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Abstract In this paper, the mean curvature flow of complete submanifolds in Euclidean

space with convex Gauss image and bounded curvature is studied. The confinable property

of the Gauss image under the mean curvature flow is proved, which in turn helps one to

obtain the curvature estimates. Then the author proves a long time existence result. The

asymptotic behavior of these solutions when t → ∞ is also studied.
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1 Introduction

There are many works on the mean curvature flow of hypersurfaces in Riemannian manifolds

(see [6, 7, 9, 10] for example). The impressive features of mean curvature flow for codimension

one are as follows.

(1) If the initial hypersurface M0 ⊂ R
m+1 is uniformally convex, then the hypersurfaces

under the mean curvature contract smoothly to a single point in finite time and the shapes of

the hypersurfaces become spherical at the end of the contraction. If the ambient manifold is a

general Riemannian manifold, such a contraction is still working.

(2) If the initial hypersurface M0 ⊂ R
m+1 is an entire graph with linear growth, then there

is long time existence for the mean curvature flow and the shapes of the hypersurfaces become

flat.

We know that J. Moser [13] proved that an entire minimal graph in R
m+1 given by xm+1 =

f(x1, · · · , xm) with bounded gradient |∇f | < c < ∞ has to be hyperplane. This is closely

related to the result of Ecker-Huisken [6], which reveals the second feature of the mean curva-

ture flow of hypersurfaces mentioned above. On the other hand, Moser’s result [13] has been

generalized to higher codimension in [5, 8], and in author’s joint work with J. Jost [11]. This

viewpoint is the underline motivation of the present work.

It is natural to study the mean curvature flow of higher codimension. In recent years some

interesting works have been done in [1–3, 15–19]. In the present paper, we show the second

feature in higher codimension. The terminology of linear growth in [6] can be interpreted as

the image under the Gauss map of the hypersurface lies in an open hemisphere. We investigate

the mean curvature flow of submanifolds with convex Gauss image naturally.

Due to the curved normal bundle, the evolution equation of the squared norm of the second

fundamental form (3.5) is more difficult to deal with than the hypersurface case.
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Consider the image of the Gauss map under the mean curvature flow. If the image under the

Gauss map of the initial submanifold lies in a geodesic ball BR0
of radius R0 in the Grassmanian

manifold, we can prove that the deforming submanifolds under the mean curvature flow still

lie in the same geodesic ball, provided R0 <
√

2
4 π. This is an adequate generalization of “linear

growth preserving property” in [6] for the codimension one case. This is Theorem 4.1 of this

paper. We call it the “confinable property”, with whose help we obtain the curvature estimates

(see Theorem 4.2).

By using Huisken’s monotonicity formula for the backward heat kernel, Ecker-Huisken de-

rived a maximum principle for parabolic equations on certain complete manifolds. Since the

Gauss image assumption and the curvature assumption, we see that the mean curvature flow

equations are uniformly parabolic. The resulting manifolds under the mean curvature flow have

Euclidean volume growth up to a constant. On those manifolds, the curvature and its covariant

derivatives have at most polynomial growth. Hence, Ecker-Huisken’s maximum principle is

applicable in our consideration. The confinable property of the Gauss image under the mean

curvature flow and curvature estimates are proved by this maximum principle.

Combining those properties, we are able to prove the following main theorem in this paper.

Theorem 1.1 Let F : M → R
m+n be a complete m-submanifold which has bounded curva-

ture. Suppose that the image under the Gauss map from M into Gm,n lies in a geodesic ball

of radius R0 <
√

2
12 π. Then the evolution equations of mean curvature flow have a long time

smooth solution.

Remark 1.1 Here we need not assume the initial manifold is an entire graph, which is a

conclusion of the Gauss image assumption.

We also study the asymptotic behavior of these solutions when t → ∞, namely we study the

rescaled mean curvature flow in Section 5. The corresponding results as in [6] can be obtained

similarly.

2 A Bochner Type Formula

Let F : M → R
m+n be an m-submanifold in (m + n)-dimensional Euclidean space with

the second fundamental form B which can be viewed as a cross-section of the vector bundle

Hom(⊙2TM, NM) over M, where TM and NM denote the tangent bundle and the normal

bundle along M , respectively. A connection on Hom(⊙2TM, NM) is induced from those of

TM and NM naturally. We investigate the higher codimension n ≥ 2 situation in this paper.

For ν ∈ Γ(NM), the shape operator Aν : TM → TM satisfies

〈BXY , ν〉 = 〈Aν(X), Y 〉.

The second fundamental form, curvature tensor of the submanifold, curvature tensor of

the normal bundle and that of the ambient manifold satisfy the Gauss equations, the Codazzi

equations and the Ricci equations.

Taking the trace of B gives the mean curvature vector H of M in R
m+n, a cross-section of

the normal bundle.

Choose a local orthonormal frame field {ei, eα} along M with dual frame field {ωi, ωα},
such that ei are tangent vectors to M . The induced Riemannian metric of M is given by

ds2
M =

∑
i

ω2
i and the induced structure equations of M are
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dωi = ωij ∧ ωj, ωij + ωji = 0,

dωij = ωik ∧ ωkj + ωiα ∧ ωαj ,

Ωij = dωij − ωik ∧ ωkj = −1

2
Rijklωk ∧ ωl.

By Cartan’s lemma, we have

ωαi = hαijωj .

To have the curvature estimates, we need the Bochner type formula for the squared norm of

the second fundamental form. It is done in [14] for minimal submanifolds in an arbitrary ambient

Riemannian manifold. Now, for any submanifold in Euclidean space, by same calculation as in

the paper [14] we have the following formula.

Proposition 2.1

(∇2B)XY = ∇X∇Y H + 〈BXei
, H〉BY ei

− 〈BXY , Beiej
〉Beiej

+ 2〈BXej
, BY ei

〉Beiej
− 〈BY ei

, Beiej
〉BXej

− 〈BXei
, Beiej

〉BY ej
, (2.1)

where ∇2 stands for the trace Laplacian operator.

Denote

Bij = Beiej
= (∇ei

ej)
N = hαijeα,

where {eα} is a local orthonormal frame field of the normal bundle near x ∈ M. Let Sαβ =

hαijhβij . Then |B|2 =
∑
α

Sαα.

Noting

− 〈Bkl, Bij〉〈Bij , Bkl〉 = −hαklhαijhβijhβkl = −
∑

α,β

S2
αβ ,

2 〈Bil, Bjk〉〈Bkl, Bij〉 − 2 〈Bjk, Bkl〉〈Bil, Bij〉

= 2
∑

α6=β

(〈Aeβ Aeα , AeαAeβ 〉 − 2〈Aeβ Aeα , AeβAeα〉) = −
∑

α6=β

|[Aeα , Aeβ ]|2,

we then have

〈∇2B, B〉 = 〈∇i∇jH, Bij〉 + 〈Bik, H〉〈Bil, Bkl〉 −
∑

α6=β

|[Aeα , Aeβ ]|2 −
∑

α,β

S2
αβ .

The following expression follows immediately.

Proposition 2.2

∆|B|2 = 2|∇B|2 + 2〈∇i∇jH, Bij〉+2〈Bij, H〉〈Bik, Bjk〉−2
∑

α6=β

|[Aeα , Aeβ ]|2−2
∑

α,β

S2
αβ . (2.2)

3 Evolution Equations

We now consider the MCF for a submanifold in R
m+n. Namely, consider a one-parameter

family Ft = F ( · , t) of immersions Ft : M → R
m+n with corresponding images Mt = Ft(M)

such that
d

dt
F (x, t) = H(x, t), x ∈ M,

F (x, 0) = F (x)
(3.1)
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are satisfied, where H(x, t) is the mean curvature vector of Mt at F (x, t) in R
m+n. We also

have

dgij

dt
= −2〈H, Bij〉, (3.2)

dgij

dt
= 2 gikgjl〈H, Bkl〉, (3.3)

dg

dt
= −2 |H |2 g, (3.4)

where g = det(gij). We now derive the evolution equation for the squared norm of the second

fundamental form.

Lemma 3.1 The second fundamental form satisfies

( d

dt
− ∆

)
|B|2 ≤ − 2 |∇|B||2 + 3|B|4. (3.5)

Remark 3.1 Compare (3.5) with the corresponding formula for the hypersurfaces, we see

that now the curvature estimates are more delicate.

Proof For fixed x0 and t0, choose a local orthonormal frame {ei} of Mt0 near x0 which is

normal at x0. By the immersion Ft0 , we have {ei} on M , which is not orthonormal in general.

Then by Ft we obtain {Ft∗ei} which is denoted by {ei} for simplicity. We also choose a local

orthonormal frame field {eα} of the normal bundle of Mt near x0. Then at (x0, t0),

dhαij

dt
= ∇ d

dt
〈∇ei

ej , eα〉 = 〈∇H∇ei
ej , eα〉 + 〈∇ei

ej ,∇Heα〉

= 〈∇ei
∇ej

H, eα〉 + 〈Bij ,∇Heα〉 = 〈∇ei
(∇ej

H + (∇ej
H)T ), eα〉 + 〈Bij ,∇Heα〉

= 〈∇ei
∇ej

H, eα〉 − hαikhβjkHβ + hβij〈∇Heα, eβ〉. (3.6)

Since in a non-orthonormal frame field gij = 〈F∗ei.F∗ej〉 (except at t0) is not a unit matrix,

|B|2 = gikgjlhαij hαkl.

We have, at (x0, t0),

d|B|2
dt

= 2
dgik

dt
hαijhαkj + 2

dhαij

dt
hαij . (3.7)

From (3.6) we have

dhαij

dt
hαij = hαij〈∇ei

∇ej
H, eα〉 − hαijhαikhβjkHβ . (3.8)

Noting (3.3), we have

dgik

dt
hαijhαkj = 2 hαijhαkj〈H, Bik〉 = 2 hαijhαkjhβikHβ. (3.9)

Substituting (3.8) and (3.9) into (3.7) gives

1

2

d|B|2
dt

= 〈∇i∇jH, Bij〉 + 〈Bij , H〉〈Bik, Bjk〉. (3.10)



Mean Curvature Flow with Convex Gauss Image 125

From (2.2) and (3.10), we obtain the evolution equation for the squared norm of the second

fundamental form

1

2

( d

dt
− ∆

)
|B|2 = −|∇B|2 +

∑

α6=β

|[Aeα , Aeβ ]|2 +
∑

α,β

S2
αβ . (3.11)

We know from [14] in general that

∑

α6=β

|[Aeα , Aeβ ]|2 +
∑

α,β

S2
αβ ≤

(
2 − 1

n

)
|B|4.

When the codimension n ≥ 2, the above estimate was refined (see [4, 12])

∑

α6=β

|[Aeα , Aeβ ]|2 +
∑

α,β

S2
αβ ≤ 3

2
|B|4.

On the other hand, by the Schwartz inequality,

∇|B| ≤ |∇B|.

Therefore, the inequality (3.5) is obtained.

For any p ∈ M, let {e1, · · · , em} be a local orthonormal frame field near p. Define the Gauss

map γ : p → γ(p) which is obtained by parallel translation of TpM to the origin in the ambient

space R
m+n. The image of the Gauss map lies in a Grassmannian Gm,n. It is a symmetric

space of compact type.

For any P ∈ Gm,n, there are m vectors v1, · · · , vm spanning P . Then we have Plücker

coordinates v1 ∧ · · · ∧ vm for P up to a constant. The Gauss map γ can be described by

p → e1 ∧ · · · ∧ em. Since

d(e1 ∧ · · · ∧ em) = de1 ∧ · · · ∧ em + · · · + e1 ∧ · · · ∧ dem

= ωα1eα ∧ e2 ∧ · · · ∧ em + · · · + e1 ∧ · · · ∧ em−1 ∧ ωαmeα

= ωαieαi

and the canonical metric on Gm,n is defined by

ds2 =
∑

α,i

ω2
αi,

where {eαi = e1 ∧ · · · ∧ ei−1 ∧ eα ∧ ei+1 ∧ · · · ∧ em} is an orthonomal basis for TGm,n (see [22,

pp. 188–194]), it follows that

γ∗ωαi = hαijωj (3.12)

and the tension field of the Gauss map

τ(γ) = hαijjeαi = hαjjieαi = hαjjie1 ∧ · · · ∧ ei−1 ∧ eα ∧ ei+1 ∧ · · · ∧ em

=
∑

i

e1 ∧ · · · ∧ ei−1 ∧∇ei
H ∧ ei+1 ∧ · · · ∧ em, (3.13)

where we use the Codazzi equation. In [19], there is the following relation.

Proposition 3.1
dγ

dt
= τ(γ(t)). (3.14)
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4 Main Estimates

We consider the mean curvature flow of a complete manifold. We will assume that integra-

tion by parts is permitted and all integrals are finite for the submanifolds and functions we will

consider in the sequel. We have the following maximum principle for parabolic equations on

complete manifolds.

Define the backward heat kernel ρ = ρ(x, t) by

ρ(x, t) =
1

(4π(t0 − t))
n
2

exp
(
− |x|2

4(t0 − t)

)
, t0 > t, x ∈ R

m+n.

We have the following formula. It is derived for the mean curvature flow in Euclidean space.

By (3.4), the formula is unchanged in higher codimension.

Proposition 4.1 (See [10]) For a function f(x, t) on M, we have

d

dt

∫

M

fρ dµt =

∫

M

( d

dt
f − ∆f

)
ρ dµt −

∫

M

fρ
∣∣∣H +

F⊥

2(t0 − t)

∣∣∣
2

dµt, (4.1)

where dµt is the volume form of Mt.

Corollary 4.1 (See [6]) Suppose that the function f = f(x, t) satisfies the inequality

( d

dt
− ∆

)
f ≤ 〈a,∇f〉

for some vector field a with uniformly bounded norm on M × [0, t1] for some t1 > 0. Then

sup
Mt

f ≤ sup
M0

f for all t ∈ [0, t1].

Now, we consider the convex Gauss image situation which is preserved under the flow, as

shown in the following theorem.

Theorem 4.1 (Confinable Property) If the Gauss image of the initial submanifold M is

contained in a geodesic ball of the radius ρ0 <
√

2
4 π in Gm,n, then the Gauss images of all the

submanifolds under the mean curvature flow are also contained in the same geodesic ball.

Proof We consider a smooth bounded function on Gm,n

h = 1 + ε − cos(
√

2 ρ),

where ρ is the distance function from a point in Gm,n, ε > 0 is a fixed constant. When ρ <
√

2
4 π,

h is convex. By the Hessian comparison theorem, we have

Hess(h) ≥ 2 cos(
√

2ρ) g, (4.2)

where g is the metric tensor on Gm,n. Hence, from (3.12) and (4.2) we have

Hess(h)(γ∗ei, γ∗ei) ≥ 2 cos(
√

2 ρ) |B|2.

The composition function h ◦ γ of h with the Gauss map γ defines a function on Mt =

F (M, t). Using Proposition 3.1, we have

d

dt
(h ◦ γ) = dh

(dγ

dt

)
= dh(τ(γ)).
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By the composition formula (see [21, p. 28]),

∆(h ◦ γ) = Hess(h)(γ∗ei, γ∗ei) + dh(τ(γ)),

where {ei} is a local orthonormal frame field on Mt.

It follows that ( d

dt
− ∆

)
h ◦ γ ≤ −2 cos(

√
2ρ ◦ γ) |B|2. (4.3)

Thus, we can use Corollary 4.1 to get conclusion.

For simplicity h ◦ γ is denoted by h1 in the sequel. On the other hand,

|∇h1|2 = |〈∇h, γ∗ei〉〈∇h, γ∗ei〉| ≤ 2 sin2(
√

2 ρ ◦ γ)|B|2. (4.4)

From (4.3) and (4.4), we have

( d

dt
− ∆

)
h1 ≤ − cos(

√
2 ρ ◦ γ) |B|2 − cos(

√
2 ρ ◦ γ)

2 sin2(
√

2 ρ ◦ γ)
|∇h1|2. (4.5)

For any q > 0,

( d

dt
− ∆

)
h

q
1 =qh

q−1
1

( d

dt
− ∆

)
h1 − q(q − 1)h

q−2
1 |∇h1|2

≤−qh
q−1
1 cos(

√
2ρ ◦ γ)|B|2−

(
q(q − 1)hq−2

1 +qh
q−1
1

cos(
√

2ρ ◦ γ)

2 sin2(
√

2ρ ◦ γ)

)
|∇h1|2. (4.6)

From (3.5) and (4.6), we have

( d

dt
− ∆

)
(|B|2hq

1) = |B|2
( d

dt
− ∆

)
h

q
1 + h

q
1

( d

dt
− ∆

)
|B|2 − 2∇|B|2 · ∇h

q
1

≤ (−q cos(
√

2 ρ ◦ γ) + 3h1)|B|4hq−1
1

−
[
q(q − 1)hq−2

1 + q
cos(

√
2 ρ ◦ γ)

2 sin2(
√

2 ρ ◦ γ)
h

q−1
1

]
|B|2|∇h1|2

− 2 h
q
1|∇|B||2 − 2∇|B|2 · ∇h

q
1

= [3(1 + ε) − (3 + q) cos(
√

2ρ ◦ γ)]hq−1
1 |B|4

−
[
q(q − 1) + q

cos(
√

2ρ ◦ γ)

2 sin2(
√

2ρ ◦ γ)
h1

]
h

q−2
1 |B|2|∇h1|2

− 2 h
q
1|∇|B||2 − 2∇|B|2 · ∇h

q
1. (4.7)

By using the Young inequality, we have

−2∇|B|2 · ∇h
q
1 = −(h−q

1 ∇h
q
1) · ∇(|B|2hq

1) + |B|2h−q
1 |∇h

q
1|2 −∇|B|2 · ∇h

q
1

≤ −q(h−1
1 ∇h1) · ∇(|B|2hq

1) + q2|B|2hq−2
1 |∇h1|2

+
1

2
q2h

q−2
1 |B|2|∇h1|2 + 2 h

q
1|∇|B||2

≤ −q(h−1
1 ∇h1) · ∇(|B|2hq

1) +
3

2
q2h

q−2
1 |B|2|∇h1|2 + 2 h

q
1|∇|B||2. (4.8)
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Thus, (4.7) becomes

( d

dt
− ∆

)
(|B|2hq

1) ≤ [3(1 + ε) − (3 + q) cos(
√

2 ρ ◦ γ)]|B|4hq−1
1

+
(1

2
q + 1 − cos(

√
2 ρ ◦ γ)

2 sin2(
√

2 ρ ◦ γ)
h1

)
q h

q−2
1 |B|2|∇h1|2

− q(h−1
1 ∇h1) · ∇(|B|2hq

1). (4.9)

We now give the following result.

Theorem 4.2 Let M be a complete m-submanifold in R
m+n with bounded curvature. Sup-

pose that the image under the Gauss map from M into Gm,n lies in a geodesic ball of radius

R0 <
√

2
12 π. If Mt is a smooth solution of (3.1), then there is the following estimate

sup
Mt

|B|2hq
1 ≤ sup

M0

|B|2hq
1, (4.10)

where q is a fixed constant depending on R0.

Proof Let r0 = cos(
√

2 R0). Then r0 >
√

3
2 . It follows that

3

2r0
− r0

2(1 − r2
0)

< 0.

It is possible to choose ε > 0 satisfying

( 3

2r0
− r0

2(1 − r2
0)

)
ε +

3

2r0
− 1

2
− r0

2(1 + r0)
≤ 0. (4.11)

Set

q = 3
(1 + ε

r0
− 1

)
.

Then for r = cos(
√

2 ρ ◦ γ) ≥ r0,

3(1 + ε) − (3 + q)r = 3(1 + ε) − 3(1 + ε)
r

r0
≤ 0,

which implies that the first term of the right-hand side of (4.9) is non-positive. Note

1

2
q + 1 − r

2(1 − r2)
(1 + ε − r) =

3

2

(1 + ε

r0
− 1

)
+ 1 − r

2(1 − r2)
(1 + ε − r)

=
( 3

2r0
− r

2(1 − r2)

)
ε +

3

2r0
− 1

2
− r

2(1 + r)
, (4.12)

which is non-increasing in r. By (4.11), (4.12) is non-positive when r ≥ r0. It follows that under

the conditions of the theorem, (4.9) becomes

( d

dt
− ∆

)
(|B|2hq

1) ≤ −q(h−1
1 ∇h1) · ∇(|B|2hq

1). (4.13)

From (4.4), we have

|h−1
1 ∇h1| ≤

√
2 sin(

√
2 ρ ◦ γ)

1 + ε − cos(
√

2 ρ ◦ γ)
|B|.
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Let

f(θ) =
sin θ

1 + ε − cos θ
.

Since f ′′(θ)|f ′(θ)=0 ≤ 0, we have

f(θ) ≤ f(θ)|f ′(θ)=0 =

√
1 − 1

(1+ε)2

1 + ε − 1
1+ε

=

√
(1 + ε)2 − 1

(1 + ε)2 − 1
=

√
ε(ε + 2)

ε(ε + 2)
. (4.14)

It follows that

|h−1
1 ∇h1| ≤

√
2 ε(ε + 2)

ε(ε + 2)
|B|.

Thus, we can use Corollary 4.1 and the estimate (4.10) is obtained.

Corollary 4.2 Suppose that the image under the Gauss map from M into Gm,n lies in a

geodesic ball of radius R0 <
√

2
12 π. If Mt is a smooth solution of (3.1), then there is the following

estimate

sup
Mt

|B|2 ≤ c

t
, (4.15)

where c depends only on the bound of the Gauss image of its initial manifold.

Proof From (4.3),

( d

dt
− ∆

)
h

q
1 = qh

q−1
1

( d

dt
− ∆

)
h1 − q(q − 1)hq−2

1 |∇h1|2

≤ −2qh
q−1
1 cos(

√
2 ρ ◦ γ)|B|2 − q(q − 1)hq−2

1 |∇h1|2.

Noting (4.13), we have

( d

dt
− ∆

)
(t|B|2hq

1 + h
q
1) ≤ −q(h−1

1 ∇h1) · ∇(t|B|2hq
1) + |B|2hq

1

− 2qh
q−1
1 cos(

√
2 ρ ◦ γ)|B|2 − q2h

q−2
1 |∇h1|2 + qh

q−2
1 |∇h1|2. (4.16)

Since q(h−1
1 ∇h1) · ∇h

q
1 = q2h

q−2
1 |∇h1|2, (4.16) becomes

( d

dt
− ∆

)
(t|B|2hq

1 + h
q
1) ≤ −q(h−1

1 ∇h1) · ∇(t|B|2hq
1 + h

q
1) + |B|2hq

1

− 2qh
q−1
1 cos(

√
2ρ ◦ γ)|B|2 + qh

q−2
1 |∇h1|2.

Noting (4.4), the above inequality becomes

( d

dt
− ∆

)
(t|B|2hq

1 + h
q
1) ≤ −q(h−1

1 ∇h1) · ∇(t|B|2hq
1 + h

q
1)

+ |B|2hq−2
1 (h2

1 − 2qh1 cos(
√

2 ρ ◦ γ) + 2q sin2(
√

2 ρ ◦ γ)). (4.17)

Let

A(r) = (h2
1 − 2qh1 cos(

√
2 ρ ◦ γ) + 2q sin2(

√
2 ρ ◦ γ))

= (1 + ε − r)2 − 2q(1 + ε − r)r + 2q(1 − r2)

= (1 + ε − r)2 − 2q(r + εr − 1), (4.18)
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where r = cos(
√

2 ρ ◦ γ). Since A′(r) < 0 and q = 3
(

1+ε
r0

− 1
)
, for r ≥ r0 we have

A ≤ (1 + ε − r0)
2 − 2q(r0 + εr0 − 1) = (1 + ε − r0)

( 6

r0
− r0 − 5 − 5ε

)
.

We know that ε is chosen by (4.11). If necessary we choose ε larger such that A ≤ 0. Therefore,

from (4.17) we have

( d

dt
− ∆

)
(t|B|2hq

1 + h
q
1) ≤ −q(h−1

1 ∇h1) · ∇(t|B|2hq
1 + h

q
1)

and by Corollary 4.1 again we have the desired estimate.

5 Proof of the Main Theorem

We are now in a position to prove the following theorem.

Theorem 5.1 Let F : M → R
m+n be a complete m-submanifold which has bounded curva-

ture. Suppose that the image under the Gauss map from M into Gm,n lies in a geodesic ball

of radius R0 <
√

2
12 π. Then the mean curvature flow equations (3.1) have a long time smooth

solution.

Proof Let P0 ∈ Gm,n be a fixed point which is described by

P0 = ε1 ∧ · · · ∧ εm,

where ε1, · · · , εm are orthonormal vectors in R
m+n. Choose complementary orthonormal vec-

tors εm+1, · · · , εm+n, such that {ε1, · · · , εm, εm+1, · · · , εm+n} is an orhtonormal base in R
m+n.

Let p : R
m+n → R

m be the natural projection defined by

p(x1, · · · , xm; xm+1, · · · , xm+n) = (x1, · · · , xm),

which induces a map from M to R
m. It is a smooth map from a complete manifold to R

m.

For any point x ∈ M choose a local orhtonormal tangent frame field {e1, · · · , em} near x.

Let v = viei ∈ TM. Its projection

p∗v = 〈viei, εj〉εj = vi〈ei, εj〉εj .

Now, we consider the case of the image under the Gauss map γ containing in a geodesic

ball of radius R0 <
√

2
12 π and centered at P0. For any P ∈ γ(M),

w
def.
= 〈P, P0〉 = 〈e1 ∧ · · · ∧ em, ε1 ∧ · · · ∧ εm〉 = detW,

where W = (〈ei, εj〉). The Jordan angles between P and P0 are

θi = cos−1(λi),

where λ2
i are eigenvalues of the symmetric matrix WT W (see [20]). It is well known that

WT W = OT ΛO,

where O is an orthogonal matrix and

Λ =




λ2
1 0

. . .

0 λ2
r


 , r = min(m, n),
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where each 0 ≤ λ2
i < 1. We know that

w =
∏

cos θi.

On the other hand, the distance between P0 and P (see [22, pp. 188–194])

d(P0, P ) =
√∑

θ2
i ,

which is less than
√

2
12 π by the assumption. It follows that

w > w0 =
(

cos

√
2

12
π
)r

.

We now compare the length of any tangent vector v to M with its projection p∗v.

|p∗v|2 =

m∑

j=1

(vi〈ei, εj〉)2 = (WV )T WV,

where V = (v1, · · · , vm)T . Hence,

|p∗v|2 ≥ (λ′)2|v|2 > w2|v|2 > w2
0 |v|2, (5.1)

where λ′ = min
i
{λi}. The induced metric ds2 on M from R

m+n is complete, so is the homothetic

metric d̃s2 = w2
0 ds2. (5.1) implies

p : (M, d̃s2) → (Rm, canonical metric)

increases the distance. It follows that p is a covering map from a complete manifold into R
m,

and a deffeomorphism, since R
m is simply connected. Hence, the induced Riemannian metric

on M can be expressed as (Rm, ds2) with

ds2 = gij dxidxj .

Furthermore, the immersion F : M → R
m+n is realized by a graph (x, f(x)) with f : R

m → R
n

and

gij = δij +
∂fα

∂xi

∂fα

∂xj
.

It follows that any eigenvalue of (gij) is not less than 1.

At each point in M , its image m-plane P under the Gauss map is spanned by

fi = εi +
∂fα

∂xi
εα.

It follows that

|f1 ∧ · · · ∧ fm|2 = det
(
δij +

∑

α

∂fα

∂xi

∂fα

∂xj

)
,

√
g = |f1 ∧ · · · ∧ fm|.

The m-plane P is also spanned by

pi = g−
1

2m fi.

Furthermore,

|p1 ∧ · · · ∧ pm| = 1.
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We then have

〈P, P0〉 = det(〈εi, pj〉) =




g−
1

2m 0
. . .

0 g−
1

2m


 =

1√
g

> w0

and
√

g ≤ 1

w0
.

Thus, we prove that any eigenvalue of (gij) ≤ 1
w2

0

. Noting Theorem 4.1, we know that the

equation (3.1) is uniformly parabolic and has a unique smooth solution on some short time

interval. By the curvature estimate (see Theorems 4.1 and 4.2), we have uniform estimate on

|B|. Then we can proceed as in [10, Proposition 2.3]) to estimate all derivatives of B in terms

of their initial data

sup
Mt

|∇qB| ≤ C(m),

where C(m) only depends on q, m and sup
M0

|∇jB| for 0 ≤ j ≤ q. It follows that this solution can

be extended to all t > 0.

We assume 0 ∈ M and define coordinate functions

xi = 〈F, εi〉, yα = 〈F, εα〉.

Denote

X =

√√√√
m∑

i=1

(xi)2 , Y =

√√√√
m+n∑

α=m+1

(yα)2 .

It is easy to verify that

( d

dt
− ∆

)
yα = 0,

( d

dt
− ∆

)
Y 2 = −2

∑
|∇yα|2 ≤ 0.

Corollary 4.1 implies that if the height function of M0 is finite, then the height function of Mt

is also finite under the evolution.

If the height function is going to infinity, we can consider rescaled mean curvature flow as

done in [6]. Define

F̃ (t̃ ) =
1√

2t + 1
F (t),

where t̃ = log(2t + 1). Hence
∂

∂t̃
F̃ = H̃ − F̃ .

It is not hard to verify that the Gauss map γ̃ of the rescaled mean curvature flow is as same as

the original γ. Furthermore, the previous estimates (4.15) translate to

|Ã|2 ≤ (2t + 1)|A|2 ≤ C

which is dependent on the initial bound on M.

Choose an orthonormal frame field near p ∈ M along M in R
m+n, such that ei ∈ TM and

eα ∈ NM with ∇ej
ei|p = ∇ei

eα|p = 0. We have
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Lemma 5.1
( d

dt
− ∆

)
〈F, eα〉 = 2 〈H, eα〉 + Sαβ〈F, eβ〉 + Cαβ〈F, eβ〉

with anti-symmetric Cαβ in α and β, and

( d

dt
− ∆

) ∑

α

〈F, eα〉2 = 4 〈H, eα〉〈F, eα〉 − 2
∑

α

|∇〈F, eα〉|2 + 2 Sαβ〈F, eα〉〈F, eβ〉

≤ C
( ∑

α

〈F, eα〉2 + 1
)
− 2

∑

α

|∇〈F, eα〉|2. (5.2)

Proof Since at the point p

∇ei
Aeα(ei) = ∇ei

〈Bij , eα〉ej = ∇ei
(〈∇ej

ei, eα〉ej) = 〈∇ej
∇ei

ei, eα〉ej

= 〈∇ej
(∇ei

ei + Bii), eα〉ej = 〈Bej∇ei
ei

, eα〉 + 〈∇ej
H, eα〉ej = 〈∇ej

H, eα〉ej , (5.3)

we have

∆〈F, eα〉 = eiei〈F, eα〉 = −ei〈F, Aeα (ei)〉 = −〈ei, A
eα(ei)〉 − 〈F,∇ei

Aeα(ei)〉
= −〈H, eα〉 − 〈F,∇ei

Aeα(ei)〉 − 〈F, BeiAeα (ei)〉
= −〈H, eα〉 − 〈∇ei

H, eα〉〈F, ei〉 − 〈F, BeiAeα (ei)〉
= −〈H, eα〉 − 〈∇ei

H, eα〉〈F, ei〉 − 〈F, Bij〉〈Bij , eα〉
= −〈H, eα〉 − 〈∇ei

H, eα〉〈F, ei〉 − Sαβ〈F, eβ〉. (5.4)

On the other hand,
〈deα

dt
, ei

〉
= −

〈
eα,

dei

dt

〉
= −〈eα,∇ei

H〉, deα

dt
= −〈eα,∇ei

H〉ei + Cαβeβ

with anti-symmetric Cαβ in α, β. It follows that

d

dt
〈F, eα〉 = 〈H, eα〉 +

〈
F,

deα

dt

〉
= 〈H, eα〉 − 〈eα,∇ei

H〉〈F, ei〉 + Cαβ〈F, eβ〉. (5.5)

Furthermore, we have

d

dt

∑

α

〈F, eα〉2 = 2
∑

α

〈F, eα〉
d

dt
〈F, eα〉

= 2
∑

α

〈H, eα〉〈F, eα〉 − 2
∑

α

〈∇ei
H, eα〉〈F, ei〉〈F, eα〉 + 2Cαβ〈F, eβ〉〈F, eα〉

= 2
∑

α

〈H, eα〉〈F, eα〉 − 2
∑

α

〈∇ei
H, eα〉〈F, ei〉〈F, eα〉, (5.6)

and

∆〈F, eα〉2 = 2 |∇〈F, eα〉|2 + 2 〈F, eα〉∆〈F, eα〉
= 2 |∇〈F, eα〉|2 + 2 〈F, eα〉(−〈H, eα〉 − 〈∇ei

H, eα〉〈F, ei〉 − Sαβ〈F, eβ〉). (5.7)

Hence,
( d

dt
− ∆

)∑

α

〈F, eα〉2 = 4 〈H, eα〉〈F, eα〉 − 2
∑

α

|∇〈F, eα〉|2 + 2 Sαβ〈F, eα〉〈F, eβ〉. (5.8)

Noting the estimates of |H |2, |B|2 and Sαβ, we obtain the desired estimate.

Then, we can proceed in the same way as in [6] to derive
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Theorem 5.2 Let F : M → R
m+n be a complete m-submanifold with bounded curvature.

Suppose that the image under the Gauss map from M into Gm,n lies in a geodesic ball of radius

R0 <
√

2
12 π. If in addition assume that

∑

α

〈F, eα〉2 ≤ C′(1 + |F |2)1−δ

is valid on M for some constants C′ < ∞, δ > 0, then the solution M̃et of the rescaled equation

converges for t̃ → ∞ to a limiting submanifold M̃∞ satisfying the equation

F⊥ = H.
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