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Abstract The author, motivated by his results on Hermitian metric rigidity, conjectured
in [4] that a proper holomorphic mapping f : Ω → Ω′ from an irreducible bounded sym-
metric domain Ω of rank ≥ 2 into a bounded symmetric domain Ω′ is necessarily totally
geodesic provided that r′ := rank(Ω′) ≤ rank(Ω) := r. The Conjecture was resolved in
the affirmative by I.-H. Tsai [8]. When the hypothesis r′ ≤ r is removed, the structure of
proper holomorphic maps f : Ω → Ω′ is far from being understood, and the complexity
in studying such maps depends very much on the difference r′ − r, which is called the
rank defect. The only known nontrivial non-equidimensional structure theorems on proper
holomorphic maps are due to Z.-H. Tu [10], in which a rigidity theorem was proven for
certain pairs of classical domains of type I, which implies nonexistence theorems for other
pairs of such domains. For both results the rank defect is equal to 1, and a generaliza-
tion of the rigidity result to cases of higher rank defects along the line of arguments of
[10] has so far been inaccessible. In this article, the author produces nonexistence results
for infinite series of pairs of (Ω, Ω′) of irreducible bounded symmetric domains of type I
in which the rank defect is an arbitrarily prescribed positive integer. Such nonexistence
results are obtained by exploiting the geometry of characteristic symmetric subspaces as
introduced by N. Mok and I.-H Tsai [6] and more generally invariantly geodesic subspaces
as formalized in [8]. Our nonexistence results motivate the formulation of questions on
proper holomorphic maps in the non-equirank case.
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1 Introduction

E. Cartan introduced series of irreducible domains which are now known as classical domains.

They break down into four infinite series. On top of these series, it was later found that there are

two additional irreducible bounded symmetric domains pertaining to exceptional Lie groups.

Any bounded symmetric domain admits a canonical bounded realization given by the Harish-

Chandra embedding, and in the case of the classical domains the canonical bounded realizations

agree with those given by E. Cartan.

Bounded symmetric domains and their compact quotients and more generally quotients of

finite volume with respect to canonical metrics are objects of study with a vast literature. From
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the geometric perspective one central theme is the notion of rigidity. In this direction, Y.-T.

Siu [7] discovered the ∂∂-Bochner-Kodaira formula and applied it to study the strong rigidity of

compact quotients of irreducible bounded symmetric domains. For holomorphic mappings, by

the work of N. Mok [3] on Hermitian metric rigidity, it follows that a nonconstant holomorphic

mapping f : X → X ′ between quotients of irreducible bounded symmetric domains must be

totally geodesic, provided that the domain manifold X is of rank ≥ 2 and of finite volume. If

the domain manifold X is compact and the homomorphism f∗ : π1(X) → π1(X
′) is injective,

then the lifted holomorphic map F : Ω → Ω′ on uniformizing bounded symmetric domains

is a proper holomorphic map. Motivated in part by Hermitian metric rigidity, the author

formulated a conjecture in [4, Chapter 6, (5.3)] according to which any proper holomorphic

mapping f : Ω → Ω′ between bounded symmetric domains is necessarily totally geodesic

provided that Ω is irreducible and of rank ≥ 2, and rank(Ω′) ≤ rank(Ω). The Conjecture was

resolved in the affirmative by I.-H. Tsai [8].

In what follows, we restrict our attention to the case of proper holomorphic maps defined

on irreducible bounded symmetric domains Ω of rank ≥ 2. After the work of I.-H. Tsai [8] it

remains to understand proper holomorphic maps f : Ω → Ω′, where r := rank(Ω) < rank(Ω′)

:= r′. We will call this the non-equirank case, and the difference r′ − r will be called the rank

defect. In the non-equirank case, the only known rigidity result so far is that of Z.-H. Tu [10],

where he found examples of Cartan domains Ω, Ω′ of type I where any proper holomorphic map

f : Ω → Ω′ is necessarily totally geodesic. In this infinite series of examples, the rank defect is

always equal to 1. From such a rigidity result Tu deduced also some nonexistence results for

proper holomorphic maps f : Ω → Ω′ where Ω and Ω′ are again Cartan domains of type I, and

where the rank defect is also 1.

In this article, we examine further nonexistence results for proper holomorphic maps f :

Ω → Ω′, where to focus on the discussion we will restrict ourselves to Cartan domains of type

I. We will show in this context that there are nonexistence results generalizing those of Z.-H.

Tu [10] in which the rank defect is arbitrarily large. More precisely, given any positive integer

ℓ, we prove that there exist infinite series of pairs of Cartan domains (Ω, Ω′) of type I such that

2 ≤ rank(Ω) < rank(Ω′), and such that the rank defect is equal to ℓ, for which there exists no

proper holomorphic mapping f : Ω → Ω′. The main tool of our argument goes back to the

use of characteristic symmetric subspaces of N. Mok and I.-H. Tsai [6] and invariantly geodesic

subspaces as formulated in [8], and a study of meromorphic maps on moduli spaces of such

subspaces induced from f : Ω → Ω′. The complexity in the study of proper holomorphic maps

in the non-equirank cases increases with the rank defect, and our nonexistence result also serves

to motivate a search for rigidity results with arbitrarily large rank defects.

2 Background Notions and Results

2.1 Let (X0, g0) be an irreducible Hermitian symmetric space of the noncompact type and

(Xc, gc) be its dual Hermitian symmetric space of the compact type. Write X0 = G0/K,

Xc = Gc/K, where G0 resp. Gc is the identity component of the isometry group of (X0, g0)

resp. (Xc, gc), and K ⊂ G0 resp. K ⊂ Gc is an isotropy subgroup at any reference point

0 ∈ X0 resp. 0 ∈ Xc. By a minimal characteristic vector we mean a nonzero highest weight

vector of the isotropy representation of K on T0(X0) resp. T0(Xc). In [6], we introduced
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the notion of (Hermitian) characteristic symmetric subspaces of (X0, g0) resp. (Xc, gc). The

definition given in [6, (1.4)] was formulated in Lie-theoretic terms, in terms of subsets of a

maximal strongly orthogonal set of noncompact positive roots. We give here a more geometric

equivalent definition, as follows. Here and in what follows a (sub)manifold is understood to be

connected.

Let P ⊂ X0 be a maximal polydisk. In other words, writing r for the rank of (X0, g0), P is

biholomorphic to the r-dimensional polydisk ∆r, and (P, g0|P ) →֒ (X0, g0) is a totally geodesic

complex submanifold. Here and henceforth the term ‘polydisk’ includes the case of the disk.

When r ≥ 2, let k be an integer such that 1 ≤ k ≤ r − 1, and write P = Π′ × Π′′ for any

decomposition of P into a Cartesian product of polydisks Π′ and Π′′ such that dim(Π′) = k,

dim(Π′′) = r − k. We have (P, g0|P ) ∼= (Π′, g′) × (Π′′, g′′) as Kähler manifolds, where (Π′, g′)

is the k-fold product of a Poincaré disk (∆, ds2
∆) and (Π′′, g′′) is the (r − k)-fold product

of (∆, ds2
∆). For x ∈ P let Nx ⊂ Tx(X0) denote the complex vector subspace defined by

Nx := {ζ ∈ Tx(X0) : Rηηζζ = 0 for every η ∈ Tx(Π′)}. Then, by means of the Jacobi identity

and Lie triple systems it follows readily that Nx is tangent to a totally geodesic complex

submanifold Sx of X0. All the Sx are biholomorphic to one another, and we have a totally

geodesic holomorphic isometric embedding τ : (Π′, g′) × (S, h) → (X0, g0) for some Hermitian

symmetric space (S, h) such that for x ∈ P we have Sx = τ
(
{y′} × S

)
for some y′ ∈ Π′. This

gives the notion of characteristic symmetric subspaces of (X0, g0), as follows.

Definition 2.1 Let (X0, g0) be an irreducible Hermitian symmetric space of the noncompact

type and of rank r ≥ 2. Let P ⊂ X0, P ∼= ∆r, be an arbitrary maximal polydisk. Let k be an

integer such that 1 ≤ k ≤ r − 1, and P = Π′ × Π′′ be a decomposition of P into a Cartesian

product of polydisks Π′ and Π′′, where dim(Π′) = k, dim(Π′′) = r − k. By characteristic

symmetric subspaces we mean the totally geodesic complex submanifolds Sx ⊂ X0 constructed

as described above for any choice of P ⊂ X0, any choice of decomposition P = Π′ × Π′′ and

any choice of x ∈ P .

The definition of characteristic symmetric subspaces of an irreducible Hermitian symmetric

space (Xc, gc) is formally identical to the definition in the case of the noncompact type provided

that we replace maximal polydisks by maximal polyspheres. It turns out that every character-

istic symmetric subspace (in both the cases of the noncompact type and the compact type) is

irreducible, and all characteristic symmetric subspaces of the same rank are equivalent to each

other under automorphisms of (X0, g0) resp. (Xc, gc).

In the case of the compact type characteristic symmetric subspaces are examples of invari-

antly geodesic subspaces, a notion implicit in [6] and formally defined in [8]. (Here to conform

with proceeding terminology, we use the term “subspace” in place of “submanifold”.) We recall

its definition, as follows.

Definition 2.2 (cf. [8, §4, Definition 4.1]) Let (Xc, gc) be a Hermitian symmetric space

of the compact type. A complex submanifold M ⊂ Xc is said to be an invariantly geodesic

subspace if and only if M is totally geodesic in (Xc, ϕ
∗gc) for any biholomorphic automorphism

ϕ ∈ Aut(Xc).

For the case of a Hermitian symmetric space (X0, g0) of the noncompact type, the auto-

morphism group agrees with the group of holomorphic isometries with respect to the Bergman
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metric, and the analogue of Definition 2.2 does not apply. In this article, we extend the ter-

minology to apply to the case of the noncompact type by making use of the Borel embedding

X0 ⊂ Xc for a dual pair (X0, Xc) of Hermitian symmetric spaces of the compact and the

noncompact types, as follows.

Definition 2.3 Let (X0, g0) be a Hermitian symmetric space of the noncompact type,

(Xc, gc) be its dual Hermitian symmetric space of the compact type, and X0 ⊂ Xc be the Borel

embedding. A complex submanifold S ⊂ X0 is said to be an invariantly geodesic subspace if and

only if there is an invariantly geodesic subspace M ⊂ Xc such that M contains S as an open

subset.

We observe that (S, g0|S) is totally geodesic in (X0, g0). To see this consider the dual pair

(X0, g0) and (Xc, gc) of Hermitian symmetric spaces of the noncompact resp. compact type. Let

X0
∼= Ω ⋐ CN ⊂ Xc be the Harish-Chandra and Borel embeddings of X0, where X0 is identified

with the bounded symmetric domain Ω. For any s ∈ S, there exists ϕ ∈ Aut(X0) ⊂ Aut(Xc)

such that ϕ(s) = 0. Since by the hypothesis M ⊂ Xc is an invariantly geodesic subspace,

replacing M by ϕ(M) without loss of generality we may assume that 0 ∈ S ⊂ M and that

the arbitrary base point is the origin 0. M is in particular totally geodesic with respect to

gc. At 0 ∈ CN the Riemann-Christoffel symbols of both (Xc, gc) and (X0, g0) vanish due to

Riemannian symmetry, and the total geodesy of (M, gc|M ) in (Xc, gc) implies that the second

fundamental form of (S, g0|S) in (X0, g0) vanishes at 0 ∈ S. Since any point on S can be taken

to be the origin 0 it follows that (S, g0|S) is totally geodesic in (X0, g0), as observed. Beyond this

observation the terminology in Definition 2.3 may appear ad hoc as the notion of invariantly

geodesic subspaces for (Xc, gc) refers to canonical Kähler-Einstein metric on Xc. The use of the

same terminology for (X0, g0) is however justified by the following equivalent definition. Before

its formulation note that for the case of (Xc, gc) a complex submanifold M ⊂ Xc is invariantly

geodesic if and only if ϕ(M) ⊂ Xc is totally geodesic in (Xc, gc) for any ϕ ∈ Aut(Xc). We have

Definition 2.3′ Let (X0, g0) be a Hermitian symmetric space of the noncompact type,

(Xc, gc) be its dual Hermitian symmetric space of the compact type, and X0 ⊂ Xc be the Borel

embedding. Then, a complex submanifold S ⊂ X0 is an invariantly geodesic subspace if and

only if ϕ(S) ∩ X0 is totally geodesic in (X0, g0) whenever ϕ ∈ Aut(Xc) and ϕ(S) ∩ X0 6= ∅.

The equivalence between Definition 2.3′ and Definition 2.3 follows readily from the proof

of [8, Lemma (4.3)], which gives a characterization of invariantly geodesic subspaces in Lie-

theoretic terms. Since we do not really need this equivalence here, except for a justification of

the terminology in Definition 2.3, we omit the proof of the equivalence of the two definitions

and refer the reader to [8].

2.2 We collect some basic facts about characteristic symmetric subspaces and invariantly

geodesic subspaces of Hermitian symmetric spaces of the compact or the noncompact type rele-

vant to our discussion on proper holomorphic mappings between bounded symmetric domains.

For the convenience of the reader we give an indication of the proof where appropriate.

Lemma 2.1 Let X0 (resp. Xc) be an irreducible Hermitian symmetric space of the non-

compact type (resp. compact type). Then, a characteristic symmetric subspace of X0 (resp. Xc)

is an invariantly geodesic subspace in X0 (resp. Xc).
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Proof By Definition 2.3, it is sufficient to prove the lemma for the case of the compact

type. Lemma 2.1 is stated for the case of Xc in [8, §4, Examples 4.2(ii)]. Represent Xc as

a compatification of some CN by means of Harish-Chandra coordinates. A totally geodesic

complex submanifold M of (Xc, gc) passing through 0 ∈ CN is the compactification of a com-

plex vector subspace. Write Xc = Aut(Xc)/P where Aut(Xc) is the group of biholomorphic

automorphisms of Xc and P ⊂ Aut(Xc) is the parabolic subgroup. If ϕ ∈ Aut(Xc) is such that

ϕ(M)∩CN 6= ∅, then ϕ = Ta◦γ for some γ ∈ P and for a translation Ta, a ∈ CN ; Ta(z) = z+a.

In the case where M ⊂ Xc is invariantly geodesic, γ(M) ∩ CN is a complex vector subspace

for any γ ∈ P , so that ϕ(M) ∩ CN = Ta(γ(M)) ∩ CN is affine-linear. Conversely, [8, Lemma

4.4] shows that the affine-linearity of all ϕ(M) ∩ CN 6= ∅ implies that M ⊂ Xc is invariantly

geodesic. The former property for a characteristic symmetric subspace M ⊂ Xc resulted from

[6, Proposition 1.12].

Lemma 2.2 Let X0 (resp. Xc) be an irreducible Hermitian symmetric space of the non-

compact type (resp. compact type). Let
{
Sα

}
α∈A

be an arbitrary family of invariantly geodesic

subspaces in X0 (resp. Xc). Then, the intersection S :=
⋂

α∈A

Sα is an invariantly geodesic

subspace in X0 (resp. Xc).

Proof Obvious from Definitions 2.2 and 2.3 (or 2.3′).

Lemma 2.3 Let D(p, q) be a classical symmetric domain of type I represented by the set of

p-by-q matrices Z with complex coefficients such that I − Z
t
Z is positive definite. For positive

integers s ≤ p, t ≤ q, let τ : D(s, t) →֒ D(p, q) be the standard embedding. Then, any invariantly

geodesic subspace S is biholomorphically equivalent to D(s, t) for some choice of (s, t) and the

implicit holomorphic embedding µ : S →֒ D(p, q) is equivalent to τ up to automorphisms of

D(s, t) ∼= S and D(p, q).

Here by the standard embedding τ : D(s, t) → D(p, q) we mean the mapping defined by

τ(Z) = [ Z 0
0 0 ]. For an irreducible Hermitian symmetric space Xc of the compact type, the

minimal characteristic subvariety S0(Xc) ⊂ PT0(Xc) is the set of projectivizations of minimal

characteristic vectors (cf. [5, (2.1)] for the terminology). The latter are equivalently non-zero

vectors tangent to minimal rational curves. In other words, S0(Xc) is the variety of minimal

rational tangents at 0 ∈ Xc (cf. [1, §1]).

Proof of Lemma 2.3 The lemma follows from the classification of invariantly geodesic

subspaces of the Grassmannian as given in [8, Proposition 4.6], which results from a classification

of invariantly geodesic subspaces of the minimal characteristic subvariety S0

(
G(p, q)

)
= Pp−1×

Pq−1.

Lemma 2.4 Let Ω and Ω′ be irreducible bounded symmetric domains equipped with canon-

ical Kähler-Einstein metrics normalized such that minimal disks are of constant Gaussian cur-

vature −1. Suppose Ω is of rank ≥ 2. Let U ⊂ Ω be a nonempty open subset and f : U → Ω′ be

a holomorphic embedding such that up to a normalizing constant f is an isometry on minimal

characteristic vectors. Then, f : U → Ω′ is a totally geodesic isometric embedding.

Proof From the hypothesis it follows by the polarization argument of N. Mok [4, (3.2), Proof

of (i)⇒(ii)] that f is an isometry up to a global constant. Let (α, ζ) be a zero of holomorphic
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bisectional curvature at x ∈ U , i.e., Rααζζ = 0 for the curvature R of Ω with respect to

the canonical Kähler-Einstein metric. Since f is a holomorphic isometry up to a normalizing

constant we also have R′

ααζζ
= 0, where R′ is the curvature tensor of Ω′ with respect to the

canonical Kähler-Einstein metric, and α is identified with df(α), etc. By the Gauss Lemma

it follows that σ(α, ζ) = 0 for the second fundamental form σ of the holomorphic embedding

f : U → Ω′. By the polarization argument as in [3, Proof of Proposition 3.4], it follows that f

is totally geodesic. Since minimal disks are mapped biholomorphically onto minimal disks by

such a map f , by the choices of normalization on canonical Kähler-Einstein metrics it follows

that f is a bona fide isometry without any normalizing constant.

Next, we collect here preceding rigidity and nonexistence results on proper holomorphic

maps between bounded symmetric domains.

Theorem 2.1 (cf. [8, Main Theorem]) Let f : Ω → Ω′ be a proper holomorphic map

between two bounded symmetric domains such that Ω is irreducible and of rank ≥ 2, and such

that rank(Ω′) ≤ rank(Ω). Then, rank(Ω′)= rank(Ω), and f : Ω → Ω′ is a totally geodesic

embedding.

Theorem 2.2 (cf. [9, Theorem 1.1]) Let Ω be an irreducible bounded symmetric domain

of rank ≥ 2. Suppose Ω′ is a bounded symmetric domain, dim(Ω′) = dim(Ω). Then, any proper

holomorphic map f : Ω → Ω′ is a biholomorphism.

The result that any proper holomorphic self-map on an irreducible bounded symmetric

domain Ω of rank ≥ 2 is necessarily a biholomorphic automorphism was due to G. M. Henkin

and R. Novikov [2]. We note that [11] contains a survey on related results about proper

holomorphic maps between bounded symmetric domains.

The first of the series of classical domains of E. Cartan is given by

D(p, q) = {Z ∈ M(p, q, C) : I − Z
t
Z > 0}, p, q ≥ 1.

D(p, q) is of rank r = min(p, q). If p ≥ q ≥ 2, then r = q, and the characteristic symmetric

subspaces are up to automorphisms of D(p, q) given by D(p− k, q − k), 1 ≤ k ≤ q − 1. In what

follows, we are concerned exclusively with the study of proper holomorphic mappings between

Cartan domains of type I, although it is possible to generalize the nonexistence results to

certain other pairs of irreducible bounded symmetric domains. Concerning D(p, q) we have the

following result of Z.-H. Tu [10] which gives the only known nontrivial rigidity and nonexistence

results for proper holomorphic maps between bounded symmetric domains in the non-equirank

case.

Theorem 2.3 (cf. [10, Theorem 1.1, Corollary 1.2]) Let p ≥ 3. Then, any proper

holomorphic map f : D(p, p − 1) → D(p, p) is a totally geodesic embedding. As a consequence,

there does not exist any proper holomorphic mapping from D(p + 1, p − 1) into D(p, p).

We note that the rank defect is always equal to 1 in the result. The main purpose of the

current article is to give nonexistence results for arbitrarily large co-ranks, and to motivate the

formulation of questions on the subject at the end of the article. We will give a proof of the

nonexistence result in Theorem 2.3 without using the rigidity result for the case of p ≥ 4 by

resorting to the geometry of invariantly geodesic subspaces. This proof will then be generalized
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in a way that avoids establishing an analogous rigidity result for arbitrarily prescribed rank

defects, a problem hitherto unresolved which has remained technically difficult along the line

of approach of [10].

3 Nonexistence Results for Proper Holomorphic Maps

Between Bounded Symmetric Domains

3.1 The Main Theorem of this article, Theorem 3.1, will give a nonexistence result with

prescribed rank defects for proper holomorphic mappings between Cartan domains of type I.

To start with, we give a proof of the nonexistence result of Z.-H. Tu [10] (cf. Theorem 2.3) for

the case of p ≥ 4 which leads to an effective nonexistence result for the case where the rank

defect is equal to 2.

Proposition 3.1 (a) For p ≥ 3 there does not exist any proper holomorphic mapping from

D(p + 1, p − 1) into D(p, p) (cf. [10]).

(b) For p ≥ 7, there does not exist any proper holomorphic mapping from D(p + 2, p − 2)

into D(p, p).

Proof We first give a proof of (a) for p ≥ 4 by a method which does not rely on the rigidity

result of Z.-H. Tu for proper holomorphic mappings from D(p, p−1) to D(p, p). A modification

of the proof will yield (b).

Proof of (a) for p ≥ 4 We argue by contradiction. Let f = D(p+1, p−1) → D(p, p) be a

hypothetical proper holomorphic map. Let Π ⊂ D(p+1, p−1) be any characteristic symmetric

subspace of co-rank 1 (i.e., of rank p−2), Π ∼= D(p, p−2). By Proposition f |Π : Π → D(p, p) is

a proper holomorphic map whose image lies in some proper characteristic symmetric subspace

Π′ of D(p, p). Without loss of generality we may assume that Π′ ⊂ D(p, p) is of co-rank 1

(i.e., of rank p − 1). Thus, up to automorphisms of D(p, p − 2) resp. D(p, p), f
∣∣
Π

: Π → Π′ is

equivalent to a proper holomorphic map g : D(p, p − 2) → D(p − 1, p − 1). We identify Π with

D(p, p − 2) →֒ D(p + 1, p − 1). In what follows the superscript r in the notation of a vector

space U (r) indicates its dimension.

Identify now T0(D(m, n)) ∼= M(m, n; C) ∼= Cm⊗Cn in the usual way. In our case we identify

T0(D(p + 1, p − 1)) with E(p+1) ⊗ F (p−1), where E(p+1) ∼= Cp+1, etc. Then T0(D(p, p − 2)) =

V (p) ⊗ W (p−2), where V (p) ⊂ E(p+1), W (p−2) ⊂ F (p−1). Let S(p−1) ⊂ V (p) be a general

(p − 1)-dimensional vector subspace. In other words, the point [S(p−1)] in the Grassmannian

Gr(p−1, V (p)) of (p−1)-dimensional vector subspaces is a general point in the sense of Algebraic

Geometry, i.e., it lies outside some proper complex-analytic subvariety of Gr(p− 1, V (p)). This

notion of a general point in a moduli space will be used in the sequel without further explanation.

Consider the totally geodesic Hermitian symmetric subspace Ξ ⊂ Π, Ξ ∼= D(p − 1, p − 2), such

that T0(Ξ) is canonically identified with S(p−1)⊗W (p−2). (Note that Ξ ⊂ Π ∼= D(p, p−2) is not a

characteristic symmetric subspace). For any p-dimensional vector subspace Ṽ (p) ⊃ S(p−1), and

for the characteristic symmetric subspace Π̃ ⊂ D(p+1, p−1) such that T0(Π̃) = Ṽ (p)⊗W (p−2),

we have the proper holomorphic map f |eΠ : Π̃ → D(p, p) such that f(Π̃) is contained in a proper

characteristic symmetric subspace Π̃′ ⊂ D(p, p). We may write Π̃ = Π̃(Ṽ (p)), Π̃′ = Π̃′(Ṽ (p));

and we have

f(Ξ) = f({∩Π̃(Ṽ (p)) : Ṽ (p) ⊃ S(p−1)})
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= ∩{f(Π̃(Ṽ (p))) : Ṽ (p) ⊃ S(p−1)} ⊂ ∩{Π̃′(Ṽ (p)) : Ṽ (p) ⊃ S(p−1)}.

Each Π̃′(Ṽ (p)) is a characteristic symmetric subspace of D(p, p), in particular, an invariantly

geodesic subspace of D(p, p), by Lemma 2.1. By Lemma 2.2, their intersection Φ0 ⊂ D(p, p) is

again an invariantly geodesic subspace. By Lemma 2.3, we have f(Ξ) ⊂ Φ0 ⊂ D(p, p), where

Φ0 is up to automorphisms of D(p, p) the standard D(s, t) →֒ D(p, p). Thus, we have one of

the two alternatives. Either we may take

(α) Π̃′(Ṽ (p)) = Π̃′(V (p)) = D(p − 1, p− 1) ⊂ D(p, p) for each Ṽ (p) ⊃ S(p−1); or

(β) Φ0 ⊂ Φ ( D(p−1, p−1), and Φ is up to left and right multiplication by unitary matrices

equivalent to D(p − 1, p − 2) or D(p − 2, p− 1).

For Alternative (α) consider the totally geodesic Hermitian symmetric subspace Ψ ⊂ D(p+

1, p− 1) such that T0(Ψ) = E(p+1) ⊗ W (p−2). Note that any two distinct p-dimensional vector

subspaces in E(p+1) intersect along a (p − 1)-dimensional vector subspace of E(p+1). Since by

assumption S(p−1) ⊂ V (p) is a general (p − 1)-dimensional linear subspace, Alternative (α)

implies that f(Π̂) ⊂ Π′ for a general characteristic symmetric subspace Π̂ ⊂ D(p + 1, p − 1) of

co-rank 1 such that 0 ∈ Π and T0(Π̂) = V̂ (p) ⊗W (p−2), V̂ (p) ⊂ E(p+1). By continuity it follows

that f(Π̂) ⊂ Π′ for every such characteristic symmetric subspace Π̂. Since the union of such Π̂

exhausts Ψ, we deduce that f(Ψ) ⊂ Π̃′(V (p)) = Π′ = D(p − 1, p − 1). But

dim(Ψ) = (p + 1)(p − 2) = p2 − p − 2; dim(Π′) = (p − 1)2 = p2 − 2p + 1;

dim(Ψ) > dim(Π′) ⇔ p2 − p − 2 > p2 − 2p + 1 ⇔ p > 3.

Thus for p ≥ 4, dim(Ψ) > dim(Π′), and there does not exist any proper holomorphic mapping

from Ψ into Π. To prove (a) it remains to get a contradiction to the hypothetical existence of a

proper holomorphic map f : D(p + 1, p− 1) → D(p, p) in Alternative (β). In this case, we have

a proper holomorphic map f |Ξ : Ξ → Φ ⊂ D(p, p) which is equivalent to a proper holomorphic

map h : D(p − 1, p − 2) → D(p − 1, p − 2). By [2] any such holomorphic map must be a

biholomorphism. For p ≥ 4, if Alternative (α) occurs for some choice of Π ⊂ D(p + 1, p − 1),

Π ∼= D(p, p−2), we already have a contradiction. We may therefore assume that Alternative (β)

holds true for any choice of characteristic symmetric subspace Π ⊂ D(p + 1, p− 1) of co-rank 1

passing through 0. It follows that for any (p−2)-dimensional vector subspace W (p−2) ⊂ F (p−1)

and any general (p−1)-dimensional vector subspace S(p−1) ⊂ E(p+1), taking Ξ ∼= D(p−1, p−2)

to be such that T0(Ξ) = S(p−1) ⊗ W (p−2), f |Ξ : Ξ → Φ ⊂ D(p, p) must necessarily be a totally

geodesic embedding. By continuity it remains the case that f |Ξ : Ξ → D(p, p) is a totally

geodesic embedding without assuming that S(p−1) ⊂ E(p+1) is a general (p − 1)-dimensional

vector subspace. Let now η ∈ T0(D(p+1, p− 1)) be an arbitrary minimal characteristic vector.

Choosing Ξ ∼= D(p−1, p−2) as in the above such that η ∈ T0(Ξ) we have a fortiori ‖df(η)‖ = ‖η‖

with respect to norms of canonical Kähler-Einstein metrics on the bounded symmetric domains

D(k, ℓ), where we fix the normalizing constants by agreeing that minimal disks are of constant

Gaussian curvature −1. Since any point x ∈ D(p + 1, p − 1) can be transformed to 0 by an

automorphism, it follows that f : D(p + 1, p − 1) → D(p, p) is a holomorphic isometry on

minimal characteristic vectors. By Lemma 2.4, f is a totally geodesic holomorphic embedding,

which is absurd.

Proof of (b) We now adapt the proof of (a) for p ≥ 4 to give a proof of (b). Considering

now a hypothetical proper holomorphic map f : D(p + 2, p − 2) → D(p, p) (in place of f :
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D(p + 1, p − 1) → D(p, p)) and using exactly the same set-up as in (a) together with obvious

interpretations of the notations we arrive at the following alternatives. Either we may take

(α) Π̃′(Ṽ (p+1)) = Π̃′(V (p+1)) = D(p − 1, p− 1) ⊂ D(p, p) for each Ṽ (p+1) ⊃ S(p); or

(β) Φ0 ⊂ Φ ( D(p−1, p−1), and Φ is up to left and right multiplication by unitary matrices

equivalent to D(p − 1, p − 2) or D(p − 2, p− 1).

For Alternative (α) consider the totally geodesic Hermitian symmetric subspace Ψ ⊂ D(p+

2, p− 2) such that T0(Ψ) = E(p+2) ⊗W (p−3). Then f(Ψ) ⊂ Π̃′(V (p+1)) = Π′ = D(p− 1, p− 1).

But
dim(Ψ) = (p + 2)(p − 3) = p2 − p − 6; dim(Π′) = (p − 1)2 = p2 − 2p + 1;

dim(Ψ) ≥ dim(Π′) ⇔ p2 − p − 6 ≥ p2 − 2p + 1 ⇔ p ≥ 7.

For p ≥ 8, dim(Ψ) > dim(Π′) and there cannot be any proper holomorphic map f
∣∣
Ψ

: Ψ → Π′.

For p = 7, f
∣∣
Ψ

is equivalent to a proper holomorphic map h : D(9, 4) → D(6, 6) in which the

domain and target spaces are equidimensional and biholomorphically distinct. By [9], such a

proper holomorphic mapping does not exist.

Thus for (b) we are reduced to Alternative (β) where we have obtained, in analogy to (a),

proper holomorphic mappings f
∣∣
Ξ

: Ξ → Φ0 ( D(p − 1, p − 1) ⊂ D(p, p), where T0(Ξ) =

S(p) ⊗W (p−3), thus Ξ ∼= D(p, p− 3), and Φ0 ⊂ Φ ∼= D(p− 1, p− 2). We have thus equivalently

a proper holomorphic mapping h : D(p, p − 3) → D(p − 1, p − 2). Here

dim(D(p, p − 3)) = p(p − 3) = p2 − 3p < p2 − 3p + 2 = (p − 1)(p − 2) = dim(D(p − 1, p − 2));

rank(D(p, p − 3)) = p − 3 < p − 2 = rank(D(p − 1, p − 2));

and it is not clear that such a proper holomorphic map cannot exist. To reach a contradiction

we have to repeat the reduction argument in (a) again. Starting with a proper holomorphic

map h : D(p, p − 3) → D(p − 1, p − 2) and repeating the arguments of (a) in order to rule out

the analogue of (α) we have to show that there does not exist any proper holomorphic mapping

from D(p, p − 4) into D(p − 2, p − 3). For this it suffices to verify that dim(D(p, p − 4)) >

dim(D(p − 2, p− 3)) i.e., p2 − 4p > p2 − 5p + 6, which holds true if and only if p > 6, while we

assumed p ≥ 7. We have then reduced the problem to ruling out the analogue of (β) where we

obtain a proper holomorphic mapping h′ from D(p−2, p−4) into a proper invariantly geodesic

subspace of D(p − 2, p − 3). Without loss of generality we may assume the target space to be

either D(p − 2, p − 4) or D(p − 3, p − 3). In the case of h′ : D(p − 2, p − 4) → D(p − 2, p − 4)

the argument in (a) using [2] and Lemma 2.4 applies to derive a contradiction to the existence

of h : D(p, p − 3) → D(p − 1, p − 2), where for the argument we take all possible h′ (and not

just a single map) obtained from h by restriction in analogy to the argument in (a). In the

case of h : D(p − 2, p − 4) → D(p − 3, p − 3) we are back to (a) of Proposition 3.1, where

h : D(q + 1, q − 1) → D(q, q) with q = p − 3 ≥ 4. By (a) such a proper holomorphic map h

cannot exist. The proof of Proposition 3.1 is completed.

Remark 3.1 In the proof of Proposition 3.1, we have used implicitly the fact that maps

between moduli spaces of invariantly geodesic subspaces (including the special case of charac-

teristic symmetric subspaces) induced from the proper holomorphic map f : Ω → Ω′ under

consideration are meromorphic (cf. [6, Proof of Proposition 2.3] for a proof in a similar situa-

tion).
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3.2 In relation to the study of proper holomorphic maps f : Ω → Ω′ between irreducible

bounded symmetric domains, especially in the case of Type-I domains of E. Cartan, in principle

the difficulty increases with the co-rank of the pair (Ω, Ω′), i.e. rank(Ω′)−rank(Ω), noting that

by I.-H. Tsai [8] no such maps f : Ω → Ω′ can exist when rank(Ω′) < rank(Ω), and that f must

be a totally geodesic embedding in the equal rank case. Z.-H. Tu [9, 10] obtained both rigidity

and nonexistence results in some cases of co-rank 1. Proposition 3.1 extends nonexistence results

in some cases of co-rank 2. The proof of Proposition 3.1 can be adapted to yield nonexistence

results for examples of pairs (Ω, Ω′) of arbitrarily large co-ranks. The structure of the proof in

the case of co-rank 2 also suggests that we should introduce a schematic reduction argument in

a more general context. We state our result in a qualitative way, as follows.

Theorem 3.1 Let k, ℓ be integers, k ≥ 0, ℓ > 0. Then, there exists a positive integer

N(k, ℓ) such that for any integer p ≥ N(k, ℓ), there does not exist any proper holomorphic map

f : D(p + k + ℓ, p− ℓ) → D(p + k, p).

Proof Assume that f exists. Imitating the reduction argument in the proof of Proposition

3.1 in the case (a), where k = 0, ℓ = 1, and p ≥ 4; we derive two alternatives. Either

(α) there exists a proper holomorphic map g : D(p + k + ℓ, p− ℓ− 1) → D(p + k − 1, p− 1);

or

(β) there exists a proper holomorphic map h : D(p+k+ℓ−2, p−ℓ−1) → D(p+k−2, p−1)

or D(p + k − 1, p − 2).

Alternative (α) does not occur provided that dim(D(p + k + ℓ, p− ℓ− 1)) > dim(D(p + k −

1, p− 1)). In other words, we require

(p + k + ℓ)(p − ℓ − 1) > (p + k − 1)(p − 1),

i.e.

p2 + (k − 1)p − (k + ℓ)(ℓ + 1) > p2 + (k − 2)p + 1 − k,

i.e.

p > (k + ℓ)(ℓ + 1) + 1 − k = ℓ2 + (k + 1)ℓ + 1.

We are left with Alternative (β). To prove the Main Theorem we have to do a reduction

argument on the pair of indices (k, ℓ) with k ≥ 0, ℓ > 0. If k > 0, in Alternative (β) we have

either

h : D(q + (k − 1) + ℓ, q − ℓ) → D(q + (k − 1), q), q = p − 1;

or

h : D(q + (k + 1) + (ℓ − 1), q − (ℓ − 1)) → D(q + (k + 1), q), q = p − 2.

For k ≥ 0, ℓ > 0, p ≥ ℓ + 2 we denote by Φ(k, ℓ; p) the statement that there does not exist any

proper holomorphic map f : D(p + k + ℓ, p − ℓ) → D(p + k, p). At the same time Φ(k, 0; p),

p ≥ 2, is the statement that any proper holomorphic map f : D(p + k, p) → D(p + k, p) is

a biholomorphism. Thus Φ(k, 0; p), p ≥ 2, always holds true by [2]. Given (k, ℓ; p), k, ℓ ≥ 0,

p > ℓ + 2, we need to show that there exists N(k, ℓ) such that Φ(k, ℓ; p) holds true whenever

p ≥ N(k, ℓ). For ℓ = 0 we just take N(k, 0) = 2. Our argument so far says for k, ℓ > 0, p ≥ 4,

(⋆) If p > ℓ2 + (k + 1)ℓ + 1, then Φ(k, ℓ; p) holds true whenever both Φ(k − 1, ℓ; p− 1) and

Φ(k + 1, ℓ − 1; p − 2) hold true.
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In the case k = 0, ℓ > 0, p ≥ 4, there is a modification. Alternative (β) for k = 0 corresponds

to having a proper holomorphic map

h : D(p + ℓ − 2, p − ℓ − 1) → D(p − 1, p− 2);

i.e.

h : D(q + (k + 1) + (ℓ − 1), q − (ℓ − 1)) → D(q + 1, q), q = p − 2.

We have thus

(⋆)0 If p > ℓ2 + ℓ + 1, then Φ(0, ℓ; p) holds true whenever Φ(1, ℓ − 1; p − 2) holds true.

Given k ≥ 0, ℓ > 0, the validity of Φ(k, ℓ; p) will follow for p sufficiently large, if in the

reduction process as given either by (⋆) or (⋆)0 we eventually reach (k, 0). In (⋆) we move from

(k, ℓ) to either (k−1, ℓ) or (k +1, ℓ−1). We call these moves of the first resp. second kind. We

want to show that (k, ℓ) is always moved to (k′, 0), in a number of moves whose cardinality is

bounded in terms of (k, ℓ). Observe that in each move ℓ is either fixed or reduced by 1. Note,

by (⋆)0, that (0, ℓ) is always moved to (1, ℓ − 1). Starting with (k, ℓ) in at most k + 1 steps ℓ

is forced to be reduced by 1. Since the sum of the two indices is either fixed or reduced by 1

in each move, it follows readily that for some integer θ(k, ℓ), depending on (k, ℓ), (k, ℓ) must

be moved to some (k′, 0) in at most θ(k, ℓ) moves. Actually we may take θ(k, ℓ) = k + 2ℓ. In

fact, there are ℓ moves of the second kind, which reduce the second index. In each of these

ℓ moves the first index is increased by 1, and there are precisely k + ℓ − k′ moves of the first

kind so that the first index finally becomes k′, as a consequence of which there are altogether

ℓ + (k + ℓ − k′) ≤ k + 2ℓ moves involved.

Given (k, ℓ) we choose p large enough so that Φ(k, ℓ; p) can be reduced in at most k + 2ℓ

steps to a statement Φ(k′, 0; r) with r ≥ 2. For this purpose it suffices to choose p sufficiently

large so that

( i ) in each step the dimension requirement ruling out Alternative (α) is satisfied, allowing

us to reduce to Alternative (β);

(ii) p ≥ 2(k + 2ℓ) + 2 = 2k + 4ℓ + 2 so that after k + 2ℓ steps Φ(k, ℓ; p) is reduced to a

statement Φ(k′, 0; r) with r ≥ 2. Here p ≥ 2k + 4ℓ + 2 suffices since the index p in Alternative

(β) is in each step either reduced by 1 or 2.

It is clear that there exists some integer N(k, ℓ) such that (i) and (ii) are satisfied whenever

p ≥ N(k, ℓ). The proof of the Main Theorem is completed.

Remark 3.2 Clearly Theorem 3.1 can be made effective as N(k, ℓ) can be estimated. For

instance, for k = 0 we can take N(0, ℓ) to be O(ℓ2). We will refrain from getting an optimal

estimate on N(k, ℓ) from the method of the article, as the primary purpose of the Main Theorem

is to produce examples of nonexistence results on proper holomorphic maps in which the rank

defects are arbitrary prescribed positive integers.

3.3 The nonexistence result Theorem 3.1 of the current article gives examples of pairs of

irreducible bounded symmetric domains of an arbitrarily prescribed co-rank between which

there does not exist any proper holomorphic maps. It serves as a motivation for formulating

the following questions regarding proper holomorphic mappings between bounded symmetric

domains.
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Question 3.1 Let Ω and Ω′ be bounded symmetric domains such that Ω is irreducible and

of rank ≥ 2. Suppose there exists a proper holomorphic map f : Ω → Ω′. Does there always

exist a totally geodesic holomorphic embedding h : Ω → Ω′?

Question 3.2 Suppose there exists a proper holomorphic mapping f : Ω → Ω′ which is

not totally geodesic. Is Ω necessarily biholomorphically equivalent to a characteristic symmetric

subspace of Ω′?

Both Questions 3.1 and 3.2 for type I domains Ω = D(p, q) of E. Cartan, Ω′ = D(p′, q′) are

already very interesting. The nonexistence result in Theorem 3.1 on series of pairs Ω = D(p, q),

Ω′ = D(p′, q′) is in agreement with a positive answer to Question 3.1, but at this point there is

not enough evidence why one should expect the answers to Questions 3.1 and 3.2 to be positive

even for type I domains. At the same time, if there are counter-examples to either Question

3.1 or Question 3.2, especially the latter, it appears that type I domains of E. Cartan are the

most plausible places to look for them.
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