the most regular class of interpolation space Eα

between E0 and E are found so that the mixed differential operators Dα are bounded
and compact from Bl+s

p,θ (Ω; E0, E) to Bs
p,θ(Ω; Eα). These results are applied to concrete

vector-valued function spaces and to anisotropic differential-operator equations with pa-
rameters to obtain conditions that guarantee the uniform B separability with respect to
these parameters. By these results the maximal B-regularity for parabolic Cauchy problem
is obtained. These results are also applied to infinite systems of the quasi-elliptic partial
differential equations and parabolic Cauchy problems with parameters to obtain sufficient
conditions that ensure the same properties.
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1 Introduction

Embedding theorems in function spaces have been elaborated in [8, 27, 38]. A comprehensive

introduction to the theory of embedding of function spaces and historical references may be

also found in [37]. In abstract function spaces embedding theorems have been studied in [3, 5,

19, 21, 23, 28, 31–37, 41]. Lions-Peetre [20] showed that, if

u ∈ L2(0, T ; H0), u(m) ∈ L2(0, T ; H),

then

u(i) ∈ L2(0, T ; [H, H0] i
m

), i = 1, 2, · · · , m − 1,

where H0, H are Hilbert spaces, H0 is continuously and densely embedded in H and [H0, H ]θ

are interpolation spaces between H0 and H for 0 ≤ θ ≤ 1. The similar questions for anisotropic

Sobolev spaces W l
p(Ω; H0, H), Ω ⊂ Rn and for corresponding weighted spaces have been inves-

tigated in [31–34] and [24], respectively. Embedding theorems in Banach-valued Besov spaces

have been studied in [3, 5, 35–37]. The solvability and the spectrum of boundary value prob-

lems for elliptic differential-operator equations (DOEs) have been refined in [3–7, 11, 31–34,

40–41]. A comprehensive introduction to DOEs and historical references may be found in [14,
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16, 41]. In these works Hilbert-valued function spaces essentially have been considered. The

maximal Lp regularity and fredholmness of partial elliptic equations in smooth regions have

been studied, e.g., in [1, 2, 21]. For DOEs the similar problems have been investigated in [11,

29, 30–34, 40–41].

Let l = (l1, l2, · · · , ln), s = (s1, s2, · · · , sn) and li > si. Let A be a positive operator in a

Banach spaces E with domain D(A). In the present paper the Banach-valued Besov spaces

Bl
p,θ(Ω; D(A), E) = Bs

p,θ(Ω; D(A))∩Bl
p,θ(Ω; E) are introduced. The boundedness of embedding

operators in this space for Ω = Rn was studied in [36]. In the present paper the most regular

interpolation class Eα between E0 and E are found so that the appropriate mixed differential op-

erators Dα are bounded from Bs+l
p,θ (Ω; D(A), E) to Bs

q,θ(Ω; E(A1−κ)) and Bs
q,θ(Ω; (D(A), E)κ,p)

for domains Ω ⊂ Rn. More precisely, the Ehrling-Nirenberg-Gagliardo type sharp estimates

for parameterized norms are established; in turn which allows us to obtain the compactness of

operator Dα from Bs+l
p,θ (Ω; D(A), E) to

Bs
q,θ(Ω; D(A1−κ−µ)), Bs

q,θ(Ω; (D(A), E)κ+µ,p)

for some µ > 0. By applying these results, the B-separability of the anisotropic partial DOE

with parameters in principal part are derived. The paper is organized as follows. Section

2 collects notations and definitions. Section 3 presents the embedding theorems in Besov-

Lions type space Bs+l
p,θ (Ω; D(A), E). Section 4 contains applications of the abstract embedding

to vector-valued function spaces and Section 5 is devoted to uniform B-separability of the

anisotropic DOE with parameters. Then by these results the uniform maximal B-regularity of

parabolic Cauchy problem with parameters are shown. In Section 6, these DOE are applied to

the BVP’s and the Cauchy problem for finite and infinite systems of quasi-elliptic and parabolic

PDE with parameters, respectively.

2 Notations and Definitions

Let E be a Banach space. Let Lp(Ω, E) denote the space of strongly measurable E-valued

functions that are defined on the measurable subset Ω ⊂ Rn with the norm

‖f‖Lp(Ω;E) =
( ∫

Ω

‖f(x)‖p
Edx

) 1
p

, 1 ≤ p < ∞,

‖f‖L∞(Ω;E) = ess sup
x∈Ω

[‖f(x)‖E ], x = (x1, x2, · · · , xn).

Let S = S(Rn; E) denote a Schwartz class, i.e., the space of all E-valued rapidly decreasing

smooth functions ϕ on Rn and S′(Rn; E) denotes the space of all E-valued tempered distribu-

tions. Let h ∈ R, m ∈ N and ei, i = 1, 2, · · · , n be the standard unit vectors in Rn. Let (see

[8, §16])

∆i(h)f(x) = f(x + hei) − f(x), · · · , ∆m
i (h)f(x)

= ∆i(h)[∆m−1
i (h)f(x)] =

m∑

k=0

(−1)m+kCk
mf(x + khei).
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Let

∆i(Ω, h) =

{
∆i(h) for [x, x + myei] ⊂ Ω,

0 for [x, x + myei] /∈ Ω.

Let L∗
p(E) denote the space of all E-valued function space such that

‖u‖L∗
p(E) =

( ∫ ∞

0

‖u(t)‖p
E

dt

t

) 1
p

< ∞.

Let mi be positive integers, ki be nonnegative integers, si be positive numbers and mi >

si − ki > 0, i = 1, 2, · · · , n, s = (s1, s2, · · · , sn), 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, 0 < y0 < ∞. Let F

denote the Fourier transform. The Banach-valued Besov space Bs
p,q(Ω; E) are defined as

Bs
p,q(Ω; E) =

{
f : f ∈ Lp(Ω; E), ‖f‖Bs

p,q(Ω;E) = ‖f‖Bs
p,q

= ‖f‖Lp(Ω;E)

+

n∑

i=1

( ∫ h0

0

h−[(si−ki)q+1]‖∆mi

i (h, Ω)Dki

i f‖q
Lp(Ω;E)dy

) 1
q

< ∞ for 1 ≤ q < ∞,

and ‖f‖Bs
p,q(Ω;E) =

n∑

i=1

sup
0<h<h0

‖∆mi

i (h, Ω)Dki

i f‖Lp(Ω;E)

hsi−ki
for q = ∞

}
.

For E = C we obtain the scalar-valued anisotropic Besov space Bs
p,q(Ω) (see [8, §18]).

The Banach space E is said to be a UMD spaces (see [9, 10, 12, 26]) if the Hilbert operator

(Hf)(x) = lim
ε→0

∫

|x−y|>ε

f(y)

x − y
dy

is bounded in Lp(R; E), p ∈ (1,∞). The UMD spaces include, e.g. Lp, lp spaces and the

Lorentz spaces Lpq, p, q ∈ (1,∞).

A Banach space E has the property (α) (see e.g. [13]) if there exists a constant α such that

∥∥∥
N∑

i,j=1

αijεiε
′
jxij

∥∥∥
L2(Ω×Ω′;E)

≤ α
∥∥∥

N∑

i,j=1

εiε
′
jxij

∥∥∥
L2(Ω×Ω′;E)

for all N ∈ N, xi,j ∈ E, αij ∈ {0, 1}, i, j = 1, 2, · · · , N, and all choices of independent,

symmetric, {−1, 1}-valued random variables ε1, ε2, · · · , εN , ε′1, ε
′
2, · · · , ε′N on probability spaces

Ω, Ω′. For example the spaces Lp(Ω), 1 ≤ p < ∞ has the property (α).

Let C be the set of complex numbers and

Sϕ = {λ; λ ∈ C, | argλ| ≤ ϕ} ∪ {0}, 0 ≤ ϕ < π.

A linear operator A is said to be a ϕ-positive in a Banach space E, with bound M > 0, if

D(A) is dense on E and

‖(A + λI)−1‖L(E) ≤ M(1 + |λ|)−1,

where λ ∈ Sϕ, ϕ ∈ [0, π), I is the identity operator in E and L(E) is the space of all bounded

linear operators in E. Sometimes A + λI will be written as A + λ and denoted by Aλ. It is

known that there exists fractional powers Aθ of the positive operator A (see [38, §1.15.1]). Let

E(Aθ) denote the space D(Aθ) with the graphical norm

‖u‖E(Aθ) = (‖u‖p + ‖Aθu‖p)
1
p , 1 ≤ p < ∞, −∞ < θ < ∞.
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Let E0 and E be two Banach spaces. By (E0, E)σ,p, 0 < σ < 1, 1 ≤ p ≤ ∞, we will denote

the interpolation spaces obtained from {E1, E2} by the K-method (see [38, §1.3.1]).

Let α = (α1, α2, · · · , αn), where αi are integers. An E-valued generalized function Dαf is

called a generalized derivative in the sense of Schwartz distributions of the generalized function

f ∈ S′(Rn, E), if the equality

〈Dαf, ϕ〉 = (−1)|α|〈f, Dαϕ〉 (2.1)

holds for all ϕ ∈ S.

By using (2.1) the following relations

F (Dα
xf) = (iξ1)

α1 · · · (iξn)αn f̂ , Dα
ξ (F (f)) = F [(−ixn)α1 · · · (−ixn)αnf ] (2.2)

are obtained for all f ∈ S′(Rn; E).

Let l = (l1, l2, · · · , ln), s = (s1, s2, · · · , sn), where lk’s are integers and sk ∈ (0,∞); let

W lBs
p,q(Ω; E) denote an E-valued Sobolev-Besov space of all functions u ∈ Bs

p,q(Ω; E) such

that they have the generalized derivatives Dlk
k u = ∂lk

∂x
lk
k

u ∈ Bs
p,q(Ω; E), k = 1, 2, · · · , n with the

norm

‖u‖W lBs
p,q(Ω;E) = ‖u‖Bs

p,q(Ω;E) +

n∑

k=1

‖Dlk
k u‖Bs

p,q(Ω;E) < ∞.

Let E0 be continuously and densely embedded into E. Let W lBs
p,q(Ω; E0, E) denote a space

all functions u ∈ Bs
p,q(Ω; E0) ∩ W lBs

p,q(Ω; E) with the norm

‖u‖W lBs
p,q

= ‖u‖W lBs
p,q(Ω;E0,E) = ‖u‖Bs

p,q(Ω;E0) +

n∑

k=1

‖Dlk
k u‖Bs

p,q(Ω;E) < ∞.

Let li > si. Bl
p,q(Ω; E0, E) is a space of all functions u ∈ Bs

p,q(Ω; E0) ∩ Bl
p,q(Ω; E) with the

norm

‖u‖Bl
p,q

= ‖u‖Bl
p,q(Ω;E0,E) = ‖u‖Bs

p,q(Ω;E0) + ‖u‖Bl
p,q(Ω;E).

For E0 = E, the spaces W lBs
p,q(Ω; E0, E), Bl

p,q(Ω; E0, E) will be denoted by W lBs
p,q(Ω; E),

Bl
p,q(Ω; E), respectively. Let t = (t1, t2, · · · , tn), where tj > 0 are parameters. We define in

W lBs
p,q(Ω; E0, E), Bl

p,q(Ω; E0, E) the parameterized norms

‖u‖W lBs
p,q,t(Ω;E0,E) = ‖u‖Bs

p,q(Ω;E0) +

n∑

k=1

‖tkDlk
k u‖Bs

p,q(Ω;E),

‖u‖Bl
p,q,t

= ‖u‖Bl
p,q,t(Ω;E0,E) = ‖u‖Bs

p,q(Ω;E0) + ‖u‖Bl
p,q,t(Ω;E),

respectively, where

‖f‖Bl
p,q,t(Ω;E) = ‖f‖Lp(Ω;E) +

n∑

i=1

ti

( ∫ h0

0

h−[(li−ki)q+1]‖∆mi

i (h, Ω)Dki

i f‖q
Lp(Ω;E)dy

) 1
θ

< ∞,

1 ≤ θ < ∞, 1 ≤ p < ∞,

‖f‖Bl
p,q,t(Ω;E) =

n∑

i=1

sup
0<h<h0

ti‖∆
mi

i (h, Ω)Dki

i f‖Lp(Ω;E)

hli−ki
for q = ∞.
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Let m be a positive integer. Let C(Ω; E) and C(m)(Ω; E) denote the spaces of all E-

valued bounded continuous and m-times continuously differentiable bounded functions on Ω,

respectively. Let E1 and E2 be two Banach spaces. A function

Ψ ∈ C(m)(Rn; L(E1, E2))

is called a multiplier from Bs
p,θ(R

n; E1) to Bs
q,θ(R

n; E2), if there exists a constant C > 0 such

that

‖F−1Ψ(ξ)Fu‖Bs
q,θ

(Rn;E2) ≤ C‖u‖Bs
p,θ

(Rn;E1)

for all u ∈ Bs
p,θ(R

n; E1). The set of all multipliers from Bs
p,θ(R

n; E1) to Bs
q,θ(R

n; E2) will be

denoted by M q,θ
p,θ (s, E1, E2). For E1 = E2 = E it will be denoted by M q,θ

p,θ (s, E). The scalar-

valued and operator-valued multipliers in Banach-valued function spaces have been studied,

e.g. in [20], [38, §2.2.2] and [3, 10, 12, 15, 23], respectively.

Example 2.1 We note that if δ ∈ C∞(R) with δ(y) ≥ 0 for all y ≥ 0, δ(y) = 0 for |y| ≤ 1
2 ,

δ(y) = 1 for y ≥ 1 and δ(−y) = −δ(y) for all y, then δ ∈ M q,θ
p,θ (s, R).

Let K be a domain in Rm and h = (h1, h2, · · · , hm) ∈ K. Let

Hk = {Ψh ∈ M q,θ
p,θ (s, E1, E2), h ∈ K}

be a collection of multipliers in M q,θ
p,θ (s, E1, E2) depending on h. We say that Hk is a uniform

collection of multipliers, if there exists a constant C > 0, independent of h ∈ K, such that

‖F−1ΨhFu‖Bs
p,θ

(Rn;E2) ≤ C‖u‖Bs
q,θ

(Rn;E1)

for all h ∈ K and u ∈ Bs
p,θ(R

n; E1).

Let β = (β1, β2, · · · , βn) be multiindexes. We also define

Vn = {ξ = (ξ1, ξ2, · · · , ξn) ∈ Rn, ξi 6= 0, i = 1, 2, · · · , n},

Un = {β : |β| ≤ n}, ξβ = ξβ1

1 ξβ2

2 , · · · , ξβn
n , ν =

1

p
−

1

q
.

Definition 2.1 A Banach space E satisfies a B-multiplier condition with respect to p,

q, θ and s (or with respect to p, θ and s for the case of p = q) when Ψ ∈ Cn(Rn; B(E)),

1 ≤ p ≤ q ≤ ∞, β ∈ Un and ξ ∈ Vn, if the estimate

|ξ1|
β1+ν |ξ2|

β2+ν · · · |ξn|
βn+ν‖DβΨ(ξ)‖L(E) ≤ C

implies Ψ ∈ M q,θ
p,θ (s, E).

It is well-known that there are Banach spaces satisfying the B-multiplier condition (for

isotropic case), e.g. UMD spaces (see [3, 15]).

The expression ‖u‖E1
∼ ‖u‖E2

means that there exist positive constants C1 and C2 such

that

C1‖u‖E1
≤ ‖u‖E2

≤ C2‖u‖E1

for all u ∈ E1 ∩ E2.
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Let α1, α2, · · · , αn be nonnegative and l1, l2, · · · , ln be positive integers and

|α : l| =

n∑

k=1

αk

lk
, κ =

n∑

k=1

αk + 1
p − 1

q

lk
,

Dα = Dα1

1 Dα2

2 · · ·Dαn
n =

∂|α|

∂xα1

1 ∂xα2

2 · · · ∂xαn
n

, |α| =
n∑

k=1

αk.

Consider the anisotropic differential-operator equation with parameters

(Lt + λ)u =

n∑

k=1

aktkDlku + Aλu +
∑

|α:l|<1

n∏

k=1

t
αk
lk

k Aα(x)Dαu = f (2.3)

in Bs
p,θ(R

n; E), where A, Aα(x) are possible unbounded operators in a Banach space E, ak’s

are complex numbers, tk’s are positive and λ is complex parameter. For l1 = l2 = · · · = ln we

obtain the isotropic equations containing the elliptic class of DOE with parameters.

The function belonging to Bs+l
p,θ (Rn; E(A), E) and satisfying the equation (2.3) a.e. on Rn

is said to be a solution of the equation (2.3) on Rn.

Definition 2.2 The problem (2.3) is said to be uniform B-separable (or Bs
p,θ(R

n; E)-

separable) with respect to the parameter t = (t1, t2, · · · , tn), if the problem (2.3) for all f ∈

Bs
p,θ(R

n; E) has a unique solution u ∈ Bs+l
p,θ (Rn; E(A), E) and there exists a positive constant

C independent of f and t such that we have the coercive estimate

‖Au‖Bs
p,θ

(Rn;E) +
∑

|α:l|=1

tk‖D
lk
k u‖Bs

p,θ
(Rn;E) ≤ C‖f‖Bs

p,θ
(Rn;E).

The above estimate implies that if f ∈ Bs
p,θ(R

n; E) and u is the solution of the BVP’s

(2.3) then all terms of the equation (2.3) belong to Bs
p,θ(R

n; E) (i.e., all terms are separable in

Bs
p,θ(R

n; E)).

Consider a parabolic Cauchy problem

Dyu(y, x) + (Lt + λ)u(y, x) = f(y, x), u(0, x) = 0, y ∈ R+, x ∈ Rn, (2.4)

where Lt is the realization differential operator in Bs
p,θ(R

n; E) generated by problem (2.3).

We say that the parabolic Cauchy problem (2.4) is maximal B-regular, if for all f ∈

Bs
p,θ(R

n+1
+ ; E) there exists a unique solution u satisfying (2.4) almost everywhere on Rn+1

+ and

there exists a positive constant C independent of f, such that we have the estimate

‖Dyu(y, x)‖Bs
p,θ

(Rn+1

+
;E) + ‖Ltu‖Bs

p,θ
(Rn+1

+
;E) ≤ C‖f‖Bs

p,θ
(Rn+1

+
;E).

3 Embedding Theorems

In this section, we prove the boundedness of the mixed differential operators Dα in the

Banach-valued Besov-Lions spaces. From [36, Lemma 1] we have
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Lemma 3.1 Let A be a positive operator on a Banach space E, b be a nonnegative real

number and r = (r1, r2, · · · , rn), t = (t1, t2, · · · , tn), 0 < tk ≤ T < ∞, k = 1, 2, · · · , n,

α = (α1, α2, · · · , αn) and l = (l1, l2, · · · , ln), where ϕ ∈ [0, π), rk ∈ {0, b}, lk are positive and

αk are nonnegative integers such that κ = |(α + r) : l| ≤ 1. Let δ be a multiplier of the form

described in Example 2.1. For 0 < h ≤ h0 < ∞ and 0 ≤ µ ≤ 1 − κ, the operator-function

Ψt(ξ) = Ψt,h,µ(ξ) =

n∏

k=1

[
t

αk+rk
lk

k |ξk|
rk

]
(iξ)αA1−κ−µh−µ[A + η(t, ξ)]−1

is a bounded operator in E uniformly with respect to ξ, h and t, i.e., there is a constant Cµ

such that

‖Ψt,h,µ(ξ)‖L(E) ≤ Cµ (3.1)

for all ξ ∈ Rn, where

η = η(t, ξ) =

n∑

k=1

tk[δ(ξk)ξk]lk + h−1.

Lemma 3.2 (see [36]) Let E be a UMD space with (α) property, p ∈ (1,∞), θ ∈ [1,∞]

and let for all k, j ∈ (1, n),
sk

lk + sk
+

sj

lj + sj
≤ 1. (3.2)

Then the spaces Bl+s
p,θ (Rn; E) and W lBs

p,θ(R
n; E) coincide.

Theorem 3.1 Suppose that the following conditions hold:

(1) E is a UMD space with the (α) property satisfying the B-multiplier condition with

respect to p, q ∈ (1,∞), θ ∈ [1,∞] and s;

(2) t = (t1, t2, · · · , tn), 0 < tk ≤ T < ∞, k = 1, 2, · · · , n, 0 < h ≤ h0 < ∞;

(3) α = (α1, α2, · · · , αn), l = (l1, l2, · · · , ln), s = (s1, s2, · · · , sn), where αk’s are nonnega-

tive, lk’s are positive integers and sk’s are positive numbers such that

κ =
∣∣∣
(
α +

1

p
−

1

q

)
: l

∣∣∣ ≤ 1,
sk

lk + sk
+

sj

lj + sj
≤ 1, k, j ∈ (1, n)

and 0 ≤ µ ≤ 1 − κ;

(4) A is a ϕ-positive operator in E, where ϕ ∈ [0, π).

Then an embedding

DαBs+l
p,θ (Rn; E(A), E) ⊂ Bs

q,θ(R
n; E(A1−κ−µ))

is continuous and there exists a positive constant Cµ, depending only on µ, such that

n∏

k=1

t

αk+ 1
p
− 1

q
lk

k ‖Dαu‖Bs
q,θ

(Rn;E(A1−κ−µ))≤Cµ[hµ‖u‖Bs+l
p,θ,t

(Rn;E(A),E)+h−(1−µ)‖u‖Bs
p,θ

(Rn;E)] (3.3)

for all u ∈ Bs+l
p,θ (Rn; E(A), E).

Proof We have

‖Dαu‖Bs
q,θ

(Rn;E(A1−κ−µ)) = ‖A1−κ−µDαu‖Bs
q,θ

(Rn;E) (3.4)
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for all u such that

‖Dαu‖Bs
q,θ

(Rn;E(A1−κ−µ)) < ∞.

On the other hand, using the relation (2.2), we have

A1−α−µDαu = F−′
FA1−κ−µDαu = F−′

A1−κ−µFDαu

= F−′
A1−κ−µ(iξ)αFu = F−′

(iξ)αA1−κ−µFu. (3.5)

Hence, denoting Fu by û, we get from the relations (3.4) and (3.5)

‖Dαu‖Bs
q,θ

(Rn;E(A1−κ−µ)) ∽ ‖F−′
(iξ)αA1−κ−µû‖Bs

q,θ
(Rn;E).

Similarly, by virtue of Lemma 3.2 we have

‖u‖Bs+l
p,θ,t

(Rn;E(A),E) = ‖u‖W lBs
p,θ,t

(Rn;E(A),E)

= ‖u‖Bs
p,θ

(Rn;E(A)) +

n∑

k=1

‖tkDlk
k u‖Bs

p,θ
(Rn;E)

= ‖F−′
û‖Bs

p,θ
(Rn;E(A)) +

n∑

k=1

‖tkF−′
[(iξk)lk û]‖Bs

p,θ
(Rn;E)

∼ ‖F−1Aû‖Bs
p,θ

(Rn;E) +

n∑

k=1

‖tkF−′
[(iξk)lk û]‖Bs

p,θ
(Rn;E)

for all u ∈ Bs+l
p,θ (Rn; E(A), E). Thus proving the inequality (3.3) for some constants Cµ is

equivalent to proving

n∏

k=1

t

αk+ 1
p
− 1

q
lk

k ‖F−′
(iξ)αA1−κ−µû‖Bs

q,θ
(Rn;E)

≤Cµ

[
hµ

(
‖F−′

Aû‖Bs
p,θ

(Rn;E)+

n∑

k=1

‖tkF−′
[(iξk)lk û]‖Bs

p,θ
(Rn;E)

)
+h−(1−µ)‖F−′

û‖Bs
p,θ

(Rn;E)

]
. (3.6)

Since δ is a multiplier in Bs
p,θ(R

n; E), the inequality (3.6) will follow if we prove the following

inequality

n∏

k=1

t

αk+ 1
p
− 1

q
lk

k ‖F−′
[(iξ)αA1−κ−µû]‖Bs

p,θ
(Rn;E) ≤ Cµ‖F

−′
[hµ(A + η]û‖Bs

p,θ
(Rn;E) (3.7)

for a suitable Cµ > 0 and for all u ∈ Bs+l
p,θ (Rn; E(A), E), where η = η(t, ξ) has the same

expression as defined in Lemma 3.1. Let us express the left-hand side of (3.7) as follows:

n∏

k=1

t

αk+ 1
p
− 1

q
lk

k ‖F−′
[(iξ)αA1−κ−µû]‖Bs

q,θ
(Rn;E)

=

n∏

k=1

t

αk+ 1
p
− 1

q
lk

k ‖F−′
(iξ)αA1−κ−µ[hµ(A + η)]−1[hµ(A + η)]û‖Bs

q,θ
(Rn;E). (3.8)
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(Since A is a positive operator in E and −η(t, ξ) ∈ S(ϕ), it is possible.) By virtue of Definition

2.1, it is clear that the inequality (3.4) will follow immediately from (3.8) if we can prove that

the operator-function

Ψt = Ψt,h,µ =

n∏

k=1

t

αk+ 1
p
− 1

q
lk

k (iξ)αA1−κ−µ[hµ(A + η)]−1

is a multiplier in M q,θ
p,θ (s, E), which is uniform with respect to h > 0 and t. Then it suffices to

show that there exists a constant Mµ > 0 with

|ξ1|
β1+ν |ξ2|

β2+ν , · · · , |ξn|
βn+ν‖Dβ

ξ Ψt(ξ)‖L(E) ≤ Mµ (3.9)

for all β ∈ Un, ξ ∈ Vn, 0 < tk ≤ T < ∞ and 0 < h ≤ h0 < ∞. To see this, we apply Lemma 3.1

and get a constant Mµ > 0 depending only on µ such that

|ξ|ν‖Ψt(ξ)‖L(E) ≤ Mµ (3.10)

for all ξ ∈ Rn and ν = 1
p − 1

q . This shows that the inequality (3.9) is satisfied for β =

(0, · · · , 0). We next consider (3.9) for β = (β1, · · · , βn) where βk = 1 and βj = 0 for j 6= k.

By differentiation of the operator-function Ψt(ξ), by virtue of the positivity of A and by using

(3.10), we have ∥∥∥
∂

∂ξk
Ψt(ξ)

∥∥∥
L(E)

≤ Mµ|ξk|
−(1+ν), k = 1, 2, · · · , n.

Repeating the above process we obtain the estimate (3.9). Thus the operator-function

Ψt,h,µ(ξ) is a uniform multiplier with respect to h and t, i.e.,

Ψt,h,µ ∈ HK ⊂ M q,θ
p,θ (s, E), K = R+.

This completes the proof of Theorem 3.1.

It is possible to state Theorem 3.1 in a more general setting. For this, we use the conception

of extension operator.

Condition 3.1 Let a region Ω ⊂ Rn be such that there exists a bounded linear extension

operator from Bs+l
p,θ (Ω; E(A), E) to Bs+l

p,θ (Rn; E(A), E) for p, q ∈ (1,∞) and θ ∈ [1,∞].

Remark 3.1 If Ω ⊂ Rn is a region satisfying the strong l-horn condition (see [8, §18.5]) E =

R, A = I, then there exists a bounded linear extension operator from Bs
p,θ(Ω) = Bs

p,θ(Ω; R, R)

to Bs
p,θ(R

n) = Bs
p,θ(R

n; R, R).

Theorem 3.2 Suppose that all conditions of Theorem 3.1 and Condition 3.1 hold. Then

an embedding

DαBs+l
p,θ (Ω; E(A), E) ⊂ Bs

q,θ(Ω; E(A1−κ−µ))

is continuous and there exists a constant Cµ depending only on µ such that

n∏

k=1

t

αk+ 1
p
− 1

q
lk

k ‖Dαu‖Bs
q,θ

(Ω;E(A1−κ−µ)) ≤ Cµ[hµ‖u‖Bs+l
p,θ,t

(Ω;E(A),E) + h−(1−µ)‖u‖Bs
p,θ

(Ω;E)] (3.11)

for all u ∈ Bs+l
p,θ (Ω; E(A), E).
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Proof It suffices to prove the estimate (3.11). Let P be a bounded linear extension operator

from Bs
q,θ(Ω; E) to Bs

q,θ(R
n; E) and also from Bs+l

p,θ (Ω; E(A), E) to Bs+l
p,θ (Rn; E(A), E). Let PΩ

be a restriction operator from Rn to Ω. Then for any u ∈ Bs+l
p,θ (Ω; E(A), E), we have

‖Dαu‖Bs
q,θ

(Ω;E(A1−κ−µ)) = ‖DαPΩPu‖Bs
q,θ

(Ω;E(A1−κ−µ))

≤ C‖DαPu‖Bs
q,θ

(Rn;E(A1−κ−µ))

≤ Cµ[hµ‖Pu‖Bs+l
p,θ

(Rn;E(A),E) + h−(1−µ)‖Pu‖Bs
p,θ

(Rn;E)]

≤ Cµ[hµ‖u‖Bs+l
p,θ

(Ω;E(A)E) + h−(1−µ)‖u‖Bs
p,θ

(Ω;E)].

Result 3.1 Let all conditions of Theorem 3.2 hold. Then for all u ∈ Bs+l
p,θ (Ω; E(A), E), we

have a multiplicative estimate

‖Dαu‖Bs
q,θ

(Ω;E(A1−κ−µ)) ≤ Cµ‖u‖
1−µ

Bs+l
p,θ

(Ω;E(A),E)
‖u‖µ

Bs
p,θ

(Ω;E). (3.12)

Indeed setting h = ‖u‖Bs
p,θ

(Ω;E) · ‖u‖
−1

Bs+l
p,θ

(Ω;E(A),E)
in the estimate (3.11), we obtain (3.12).

Theorem 3.3 Assume that all conditions of Theorem 3.2 are satisfied; let Ω be a bounded

region in Rnand A−1 be a compact operator in E. Then for 0 < µ ≤ 1 − κ, the embedding

DαBs+l
p,θ (Ω; E(A), E) ⊂ Bs

q,θ(Ω; E(A1−κ−µ))

is compact.

Proof By virtue of [5], the embedding

Bs+l
p,θ (Ω; E(A), E) ⊂ Bs

q,θ(Ω; E)

is compact. Then in view of (3.12), we obtain the assertion of Theorem 3.3.

Theorem 3.4 Suppose that all conditions of Theorem 3.2 hold and ϕ ∈ [0, π). Then for

0 < µ < 1 − κ, the embedding

DαBs+l
p,θ (Ω; E(A), E) ⊂ Bs

q,θ(Ω; (E(A), E)κ+µ,p)

is continuous and there exists a constant Cµ depending only on µ such that

‖Dαu‖Bs
q,θ

(Ω;(E(A),E)κ+µ,p) ≤ Cµ[hµ‖u‖Bs+l
p,θ,t

(Ω,E(A),E) + h−(1−µ)‖u‖Bs
p,θ

(Ω,E)] (3.13)

for all u ∈ Bs+l
p,θ (Ω; E(A), E).

Proof Let us at first show the theorem for the case Ω = Rn. Then it is sufficient to prove

the estimate

n∏

k=1

t

αk+ 1
p
− 1

q
lk

k ‖Dαu‖Bs
q,θ

(Rn;(E(A),E)κ+µ,p)

≤ Cµ[hµ‖u‖Bs+l
p,θ,t

(Rn;E(A),E) + h−(1−µ)‖u‖Bs
p,θ

(Rn;E)] (3.14)
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for all u ∈ Bs+l
p,θ (Rn; E(A), E). By the definition of interpolation spaces (E(A), E)κ+µ,p (see

[38, §1.14.5]) the estimate (3.14) is equivalent to the inequality

n∏

k=1

t

αk+ 1
p
− 1

q
lk

k ‖F−1y1−κ−µ− 1
p [Aχ+µ(A + y)−1]ξαû‖Bs

q,θ
(Rn;Lp(R+;E))

≤ Cµ

∥∥∥F−′
[
hµ

(
A +

n∑

k=1

tk(δ(ξk)ξk)lk
)

+ h−(1−µ)
]
û
∥∥∥

Bs
p,θ

(Rn;E)
. (3.15)

The inequality (3.14) will follow immediately from (3.15), if we prove that the operator-

function

Ψt,h,µ = (iξ)α
n∏

k=1

t

αk+ 1
p
− 1

q
lk

k y1−κ−µ− 1
p [Aχ+µ(A + y)−1]

[
hµ(A +

n∑

k=1

tk(δ(ξk)ξk)lk) + h−(1−µ)
]−1

is a uniform collection of multiplier from Bs
p,θ(R

n; E) to Bs
q,θ(R

n; L1(R+; E)). This fact is proved

in a similar manner as Theorem 3.1. Therefore we get the estimate (3.15) which implies (3.14).

Then by using the extension operator we obtain (3.13).

Result 3.2 Let all conditions of Theorem 3.2 hold. Then for all u ∈ Bs+l
p,θ (Ω; E(A), E) we

have the multiplicative estimate

‖Dαu‖Bs
q,θ

(Ω;(E(A),E)κ+µ,1) ≤ Cµ‖u‖
1−µ

Bs+l
p,θ

(Ω;E(A),E)
‖u‖µ

Bs
p,θ

(Ω;E). (3.16)

Indeed setting h = ‖u‖Bs
p,θ

(Ω;E) · ‖u‖
−1

Bs+l
p,θ

(Ω;E(A),E)
in (3.13) we obtain (3.16).

Theorem 3.5 Assume that all conditions of Theorem 3.4 are satisfied, Ω is a bounded

region in Rn and A−1 is a compact operator in E. Then for 0 < µ < 1 − κ, the embedding

DαBs+l
p,θ (Ω; E(A), E) ⊂ Bs

q,θ(Ω; (E(A), E)κ+µ,p)

is compact.

Proof By virtue of [5], the embedding

Bs+l
p,θ (Ω; E(A), E) ⊂ Bs

q,θ(Ω; E)

is compact. Then by the estimate (3.16), we obtain the assertion of Theorem 3.5.

Remark 3.2 It seems from the proof of Theorem 3.1 that the extra condition to space E

(E is a UMD space with (α) property) and the second inequality in condition (3) of Theorem

3.1 is due to Lemma 3.2. In fact, the (α) property condition for the space E are required with

a view to using Marcinkiewicz-Lizorkin type multiplier theorem (see [13]) in Lp(R
n; E) space.

Note that both conditions occur due to anisotropic nature of the spaces Bs
p,q. For the isotropic

case it is trivial.

4 Application to Vector-Valued Function Spaces

By virtue of Theorem 3.2, we have
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Result 4.1 For A = I, we obtain the continuity of the embedding DαBs+l
p,q (Ω; E) ⊂

Bs
p,q(Ω; E) and the corresponding estimate (3.4) for 0 ≤ µ ≤ 1 − κ in the Banach-valued

Besov space Bs+l
p,q (Ω; E).

Result 4.2 For E = Rm, A = I we obtain the following embedding DαBl+s
p,θ (Ω; Rm) ⊂

Bs
q,θ(Ω; Rm) for 0 ≤ µ ≤ 1−κ and the corresponding estimate (3.4). For E = R, A = I we get

the embedding DαBl+s
p,θ (Ω) ⊂ Bs

q,θ(Ω) proved in [8, §18] for the numerical Besov spaces.

Result 4.3 Let l1 = l2 = · · · = ln = m, s1 = s2 = · · · = sn = σ and p = q. Then we obtain

the continuity of embedding DαBσ+m
p,θ (Ω; E(A), E) ⊂ Bσ

p,θ(Ω; E(A1− |α|
m )) and the corresponding

estimate (3.4) for |α| ≤ m, in isotropic Besov-Lions spaces Bσ+m
p,θ (Ω; E(A), E).

Result 4.4 Let σ be a positive number. Consider the following space (see [37, §1.18.2])

lσq = {u; u = {ui}, i = 1, 2, · · · ,∞, ui ∈ C}

with the norm

‖u‖lσq =
( ∞∑

i=1

2iqσ|ui|
q
)1/q

< ∞.

Note that l0q = lq. Let A be the infinite matrix defined in lq such that

D(A) = lσq , A = [δij2
si],

where δij = 0, when i 6= j, δij = 1, when i = j, i, j = 1, 2, · · · ,∞. It is clear to see that this

operator A is positive in lq. Then by Theorem 3.2 we obtain the embedding

DαBl+s
p1,θ(Ω; lσq , lq) ⊂ Bs

p2,θ(Ω; lσ(1−κ−µ)
q ), κ =

n∑

k=1

αk + 1
p1

− 1
p2

lk
,

and the corresponding estimate (3.4), where 0 ≤ µ ≤ 1 − κ.

It should be noted that the above embedding has not been obtained by classical methods

so far.

5 Maximal B-Regular DOE in R
n

Let us consider the differential-operator equations with parameters

Ltu =
n∑

k=1

aktkDlk
k u + Aλu +

∑

|α:l|<1

n∏

k=1

t
αk
lk

k Aα(x)Dαu = f (5.1)

in Bs
p,θ(R

n, E), where Aλ = A + λI, λ ∈ S(ϕ0), A and Aα(x) are possible unbounded op-

erators in Banach space E, ak’s are complex numbers, tk, k = 1, 2, · · · , n, are parameters,

l = (l1, l2, · · · , ln), li’s are positive integers.

Condition 5.1 Let −
n∑

k=1

aktk(iξk)lk ∈ S(ϕ1), ϕ0 + ϕ1 ≤ ϕ and there is C > 0 such that

∣∣∣
n∑

k=1

aktk(iξk)lk

∣∣∣ ≥ C
n∑

k=1

tk|ξk|
lk for all ξ = (ξ1, ξ2, · · · , ξn) ∈ Rn and tk ∈ (0, T ], T < ∞.
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Remark 5.1 If lk = 2mk, ak = (−1)mk , Condition 5.1 holds for some ϕ ∈ [0, π).

Theorem 5.1 Suppose that the following conditions hold:

(1) Condition 5.1 holds and s > 0, p ∈ (1,∞), θ ∈ [1,∞], 0 < tk ≤ T < ∞;

(2) E is a UMD space with (α) property satisfying the B-multiplier condition with respect

to p ∈ (1,∞), θ ∈ [1,∞] and s; moreover

sk

lk + sk
+

sj

lj + sj
≤ 1, k, j ∈ (1, n);

(3) A is a ϕ-positive operator in E and

Aα(x)A−(1−|α:l|−µ) ∈ L∞(Rn; L(E)), 0 < µ < 1 − |α : l|.

Then for all f ∈ Bs
p,θ(R

n; E), for λ ∈ S(ϕ0) and for sufficiently large |λ|, the problem (5.1)

has a unique solution u(x) that belongs to space Bs+l
p,θ (Rn; E(A), E) and the coercive uniform

estimate for the solution of (5.1)

n∑

k=1

tk‖D
lk
k u‖Bs

p,θ
(Rn;E) + ‖Au‖Bs

p,θ
(Rn;E) ≤ C‖f‖Bs

p,θ
(Rn;E) (5.2)

holds with respect to t and λ.

Proof At first, we will consider principal part of the equation (5.1), i.e., the differential-

operator equation

L0u =

n∑

k=1

aktkDlk
k u + Aλu = f. (5.3)

Then by applying Fourier transform to the equation (5.3) with respect to x = (x1, · · · , xn), we

obtain
n∑

k=1

aktk(iξk)lk û(ξ) + Aλû(ξ) = f∧(ξ). (5.4)

Since −
n∑

k=1

aktk(iξk)lk ∈ S(ϕ) for all ξ = (ξ1, · · · , ξn) ∈ Rn, we have

ω = ω(t, λ, ξ) = −
(
λ +

n∑

k=1

aktk(iξk)lk
)
∈ S(ϕ).

That is, the operator A − ω I is invertible in E. Hence (5.4) implies that the solution of the

equation (5.3) can be represented in the form

u(x) = F−1(A − ω I)−1f∧.

It is clear to see that the operator-function ϕλ,t(ξ) = [A−ω I]−1 is the multiplier in Bs
p,θ(R

n; E)

uniformly with respect to λ ∈ S(ϕ0). Actually, by virtue of the positivity of operator A and in

view of [11, Lemma 2.3], we have

‖ϕλ(ξ)‖L(E) = ‖(A − ω I)−1‖ ≤ M(1 + |ω|)−1 ≤ M0.
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Moreover, it is clear to see that

‖ξkDkϕλ,t‖L(E) ≤ lktk|ak||ξk|
lk‖(A − ωI)−2‖ ≤ M. (5.5)

Using the estimate (5.5), we obtain the uniform estimate

|ξ1|
β1 |ξ2|

β2 · · · |ξn|
βn‖Dβ

ξ ϕλ,t(ξ)‖L(E) ≤ C (5.6)

for β = (β1, · · · , βn) ∈ Un and ξ = (ξ1, · · · , ξn) ∈ Vn with respect to parameters t and λ.

In a similar way we prove that for operator-functions ϕkλ,t(ξ) = ξlk
k ϕλ,t, k = 1, 2, · · · , n and

ϕ0λ,t = Aϕλ,t the estimates of type (5.6) are satisfied. So, we conclude that operator-functions

ϕλ,t, ϕkλ,t, ϕ0,λ,t are uniform multipliers in Bs
p,θ(R

n; E) with respect to t and λ. It is easy to

see that

‖Dlk
k u‖Bs

p,θ
= ‖F−1(iξk)lk û‖Bs

p,θ
= ‖F−1(iξk)lk(A − ωI)−1f∧‖Bs

p,θ
,

‖Au‖Bs
p,θ

= ‖F−1Aû‖Bs
p,θ

= ‖F−1[A(A − ωI)−1]f∧‖Bs
p,θ

.

We obtain that for all f ∈ Bs
p,θ(R

n; E) there exists a unique solution of the equation (5.3)

in the form

u(x) = F−1(A − ωI)−1f∧,

and the estimate
n∑

k=1

tk‖D
lk
k u‖Bs

p,θ
+ ‖Au‖Bs

p,θ
≤ C‖f‖Bs

p,θ
(5.7)

holds. Consider in Bs
p,θ(R

n; E) the differential operator L0t generated by the problem (5.3),

that is,

D(L0t) = Bs+l
p,θ (Rn; E(A), E), L0tu =

n∑

k=1

tkakDlk
k u + Aλu.

Let L denote the differential operator in Bs
p,θ(R

n; E) generated by the problem (5.1). Namely,

D(Lt) = Bs+l
p,θ (Rn; E(A), E), Ltu = L0tu + L1tu,

where

L1tu =
∑

|α:l|<1

n∏

k=1

t
αk
lk

k Aα(x)Dαu.

In view of the condition (3) of Theorem 5.1, by virtue of Theorem 3.1 for all u ∈ Bs+l
p,θ (Rn;

E(A), E) we have

‖L1tu‖Bs
p,θ

≤
∑

|α:l|<1

n∏

k=1

t
αk
lk

k ‖Aα(x)Dαu‖Bs
p,θ

≤
∑

|α:l|<1

n∏

k=1

t
αk
lk

k ‖A1−|α:l|−µDαu‖Bs
p,θ

≤ C
[
hµ

( n∑

k=1

tk‖D
lk
k u‖Bs

p,θ
+ ‖Au‖Bs

p,θ

)
+ h−(1−µ)‖u‖Bs

p,θ

]
. (5.8)

Then from the estimates (5.7) and (5.8) and for u ∈ Bs+l
p,θ (Rn; E(A), E), we obtain

‖L1tu‖Bs
p,θ

≤ C[hµ‖(L0t + λ)u‖Bs
p,θ

+ h−(1−µ)‖u‖Bs
p,θ

]. (5.9)
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Since ‖u‖Bs
p,θ

= 1
λ‖(L0t + λ)u − L0tu‖Bs

p,θ
for all u ∈ Bs+l

p,θ (Rn; E(A), E), we get

‖u‖
Bs

p,θ
≤

1

|λ|
[‖(L0t + λ)u‖

Bs
p,θ

+ ‖L0tu‖Bs
p,θ

],

‖L0tu‖Bs
p,θ

≤ C
[ n∑

k=1

tk‖D
lk
k u‖Bs

p,θ
+ ‖Au‖Bs

p,θ

]
.

(5.10)

Then from (5.9)–(5.10) for u ∈ Bs+l
p,θ (Rn; E(A), E), we obtain

‖L1tu‖ ≤ Chµ‖(L0t + λ)u‖
Bs

p,θ
+ C1|λ|

−1h−(1−µ)‖(L0t + λ)u‖
Bs

p,θ
. (5.11)

By virtue of the estimate (5.7) we conclude that the operator L0t +λ for λ ∈ S(ϕ0) is invertible.

Then choosing h and λ such that Chµ < 1, C1|λ|
−1h−(1−µ) < 1 in (5.11), we obtain the uniform

estimate

‖L1t(L0t + λ)−1‖L(F ) < 1, F = Bs
p,θ(R

n; E), (5.12)

with respect to parameters t and λ. The estimate (5.7) implies that the operator L0t + λ for

λ ∈ S(ϕ0) has a bounded inverse from Bs
p,θ(R

n; E) into Bs+l
p,θ (Rn; E(A), E). Then by using

(5.12) and the perturbation theory of linear operators (see [17]), we obtain that the differential

operator Lt + λ is invertible from Bs
p,θ(R

n, E) into Bs+l
p,θ (Rn; E(A), E) and there is a positive

constant C such that the uniform estimate

‖(Lt + λ)−1‖L(F ) ≤ C

holds with respect to t and λ. This implies the estimate (5.2).

Result 5.1 Theorem 5.1 implies that the differential operator Lt has a resolvent operator

(L + λ)−1 for λ ∈ S(ϕ0) and sufficiently large |λ|, and the coercive uniform estimate

∑

|α:l|≤1

|λ|1−|α:l|
n∏

k=1

t
αk
lk

k ‖Dα(Lt+λ)−1‖F + ‖A(Lt + λ)−1‖F ≤ C

holds with respect to t and λ.

Theorem 5.2 Let all conditions of Theorem 5.1 hold for ϕ ∈ (0, π
2 ). Then the parabolic

Cauchy problem (2.4) for λ ∈ S(ϕ0) and sufficiently large |λ| is maximal B-regular.

Proof Really, the problem (2.4) can be express in space Bs
p,θ(R+; F ) in the following form

du(y)

dy
+ (Lt + λ) u(y) = f(t), u(0) = 0, y > 0,

where F = Lp(G; E) and Lt is the differential operator in Bs
p,θ(R

n; E) generated by problem

(5.1). In view of Result 4.3 the operator L is positive in Bs
p,θ(R

n; E) for ϕ ∈ (0, π
2 ). Then by

virtue of [3, Corollary 8.9], we obtain the assertion.

Remark 5.2 There are a lot of positive operators in concrete Banach spaces. Therefore,

putting concrete Banach spaces instead of E and concrete positive differential, pseudo differ-

ential operators, or finite, infinite matrices, etc. instead of operator A on DOE (5.1), by virtue

of Theorem 5.1, we can obtain the maximal regularity of different class of BVP’s for partial

differential equations or system of equations. Here we give some of its applications.
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6 The Applications of Differential-Operator Equations

6.1 Infinite systems of quasielliptic equations

Consider the following infinity systems of boundary value problem with parameters

(Lt + λ)um(x) =

n∑

k=1

tkakDlk
k um +

∞∑

j=1

(dj + λ)uj(x)

+
∑

|α:l|<1

∞∑

j=1

n∏

k=1

t
αk
lk

k dαjm(x)Dαuj(x) = fm(x), x ∈ Rn, m ∈ N. (6.1)

Let

D = {dm}, dm > 0, u = {um}, Du = {dmum}, m ∈ N,

lq(D) =
{
u : u ∈ lq, ‖u‖lq(D) = ‖Du‖lq =

( ∞∑

m=1

|dmum|q
) 1

q

< ∞
}
,

λ ∈ S(ϕ0), x ∈ G, 1 < q < ∞.

Let Ot denote a differential operator in Bs
p,θ(R

n; lq) generated by problem (6.1). Let

B = L(Bs
p,θ(R

n; lq)).

Theorem 6.1 Let Condition 5.1 holds. Let sk

lk+sk
+

sj

lj+sj
≤ 1 for k, j = 1, 2, · · · , n, p, q ∈

(1,∞), θ ∈ [1,∞] and dαkm ∈ L∞(Rn) such that for all x ∈ G,

∞∑

m=1

d−1
m < ∞,

∞∑

j=1

∞∑

m=1

dq1

αjm(x)d
−

q1
2

m < ∞,
1

q
+

1

q1
= 1.

Then,

(a) for all f(x) = {fm(x)}∞1 ∈ Bs
p,θ(R

n; lq), λ ∈ S(ϕ0) and for sufficiently large |λ| the

problem (6.1) has a unique solution u = {um(x)}∞1 that belongs to Bs+l
p,θ (Rn, lq(D), lq) and

coercive uniform estimate for the solution of (6.1)
∑

|α:l|≤1

‖Dαu‖Bs
p,θ

(Rn;lq) + ‖Du‖Bs
p,θ

(Rn;lq) ≤ C‖f‖Bs
p,θ

(Rn;lq) (6.2)

holds with respect to parameter t;

(b) for λ ∈ S(ϕ0) and for sufficiently large |λ|, there exists a resolvent (Ot+λ)−1 of operator

Ot and

∑

|α:l|≤1

n∏

k=1

t
αk
lk

k (1 + |λ|)1−|α:l|‖Dα(Ot + λ)−1‖B + ‖D(Ot + λ)−1‖B ≤ M. (6.3)

Proof Really, let E = lq, A(x) and Aα(x) be infinite matrices, such that

A = [dmδjm], Aα(x) = [dαjm(x)], k, m ∈ N.

It is clear to see that the operator A is positive in lq. Therefore, by virtue of Theorem 5.1, we

obtain that the problem (6.1) for all f ∈ Bs
p,θ(R

n; lq), λ ∈ S(ϕ0) and sufficiently large |λ| has

a unique solution u that belongs to space Bs+l
p,θ (Rn; lq(D), lq) and the estimate (6.2) holds. By

virtue of Result 5.1 we obtain (6.3).
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6.2 Cauchy problems for infinite systems of parabolic equations

Consider the following infinity systems of parabolic Cauchy problem

∂um(y, x)

∂y
+

n∑

k=1

aktk
∂lkum(y, x)

∂xk
+

∑

|α:l|<1

∞∑

j=1

n∏

k=1

t
αk
lk

k dαjm(x)Dαuj(x)

+

∞∑

j=1

(dj + λ)uj(y, x) = fm(y, x), um(0, x) = 0, m ∈ N, y ∈ R+, x ∈ Rn. (6.4)

Theorem 6.2 Let all conditions of Theorem 6.1 hold. Then the parabolic systems (6.4) for

λ ∈ S(ϕ0) and for sufficiently large |λ| is maximal B-regular.

Proof Let E = lq, A and Ak(x) be the infinite matrices, such that

A = [dmδjm], Aα(x) = [dαjm(x)], j, m = 1, 2, · · · ,∞.

Then the problem (6.4) can be expressed as the equation (2.4), where Lt is a differential operator

in Bs
p,θ(R

n; lq) generated by the problem (6.1). Then by virtue of Theorem 5.1 and Theorem

5.2 we obtain the assertion.
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