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Mean Curvature Flow with Convex Gauss Image**
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Abstract In this paper, the mean curvature flow of complete submanifolds in Euclidean
space with convex Gauss image and bounded curvature is studied. The confinable property
of the Gauss image under the mean curvature flow is proved, which in turn helps one to
obtain the curvature estimates. Then the author proves a long time existence result. The
asymptotic behavior of these solutions when ¢t — oo is also studied.
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1 Introduction

There are many works on the mean curvature flow of hypersurfaces in Riemannian manifolds
(see [6, 7, 9, 10] for example). The impressive features of mean curvature flow for codimension
one are as follows.

(1) If the initial hypersurface My C R™T! is uniformally convex, then the hypersurfaces
under the mean curvature contract smoothly to a single point in finite time and the shapes of
the hypersurfaces become spherical at the end of the contraction. If the ambient manifold is a
general Riemannian manifold, such a contraction is still working.

(2) If the initial hypersurface My C R™*! is an entire graph with linear growth, then there
is long time existence for the mean curvature flow and the shapes of the hypersurfaces become
flat.

We know that J. Moser [13] proved that an entire minimal graph in R™*! given by 2™ %! =
f(xt, -, 2™) with bounded gradient |Vf| < ¢ < oo has to be hyperplane. This is closely
related to the result of Ecker-Huisken [6], which reveals the second feature of the mean curva-
ture flow of hypersurfaces mentioned above. On the other hand, Moser’s result [13] has been
generalized to higher codimension in [5, 8], and in author’s joint work with J. Jost [11]. This
viewpoint is the underline motivation of the present work.

It is natural to study the mean curvature flow of higher codimension. In recent years some
interesting works have been done in [1-3, 15-19]. In the present paper, we show the second
feature in higher codimension. The terminology of linear growth in [6] can be interpreted as
the image under the Gauss map of the hypersurface lies in an open hemisphere. We investigate
the mean curvature flow of submanifolds with convex Gauss image naturally.

Due to the curved normal bundle, the evolution equation of the squared norm of the second
fundamental form (3.5) is more difficult to deal with than the hypersurface case.
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Consider the image of the Gauss map under the mean curvature flow. If the image under the
Gauss map of the initial submanifold lies in a geodesic ball Bg, of radius Ry in the Grassmanian
manifold, we can prove that the deforming submanifolds under the mean curvature flow still
lie in the same geodesic ball, provided Ry < gw. This is an adequate generalization of “linear
growth preserving property” in [6] for the codimension one case. This is Theorem 4.1 of this
paper. We call it the “confinable property”, with whose help we obtain the curvature estimates
(see Theorem 4.2).

By using Huisken’s monotonicity formula for the backward heat kernel, Ecker-Huisken de-
rived a maximum principle for parabolic equations on certain complete manifolds. Since the
Gauss image assumption and the curvature assumption, we see that the mean curvature flow
equations are uniformly parabolic. The resulting manifolds under the mean curvature flow have
Euclidean volume growth up to a constant. On those manifolds, the curvature and its covariant
derivatives have at most polynomial growth. Hence, Ecker-Huisken’s maximum principle is
applicable in our consideration. The confinable property of the Gauss image under the mean
curvature flow and curvature estimates are proved by this maximum principle.

Combining those properties, we are able to prove the following main theorem in this paper.

Theorem 1.1 Let F': M — R™T" be a complete m-submanifold which has bounded curva-
ture. Suppose that the image under the Gauss map from M into Gy, lies in a geodesic ball
of radius Ry < %7‘(. Then the evolution equations of mean curvature flow have a long time
smooth solution.

Remark 1.1 Here we need not assume the initial manifold is an entire graph, which is a
conclusion of the Gauss image assumption.

We also study the asymptotic behavior of these solutions when ¢ — co, namely we study the
rescaled mean curvature flow in Section 5. The corresponding results as in [6] can be obtained
similarly.

2 A Bochner Type Formula

Let FF: M — R™*™ be an m-submanifold in (m + n)-dimensional Euclidean space with
the second fundamental form B which can be viewed as a cross-section of the vector bundle
Hom(®2T M, NM) over M, where TM and NM denote the tangent bundle and the normal
bundle along M, respectively. A connection on Hom(®*T' M, NM) is induced from those of
TM and NM naturally. We investigate the higher codimension n > 2 situation in this paper.

For v € T'(NM), the shape operator AY : TM — TM satisfies

(Bxy,v) = (AY(X),Y).

The second fundamental form, curvature tensor of the submanifold, curvature tensor of
the normal bundle and that of the ambient manifold satisfy the Gauss equations, the Codazzi
equations and the Ricci equations.

Taking the trace of B gives the mean curvature vector H of M in R™T", a cross-section of
the normal bundle.

Choose a local orthonormal frame field {e;,en} along M with dual frame field {w;,wq},
such that e; are tangent vectors to M. The induced Riemannian metric of M is given by
ds?2, =Y w? and the induced structure equations of M are

3
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dw; = wij Nwj, Wij +wj; = 0,
dwij = wir AWij + Wia N\ Wayj,
1
Qij = dwij — Wik N Wgj = —§Rijklwk A wy.
By Cartan’s lemma, we have
Weai = hm;jwj.

To have the curvature estimates, we need the Bochner type formula for the squared norm of
the second fundamental form. It is done in [14] for minimal submanifolds in an arbitrary ambient
Riemannian manifold. Now, for any submanifold in Euclidean space, by same calculation as in
the paper [14] we have the following formula.

Proposition 2.1
(V?’B)xy = VxVyH + (Bxe,, H)Bye, — (Bxy, Be,e,) Be,e,
+ 2<BX€J' ) BYe,i>Beiej - <BY€N B6i6j>BX€j - <BX€§7 Be,iej>BYej7 (2']—)
where V2 stands for the trace Laplacian operator.

Denote
Bij - Be,iej - (veiej)N = haijeou

where {e,} is a local orthonormal frame field of the normal bundle near = € M. Let Sy, =
heaijhgij. Then |B|* = ZSaa

Noting

— (B, Bij)(Bij, Bri) = —hakihaijhpijhsm = — Z Sass

2 (B, Bjk><Bklv Bij> -2 <Bjka By){(Bi, Bij>
=92 Z(<A€[-1A5:)<,A€(XA€[-X> — 2<A5[1A€(17A6[1A6a>) - Z ||:A€(¥7A€[f]|2
s B

we then have

(V?B, B) = (ViV;H, Bij) + (Bix, H)(Bu, Bu) — Y _ |[A, A%]> = > 82,
a#B

The following expression follows immediately.

Proposition 2.2
A|B|?* = 2|VB|* + 2(ViV,;H, Bi;)+2(Bij, H)(Bi, Bjx) =2 Y _ |[A%, A%]|? 2}25 (2.2)
aFf
3 Evolution Equations

We now consider the MCF for a submanifold in R™*". Namely, consider a one-parameter
family Fy = F(-,t) of immersions Fy : M — R™T" with corresponding images M; = Fy(M)
such that

(3.1)
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are satisfied, where H(z,t) is the mean curvature vector of M; at F(z,t) in R™T". We also

have

dgij

— = —2(H, B;;), .2
20— (1, By) (32)

dag¥ o

j = 24 g3\ H, By), (3.3)
t

dg 2

— =-2|H 4
I =2y, (3.4)

where g = det(g;;). We now derive the evolution equation for the squared norm of the second
fundamental form.

Lemma 3.1 The second fundamental form satisfies

d
(E - A)|B|2 < —2|V|B|]? + 3|BJ* (3.5)

Remark 3.1 Compare (3.5) with the corresponding formula for the hypersurfaces, we see
that now the curvature estimates are more delicate.

Proof For fixed 2y and ty, choose a local orthonormal frame {e;} of M, near zg which is
normal at xy. By the immersion Fy,, we have {e;} on M, which is not orthonormal in general.
Then by F; we obtain {Fj.e;} which is denoted by {e;} for simplicity. We also choose a local
orthonormal frame field {e,} of the normal bundle of M; near xy. Then at (zo, to),

dhaij

- V% (Ve,ejea) = (VuVeejea) + (Ve,ej, Viea)

= <Ve,iVEjH, 6a> + <Bij,vH€a> = <Ve,i(V6jH + (VejH)T), 6a> + <Bij,vH€a>
= (Ve, Ve, Hoea) = haikhpjnHp + hpij(Viea, ep). (3.6)

Since in a non-orthonormal frame field g;; = (Fie;.Fie;) (except at ¢g) is not a unit matrix,
1B|* = ¢"*¢"" haij han-

We have, at (xq, 1),

d|B]Z  _ dg* dhai;
=28 i +2 5 3.7
dt dg reidlteks 2T gy ey (3.7)
From (3.6) we have
dhasj

1 haij = haij(Ve, Ve, H, ) — haijhairhsjeHp. (3.8)

Noting (3.3), we have

dgik

hm;jhakj =2 h(m'jhakj <H, Bz’k> =2 h(m'jhakjhging. (39)

dt
Substituting (3.8) and (3.9) into (3.7) gives

1d|BJ?
2 dt

= <ViVjH, Bij> + <Bij, H><Bik7 Bj > (3.10)
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From (2.2) and (3.10), we obtain the evolution equation for the squared norm of the second
fundamental form

1,d 2 2 = eg1|2 2
E(E—A)|B| = VB + Y [[Ac, 4] + S 52, (3.11)
a#p a,B
We know from [14] in general that
1
€n 6[; 2 2 < ( _ _) 4
S e A+ 32, < (2 L)
a#p a,p
When the codimension n > 2, the above estimate was refined (see [4, 12])
€ € 3
D lAce, ace]? 4+ 782, < SIBJ
a#p a,B
On the other hand, by the Schwartz inequality,

V|B| < |VB.
Therefore, the inequality (3.5) is obtained.

For any p € M, let {e1,--- ,em} be alocal orthonormal frame field near p. Define the Gauss
map 7y : p — y(p) which is obtained by parallel translation of T, M to the origin in the ambient
space R™*". The image of the Gauss map lies in a Grassmannian Gy, ,. It is a symmetric
space of compact type.

For any P € G, y, there are m vectors vy,--- , v, spanning P. Then we have Pliicker
coordinates vy A --- A vy, for P up to a constant. The Gauss map v can be described by
p—e1 A+ A ey Since

dles A~ Aep)=der A~ Aep +--+er A~ Ade,
=wqgrba Nes N~ Nep +---+er N~ Nepm—1 N\ Wam€a

= Waifai

and the canonical metric on G, ,, is defined by
ds? = Z w2,
i

where {eq; = €1 A - Aei—1 Aeqg Neix1 A+ Aey} is an orthonomal basis for TG, ., (see [22,
pp. 188-194]), it follows that
Y Wai = haijwj (3.12)

and the tension field of the Gauss map
T(’}/) = hmjjem; = hajjie(“' = hajjiel AN Nej—1 Neqg N €i+1 N Nem

=> et A Neia AV HAC1 A Aep, (3.13)
[

where we use the Codazzi equation. In [19], there is the following relation.

Proposition 3.1

)] (3.14)
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4 Main Estimates

We consider the mean curvature flow of a complete manifold. We will assume that integra-
tion by parts is permitted and all integrals are finite for the submanifolds and functions we will
consider in the sequel. We have the following maximum principle for parabolic equations on
complete manifolds.

Define the backward heat kernel p = p(x,t) by

|z

e — —— ) o>tz e R
Pt = it =0 e ( 4(t0—t)) 0=h

We have the following formula. It is derived for the mean curvature flow in Euclidean space.
By (3.4), the formula is unchanged in higher codimension.

Proposition 4.1 (See [10]) For a function f(x,t) on M, we have
d d FLt 2
< A= | (Sr—Af)pdpy, — ‘H = au, 41
dt/pr it /M(dtf f)p it /pr 5l (4.1)
where d g is the volume form of M.

Corollary 4.1 (See [6]) Suppose that the function f = f(x,t) satisfies the inequality

(3 s aw

for some vector field a with uniformly bounded norm on M X [0,t1] for some t; > 0. Then

sup f <sup f forallt € [0,t1].
M, Mo

Now, we consider the convex Gauss image situation which is preserved under the flow, as
shown in the following theorem.

Theorem 4.1 (Confinable Property) If the Gauss image of the initial submanifold M is
contained in a geodesic ball of the radius py < %w in Gy, then the Gauss images of all the
submanifolds under the mean curvature flow are also contained in the same geodesic ball.

Proof We consider a smooth bounded function on Gy,

h=14¢—cos(vV2p),

where p is the distance function from a point in G, ,,, € > 0 is a fixed constant. When p < \/Ti m,

h is convex. By the Hessian comparison theorem, we have
Hess(h) > 2 cos(v/2p) g, (4.2)
where g is the metric tensor on Gy, ,,. Hence, from (3.12) and (4.2) we have
Hess(h)(V.€i, v€i) > 2 cos(V2 p) | B)?.

The composition function h o v of h with the Gauss map 7 defines a function on M; =
F(M,t). Using Proposition 3.1, we have

€ (hom) =dn(ST) = dh(r().
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By the composition formula (see [21, p. 28]),
A(h o) = Hess(h)(y«€, yx€i) + dh(7(7)),

where {e;} is a local orthonormal frame field on M;.
It follows that

d
(& - A)h o < —2 cos(v2p o) |BI2. (4.3)
Thus, we can use Corollary 4.1 to get conclusion.

For simplicity h o is denoted by h; in the sequel. On the other hand,
[Vhi[? = [(Vh, 7ei) (VA veei)| < 2 sin*(V2p o) B, (4.4)

From (4.3) and (4.4), we have

d cos(v2p o)
Ay < —cos(V2 B2 - 25V E000) \gp, 2. 45
(37— &) < —cos(VBpon) 1B = SZ5mot s Vi (45)
For any ¢ > 0,
d /d _
(@—A)htf:qhg 1(E—A)h1—(J(q—1)hg *|Vhs |?
_ _ - V2por)
< —qh¥! 2 BP2—(g(q = AT qht S W2000) Y1y 2y
=—am COS(\/_pO’m | (q(q I Hahy 2sin2(\/§p07))| i (46)
From (3.5) and (4.6), we have
d 274y _ 2 d q afd _ 2 2 q
(55— 2)(BPRY) = B (5 — A)bi +hS (3 — A) B = 2V|B[* - Vi
< (~qeos(v2p o) + 3hy)| B*R!
_ V2pory) .
g = )ne2 4+ q=5W20°0) ya-1) pi2 g, 2
Jala = DRI g S |BP (T

—2hd|V|B||* - 2V|B|? - Vh{
= [3(1 +¢) — (3+q) cos(vV2poy)|nI B[

cos(v2p o) 2 pi2iop |2
—lglq— 1)+ q— =L b | RS2 B2 VA
[ala = )+ g S BV
—2hd|V|B|]> - 2V|BJ? - Vhi. (4.7)

By using the Young inequality, we have

=2V|B[* - Vh{ = ~(hy *Vh{) - V(IBP*h1) + |BI*hy *| VR[> = V|B* - Vi
< —q(hy'Vhy) - V(IBI*h) + ¢*| BIh{™*|Vha|?

1 _
+ SPH BRIV + 208V | B

3 -
< —q(h7'Vhy) - V(IBI*hY) + 5612/1? YBPIVM +20{|VIB|P. (4.8)
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Thus, (4.7) becomes

(% ~ A)(1BI*hE) < [3(1 +€) = (3+q) cos(v2poy)]| BI*A{

1 cos(v2p o) 2 2o 2
+{=¢g+1— ———+7+—"—h hi™%|B|*|Vh
(54 S (o] V) ah{ BRIV
— q(hy'Vha) - V(|B2hS). (4.9)

We now give the following result.

Theorem 4.2 Let M be a complete m-submanifold in R™T™ with bounded curvature. Sup-
pose that the image under the Gauss map from M into Gy, lies in a geodesic ball of radius
Ry < %W. If My is a smooth solution of (3.1), then there is the following estimate

sup | B|*h? < sup |B|*hY, (4.10)
M, Mo

where q is a fixed constant depending on Ry.

Proof Let ro = cos(v/2 Ry). Then ry > @ It follows that

3 0
— <.
2rg  2(1—1rd) <

It is possible to choose € > 0 satisfying

3 0 3 1 To
Ly} 411
(27"0 2(1— 70(2;))“r (4.11)

Set

Then for r = cos(\/ip o) > ro,

3(1+€)—(3+q)r:3(1+5)—3(1+5):—0SO,

which implies that the first term of the right-hand side of (4.9) is non-positive. Note

1 T 3/1+¢ r
Syl (14e— :-( —1) 1- "  (A4e-
it saTatre =51, tlogg e
3 r 3 1 r
S (L S PR R 412
(27“0 2(1 — r2))€+ 2rg 2 2(1+47)’ (412)

which is non-increasing in r. By (4.11), (4.12) is non-positive when r > . It follows that under
the conditions of the theorem, (4.9) becomes

(5 - A)UBIRD) < —ah Vi) - V(B (4.13)

From (4.4), we have
V2sin(v2p o)

hy'Vhy| <
o 1|71+€—cos(\/§po'y)

|BJ.
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Let

sin 6
)= ——M—.
1(0) 1+4+¢e—cost
Since f”(0)] ¢ (g)=0 < 0, we have
16) < 1) Vs Y/ 25 S WSV CE ) (4.14)
SIS0 T e T T M1 e(e+2) '
It follows that
_ 2¢(e+2)
hilVhy| < Y22 2B,
| 1 v 1|— E(€+2) | |

Thus, we can use Corollary 4.1 and the estimate (4.10) is obtained.

Corollary 4.2 Suppose that the image under the Gauss map from M into Gy, , lies in a

geodesic ball of radius Ry < 7r If My is a smooth solution of (3.1), then there is the following
estimate .
sup [B|? < -, (4.15)
M, t

t

where ¢ depends only on the bound of the Gauss image of its initial manifold.

Proof From (4.3),

i_ q_ pa—1( 2 _ _ q—2 2
(dt A)h = gh? (dt A)h1 (g — 1)hI 2| Vhy|
< —2ghi™ cos(V2poy)|BI* — q(q — 1)h*|Vhy |

Noting (4.13), we have

d _
(55 = A)@BER + 1) < —q(h7 Vi) - V(BIRRY) + | BA

~ 9t cos(VE po )| B — @hiZ Vi + qhd Vi [?. (4.16)
Since q(hy'Vhy) - VY = ¢>h97?|Vhy |2, (4.16) becomes

d
(55— 2) @B + 1) < —q(h7'Vhy) - V(EHB*AS +hf) + | BAS

—2gh™ " cos(V2p 0 )| B|? + qh? |V hy |2

Noting (4.4), the above inequality becomes

d _
(E - A) (t|B2hY + 1Y) < —q(h7 Vhy) - V(| B2hY + h?)
+ |BI?h972(h? — 2qhy cos(V2 p o) + 2¢gsin®>(V2pory)).  (4.17)
Let

A(r) = (hi — 2qhy cos(V2 poy) + 2gsin®(V2p o))
=(l+e-7)?-2¢1+e—r)r+2¢(1—17)
=1+e—7r)?—-2¢(r+er—1), (4.18)
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where 7 = cos(v/2p o). Since A'(r) <0 and ¢ = 3(1+O6 — 1), for r > oy we have

™

6
AS(1+£—r0)2—2q(r0+5r0—1)=(1+£—r0)(r——r0—5—55).
0

We know that ¢ is chosen by (4.11). If necessary we choose € larger such that A < 0. Therefore,
from (4.17) we have

d
(55 = ) UBER + 1) < —q(h7*Vha) - V(UBER + )

and by Corollary 4.1 again we have the desired estimate.

5 Proof of the Main Theorem
We are now in a position to prove the following theorem.

Theorem 5.1 Let F': M — R™T™ be a complete m-submanifold which has bounded curva-
ture. Suppose that the image under the Gauss map from M into G, lies in a geodesic ball

of radius Ry < %T(. Then the mean curvature flow equations (3.1) have a long time smooth

solution.
Proof Let Py € Gy, , be a fixed point which is described by
P0281A"'A€m,

where €1, -+ , &, are orthonormal vectors in R™*", Choose complementary orthonormal vec-
tOTS €mt1s*** 5 Eman, Such that {e1, -+ ,&m,Em+t1, "+ ,Emtn} 1S an orhtonormal base in R™*7.
Let p : R™*t™ — R™ be the natural projection defined by

p(xl’.-. ’xm;me”l"_' ’xm+n) = (1’17-.- 7xm)’

which induces a map from M to R™. It is a smooth map from a complete manifold to R™.
For any point @ € M choose a local orhtonormal tangent frame field {ey, - ,e,,} near z.
Let v = v;e; € T M. Its projection

P« = (viei, €5)e; = vi(ei, €5)€;.

Now, we consider the case of the image under the Gauss map v containing in a geodesic
ball of radius Ry < gﬂ' and centered at Py. For any P € (M),

wdif'<P,P0> =(e1 N ANem,e1 A= Nep) = det W,

where W = ({e;, ¢;)). The Jordan angles between P and Py are
0; = cos 1 (\),

where \? are eigenvalues of the symmetric matrix WTW (see [20]). It is well known that
WTW = 0" A0,

where O is an orthogonal matrix and

A:

. r=min(m,n),
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where each 0 < )\f < 1. We know that

w = Hcos@i.

On the other hand, the distance between Py and P (see [22, pp. 188-194])

d(Py, P)=1/> 0%,

which is less than %w by the assumption. It follows that

2 T
w > wy = (COSﬁ’ff) .

We now compare the length of any tangent vector v to M with its projection p.v.

pavl? =) (vileseg)? = (WV)TWV,
j=1
where V = (v!,--- ,0™)T. Hence,
Ipav? > (N)?]? > w?|of* > wilv]?, (5.1)

where \' = min{\;}. The induced metric ds? on M from R™*" is complete, so is the homothetic
(2

metric ds? = wg ds?. (5.1) implies
p: (M,ds®) — (R™, canonical metric)

increases the distance. It follows that p is a covering map from a complete manifold into R™,
and a deffeomorphism, since R is simply connected. Hence, the induced Riemannian metric
on M can be expressed as (R™,ds?) with

d82 = Gij dl‘zdl‘J

Furthermore, the immersion F': M — R™%" is realized by a graph (z, f(z)) with f : R™ — R"
and of° o
Jis it oxt OxJ
It follows that any eigenvalue of (g;;) is not less than 1.
At each point in M, its image m-plane P under the Gauss map is spanned by

afe
fz =& + %Eow
It follows that
af* of
P 2 — .. - —
o A fl? = det(8 + 2 ) Va1 A A Sl
The m-plane P is also spanned by
pi=g ™ f;

Furthermore,
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‘We then have

g o 0 )
(P, Py) = det({gi,p;)) = = — >
J 0 97% \/y
and .
< —.
Vi< o

.. Noting Theorem 4.1, we know that the

U}O

equation (3.1) is uniformly parabolic and has a unique smooth solution on some short time

Thus, we prove that any eigenvalue of (g;;) <

interval. By the curvature estimate (see Theorems 4.1 and 4.2), we have uniform estimate on
|B|. Then we can proceed as in [10, Proposition 2.3]) to estimate all derivatives of B in terms
of their initial data

sup [VIB| < C(m),

My

where C(m) only depends on ¢, m and sup |V’ B| for 0 < j < q. It follows that this solution can
Mo
be extended to all ¢ > 0.

We assume 0 € M and define coordinate functions

' = (F &), y*=(Feq).

Denote

It is easy to verify that

d d

——A)a:, (——A)Y2:—2 a2 <.

(dt =0 (@ 2 Iy <0

Corollary 4.1 implies that if the height function of M is finite, then the height function of M,
is also finite under the evolution.

If the height function is going to infinity, we can consider rescaled mean curvature flow as

done in [6]. Define
. 1

F(t) = ——F(t),
*) 2t+1 (®)
where ¢ = log(2t + 1). Hence
dF-H-F
ot

It is not hard to verify that the Gauss map 7 of the rescaled mean curvature flow is as same as
the original 4. Furthermore, the previous estimates (4.15) translate to

AP < (2t +1)]AP < C

which is dependent on the initial bound on M.
Choose an orthonormal frame field near p € M along M in R™*" such that e; € TM and
ea € NM with V¢, ei|, = V¢, ealp, = 0. We have
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Lemma 5.1

(% _ A) (Feq) =2 (H, eq) + Sap(F,e5) + Cop(F,e5)

with anti-symmetric Cop in o and 3, and

(% — A) SR ea)? = 4 (H,ea)(Frea) =2 3 [V(F, a) > +2 Sap(F, ea)(F, cg)

< C(Z(F, ea)? + 1) —2 3 [V(F ea). (5.2)

Proof Since at the point p

vSi Al (el) = vei <Bij7 60¢>ej = vei (<v€j €, €a>€j) = <v V i 60¢>6j
= <vej (veiei =+ Bﬂ)v €a>€j = <B6_7‘Vei€i ) €Of> < H ea>ej <v€j H, €a>€ja (5'3)
we have

A(F,eq) = eiei(F, ea) = —ei(F, A% (&) = —(es, A° (1)) — (F, Ve, A% (e1))

= —<H €a) = (F, Ve, A% (€:)) — (F, Be, aca(e)))
—(H,ea) = (Ve H,ea)(F, i) = (F, Be, aca(e)))
—(H,ea) = (Ve H, ea)(F, €i) — (F, Bij)(Bij, €a)
—(H,ea) = (Ve,H, eq)(F €i) — Sap(F ep). (5.4)

On the other hand,

(30,0 (o35 - 9, 52— (e 4o

dt dt dt
with anti-symmetric Cog in a, (. It follows that
d deq
{FLca) = (H.ea) + (B, ) = (Hyea) = (e, Ve, H)(F i) + Cap(Fiea).  (5.5)

Furthermore, we have
d d
dtZ<F o) _22 (F,ea) - (Fea)
= 22 (H,eq)(F,eq) — 22 Ve, H, eo)(F,ei)(Fyeq) +2Cas(F,e5)(F, eq)
_2ZHea W(F, eq) —22 e H e (Fre;)(Feq), (5.6)

and

A(F e0)? =2|V(F, ea)|* + 2 (F,eq)A(F, ey)
=2|V(F,ea)|* + 2(F, ea)(—(H, ea) = (Ve, H, ea)(F i) — Sap(F,eg)). (5.7

Hence,

(% - A) Z<F, €a>2 =4 <Ha ea><Fa eoz> -2 Z |V<Fa ea>|2 + 2S(IB<F7 €a><F’ eﬁ>' (58)

Noting the estimates of |H|?, | B|? and S,3, we obtain the desired estimate.

Then, we can proceed in the same way as in [6] to derive
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Theorem 5.2 Let F': M — R™T" be a complete m-submanifold with bounded curvature.
Suppose that the image under the Gauss map from M into G, ,, lies in a geodesic ball of radius
Ry < %T(. If in addition assume that

Z<Fa ea)? < C'(1 4 |F?)H°

[0}

is valid on M for some constants C' < 0o, > 0, then the solution M; of the rescaled equation
converges for t — oo to a limiting submanifold My satisfying the equation

Ft=H.
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