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Abstract The authors consider a stochastic heat equation in dimension d = 1 driven by

an additive space time white noise and having a mild nonlinearity. It is proved that the

functional law of its solution is absolutely continuous and possesses a smooth density with

respect to the functional law of the corresponding linear SPDE.
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1 Introduction

The smoothness of the law associated to a nonlinear SPDE has been initiated by Ocone in

[10] and has been the object of many important subsequent works, for instance in [2, 5–7, 9, 11–

13] to cite a sample. This question is generally tackled by using Malliavin Calculus. As Malliavin

Calculus is established for the law of R
d-valued random variables, the scope of the present stage

of knowledge is essentially limited to finite dimensional evaluation of the underlying functional

laws. The problem of extending Malliavin Calculus to infinite dimensional range functionals

has been considered in [1] in an abstract setting; this work proceeds from the same motivation

raised into a concrete setting. Absolute continuity will result from Girsanov Theorem while

the smoothness will result from arguments of an infinite dimensional linear version of Malliavin

Calculus.

2 Results

Let M be either a connected differentiable manifold of dimension d or a compact domain of

R
d with smooth boundary. We consider on M a measure dm which is absolutely continuous with

respect to the Lebesgue measure and a second order elliptic operator ∆ which has a natural self-

adjoint extension on L2(dm). The spectrum of −∆ is a sequence {λn, n ≥ 1} of positive numbers

such that lim
n→∞

λn = +∞; more precisely, the spectral function N∆(τ) := cardinal{n : λn < τ},
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τ > 0, satisfies

N∆(τ) ≤ Cτ
d
2 .

For any n ≥ 1, we shall denote by en the normalized eigenvector corresponding to λn. Define

W (t, x) =

∞∑

n=1

xn(t)en(x),

where {xn(t), t ≥ 0}, n ≥ 1, is a sequence of standard independent real-valued Brownian

motions defined on some probability space, and the series converges in the sense of distributions.

The process {W (t, x), (t, x) ∈ R+ × M} is termed space-time white noise. It will be identified

with the sequence {xn(t), t ≥ 0}, n ≥ 1. We shall denote by H its associated Cameron-

Martin space and by (Ω,H, P ) the corresponding abstract Wiener space. In the sequel, we

shall consider as reference probability space (Ω,F , P ) where F is the σ-field generated by

{xn(t), t ∈ R+; n ≥ 1}. We will also consider the natural filtration associated with {(xn(s), n ≥

1), 0 ≤ s ≤ t; n ≥ 1} that we will denote by (Ft, t ∈ R+).

2.1 A linear SPDE

Consider the SPDE

Lu(t, x) = Ẇ (t, x), (2.1)

t > 0, x ∈ M , L = ∂
∂t

− ∆, with u(0, · ) = 0 and vanishing boundary conditions in the

case of considering the equation in a bounded domain. Let G(t, x) be the Green function

associated with the heat operator L. Classical results on SPDE’s (see [3, 14]) provide a rigourous

formulation of the solution of (2.1) by means of the stochastic convolution as follows:

u(t, x) =

∫ t

0

∫

M

G(t − s, x − y)W (ds, dy). (2.2)

Notice that u(t) has a realization in L2(M) if and only if the integral
∫ ∞

0 dN∆(τ) converges.

This property holds true if and only if d = 1. In dimensions greater than one, an L2(M)-version

of the stochastic convolution can be obtained by colouring the noise.

The next two propositions fix the setting of our main result.

Proposition 2.1 The process defined in (2.2) admits the representation

u(t) =

∞∑

n=1

un(t) en, (2.3)

where (un, n ≥ 1) is the sequence of independent Ornstein-Uhlenbeck processes given by the

solution of the stochastic differential equations

dun(t) = dxn(t) − λn un(t)dt, t > 0,

un(0) = 0.

That is,

un(t) =

∫ t

0

e−λn(t−s)xn(ds). (2.4)
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Assume d = 1. Then the mapping t ∈ [0,∞[ 7→ u(t) ∈ L2(M) is continuous. Moreover,

fix t > 0 and denote by µt the probability law on R
⊗N of the sequence {un(t), n ≥ 1}; then

µt is absolutely continuous with respect to the measure ⊗nN(0, 1
2λn

) and the density qt = dµt

dµ∞

belongs to
( ⋂

p≥1

Lp(µ∞)
)
∩ D

1,2(µ∞).

Proof A series expansion of the Green function gives

u(t, x) =
∑

n≥1

∫ t

0

〈G(t − s, x − · ), en〉xn(ds),

where the notation 〈 · , · 〉 denotes the scalar product in L2(M).

Notice that by its very definition,

〈G(t, x − · ), en〉 = en(x)e−λnt, t ∈ R+.

Consequently,

u(t, x) =
∑

n≥1

(∫ t

0

e−λn(t−s)xn(ds)
)
en(x),

which proves (2.3).

The isometry property of the stochastic integral yields

E(un(t))2 =
1

2λn

(1 − e−2λnt) →
1

2λn

, as t → ∞.

Hence the invariant measure of un is the Gaussian law N(0, 1
2λn

).

For the properties on the smoothness of the density qt, we refer the reader to Theorem 1,

Lemma 1 and Theorem 4 in [4] (see also [8]).

2.2 A nonlinear SPDE

Let b : R → R be a bounded C1 function with bounded derivative. Let us consider the

quasilinear SPDE

Lv(t, x) = b(v(t, x)) + Ẇ (t, x), (2.5)

with the same initial and boundary conditions as in (2.1).

The equation (2.5) can be written in mild form as follows:

v(t, x) =

∫ t

0

∫

M

G(t − s, x − y)W (ds, dy) +

∫ t

0

ds

∫

M

dyG(t − s, x − y)b(v(s, y)).

Proposition 2.2 A solution to equation (2.5) can be represented as

v(t) =
∑

n≥1

vn(t)en,

where {vn(t), t ∈ R+} satisfy the system of coupled equations

dvn(t) = dxn(t) − λnvn(t)dt + 〈b(v(t, · )), en〉dt, n ≥ 1. (2.6)
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Furthermore, set

Gt = exp
( ∑

n≥1

∫ t

0

〈b(u(s, · )), en〉dxn(s) −
1

2

∫ t

0

‖b(u(s, · ))‖2
L2(M)ds

)

and define dQ := GtdP on Ft. Then, we have µ̃t := P ◦ (v(t))−1 = Q ◦ (u(t))−1; moreover, µ̃t

is absolutely continuous with respect to µt and

dµ̃t

dµt

(z) = E(Gt | u(t) = z), z ∈ R
⊗N.

Proof By the same arguments as in Proposition 2.1, we obtain

vn(t) =

∫ t

0

e−λn(t−s)xn(ds) +

∫ t

0

e−λn(t−s)〈b(v(s, · )), en〉ds, n ≥ 1, (2.7)

which is equivalent to the system (2.6).

Notice that

sup
s∈R+

‖b(u(s, · ))‖L2(M) ≤ ‖b‖∞m(M)
1
2 . (2.8)

Hence the last statement is a consequence of Girsanov’s theorem.

From [4] we know that deµt

dµ∞
defines a random variable in D

1,2(µ∞). Our purpose here is to

analyze the properties of the density deµt

dµt
in terms of the measure µt. The next Theorem 2.1

gives a result in this direction.

Before writing the statement, we fix some notations that will be used throughout the proof.

For a fixed t > 0 we denote by Ht and Ht the Cameron-Martin space associated with {xn(s), 0 ≤

s ≤ t; n ≥ 1} and the Gaussian variable ut = {un(t); n ≥ 1}, respectively. Given an abstract

Wiener space (W ,H, ν), we shall denote by D
k,p(ν) the Watanabe-Sobolev spaces and by δν the

divergence operator. The mathematical expectation with respect to a probability ν different

from P will be written as Eν .

Theorem 2.1 For any t > 0, the density deµt

dµt
satisfies

log
dµ̃t

dµt

∈ D
1,p(µt) (2.9)

for any p ∈ [1,∞[ .

Proof We start by proving that for any t ∈ R+,

Gt ∈
⋂

p∈[1,∞[

D
1,p(P ). (2.10)

Indeed, the process {Gt, t ∈ R+} satisfies the linear equation

Gt = 1 +
∑

n≥1

∫ t

0

Gs〈b(u(s, · )), en〉dxn(s).
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Fix p ∈ [2,∞[ . Burkholder’s inequality together with (2.8) and Hölder’s inequality imply

E|Gt|
p ≤ Cp

(
1 + E

(∫ t

0

G2
s

∑

n≥1

|〈b(u(s)), en〉|
2ds

) p

2
)

≤ Cp

(
1 + ‖b‖p

∞m(M)
p

2

∫ t

0

E|Gs|
pds

)
.

Thus, by Gronwall’s lemma we have

E|Gt|
p ≤ Cp exp(Cp‖b‖

p
∞m(M)

p

2 t),

and therefore

Gt ∈
⋂

p≥1

Lp(P ). (2.11)

Similarly,

G−1
t ∈

⋂

p≥1

Lp(P ). (2.12)

Consider an element {hn, n ≥ 1} in the Cameron-Martin space H. By using the definition

and properties of the gradient operator on (Ω,H, P ) we obtain Dhj
Gt = GtK

j
t , with

Kj
t =

∑

n≥1

∫ t

0

〈b′(u(s, · ))Dhj
u(s, · ), en〉dxn(s)

+ δn
j

∫ t

0

〈b(u(s, · )), en〉ḣj(s)ds − 〈b(u), b′(u)Dhj
u〉L2([0,t]×M), (2.13)

where δn
j denotes the Kronecker symbol.

We want to prove that

E
( ∑

j≥1

|Kj
t |

2
) p

2

≤ ∞ (2.14)

for any p ∈ [2,∞[ .

For this, we first notice that, since the process {u(t), t > 0} is Gaussian, Du is deterministic,

and moreover ‖Du‖L2([0,t]×M ;H) < ∞. In fact,

Dhj
u(t, x) =

∫ t

0

〈G(t − s, x − · ), ej〉hj(s)ds.

The first term of the right-hand side of (2.13) is an R
⊗N -valued martingale. By Burkholder’s

inequality we have

E
(∑

j≥1

∣∣∣
∑

n≥1

∫ t

0

〈b′(u(s, · ))Dhj
u(s, · ), en〉dxn(s)

∣∣∣
2) p

2

≤ CpE
( ∑

n≥1

∫ t

0

ds
∑

j≥1

|〈b′(u(s, · ))Dhj
u(s, · ), en〉|

2
) p

2

= CpE
( ∑

n≥1

‖b′(u)Dhj
u‖2

L2([0,t]×M)

) p

2

≤ Cp‖b
′‖p

∞‖Du‖p

L2([0,t]×M ;H) . (2.15)
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For the second term of the right-hand side of (2.13), by applying two times Schwarz’s inequality,

we easily obtain

E
(∑

j≥1

∣∣∣
∫ t

0

〈b(u(s, · )), ej( · )〉hj(sds)
∣∣∣
2) p

2

≤ ‖h‖p

L2([0,t];R⊗N)
‖b‖p

∞m(M)
p

2 t
p

2 . (2.16)

As for the third term of the right-hand side of (2.13), we have

E
(∑

j≥1

|〈b(u), b′(u)Dhj
u〉L2([0,t]×M)|

2
) p

2

≤ ‖b‖p
∞‖b′‖p

∞‖Du‖p

L2([0,t]×M ;H) . (2.17)

The property (2.14) clearly follows from (2.15)–(2.17); then (2.11) and (2.14) imply (2.10).

The second step of the proof consists in proving that

log
d µ̃t

dµt

∈
⋂

p∈[1,∞[

Lp(µt). (2.18)

Indeed, the identity | log x| = log+ x+log+
(

1
x

)
clearly yields | log x| ≤ xα +x−α, for any α > 0.

Consequently,

Eµt

∣∣∣ log
dµ̃t

dµt

∣∣∣
p

= Eµt
| log E(Gt|u(t))|p

≤ Eµt
|E(Gt|u(t))|q + Eµt

|E(G−1
t |u(t))|q

≤ E|Gt|
q + E|G−1

t |q < ∞ (2.19)

for any q ∈ ]p,∞]. The last term of (2.19) is finite, by virtue of (2.11) and (2.12).

In the third and last step of the proof, we deal with the differentiability of the random vector

log deµt

dµt
.

For a fixed t > 0, we define a linear mapping Ψ : Ht → R
N by

Ψ(h) =
( ∫ t

0

〈G(t − s, x − · , ej)〉hj(s)ds, j ≥ 1
)
.

The image of Ψ is the Cameron-Martin space of the Gaussian random variable ut. Clearly, the

differential of Ψ is given by

Ψ′(h)(h̃) =
( ∫ t

0

〈G(t − s, x − · , ej)〉hj(s)ds, j ≥ 1
)
.

We have Ht = L2([0, t] × M)/KerΨ′. Set Dt = (KerΨ′)⊥. The restriction of Ψ′ to Dt realizes

a linear isomorphism with Ht; denote by σ its inverse. Notice that σ brings elements of the

Cameron-Martin of ut, with t > 0 fixed, into elements of Ht. Given z ∈ Ht, set Z = σ(z).

We can now apply Lemma 2.1 below to the following framework: For the fixed value of t > 0

that we are considering in this proof, Ω1 is the canonical space associated with {xn(s), 0 ≤ s ≤

t; n ≥ 1}, Ω2 is the image of Ω1 by the action of the linear equation u, H1 is the Cameron-

Martin space Ht and H2 = Ht. The restriction of Φ to H1 is the mapping that we have denoted

by Ψ a few lines before. We will make two choices for the measure µ: P and Q. This gives two
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image measures ν: µt = P ◦ u(t)−1 and µ̃t = Q ◦ u(t)−1, respectively. Thus, for z ∈ Ht and

Z = σ(z) we obtain the following identities for their respective divergences:

δµt
(z) = Eu(t)(δP (Z)), δeµt

(z) = Eu(t)(δQ(Z)),

where Eu(t) stands for the conditional expectation with respect to u(t).

On the other hand, Lemma 2.2 below tells us that

δQ(Z) = δP (Z) − DZ(log Gt). (2.20)

Consequently,

Dz

(
log

dµ̃t

dµt

)
= δµt

(z) − δeµt
(z) = Eu(t)(DZ(log Gt)).

From this identity and the integrability results on K proved before, we obtain that log deµt

dµt
is

differentiable in the directions of Ht and the derivative belongs to any Lp(µt). This concludes

the proof of the theorem.

The last part of the article is devoted to the proof of the technical results that we have

invoked throughout the proof of the previous theorem.

Definition 2.1 Consider two abstract Wiener spaces (Ωi,Hi, Pi) along with a mapping

Φ : Ω1 → Ω2 such that Φ(H1) ⊂ H2. Assume that the restriction Φ : H1 → H2 is differentiable.

Let z ∈ H2. An element Z ∈ H1 is called a covering vector field of z if for any x ∈ H1,

Φ′(x)(Z) = z.

Lemma 2.1 In the framework of Definition 2.1, let µ be a measure on Ω1 and let ν =

µ ◦ Φ−1. The following formula relating the divergences with respect to the measures µ and ν,

respectively, holds true:

δν(z) = EΦ(δµ(Z)).

Proof Let f : Y → R be a measurable and bounded function. We have

∫

Y

fEΦ(δµ(Z))dν =

∫

X

(f ◦ Φ)(δµ(Z))dµ =

∫

X

DZ(f ◦ Φ)dµ,

where we have applied the duality between the divergence δµ and the gradient operator D.

Since z = Φ′(x)Z, we have (Dzf)(Φ(x)) = DZ(f ◦ Φ)(x). Consequently,

∫

X

DZ(f ◦ Φ)dµ =

∫

X

(Dzf)(Φ(x))dµ(x) =

∫

Y

(Dzf)(y)dν(y) =

∫

Y

fδν(z)dν.

This ends the proof of the lemma.

The next lemma relates the divergence operators corresponding to the two absolutely con-

tinuous measures P and Q. It has been used to write (2.20).

Lemma 2.2 For any h ∈ Ht,

δP (h) = Dh(log Gt) + δQ(h). (2.21)
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Proof Let ϕ be a cylindrical function defined on Ω. Consider the identity

Dh(ϕGt) = ϕDhGt + GtDhϕ.

By applying the duality between gradient and divergence on (Ω,Ht, P ) and (Ω,Ht, Q), respec-

tively, we have

E(Dh(ϕGt)) = E(ϕGtδP (h)) = EQ(ϕδP (h)) (2.22)

and

E(GtDhϕ) = EQ(Dhϕ) = EQ(ϕδQ(h)). (2.23)

Moreover,

E(ϕDhGt) = E(ϕGtDh(log Gt)) = EQ(ϕDh(log Gt)). (2.24)

From (2.22)–(2.24) we obtain

EQ(ϕδP (h)) = EQ(ϕDh(log Gt)) + EQ(ϕδQ(h)),

which clearly implies (2.21).
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