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1 Introduction

Let rt(x) = r(x, t) be a C∞ function, defined in a neighborhood of the point (x0, 0) in

R
n × R

k, taking values in R
n with r(x, 0) = x. The map x 7→ rt(x) is a family of local

diffeomorphisms of R
n, depending smoothly on the parameter t ∈ R

k. The differential ∂r
∂t has

rank k when t = 0. We also assume that ψ is a suitable C∞ cut-off function supported near x0

and a is a small positive constant. The singular Radon transform under consideration in this

paper is of the form

T (f)(x) = ψ(x)

∫

|t|≤a

f(r(x, t))K(t)dt, (1.1)

where K(t) is a homogeneous kernel on R
k, so that K(st) = s−kK(t) for s > 0 and t ∈ R

n and

satisfies ∫

|t|=1

K(t)dσ(t) = 0.

T (f)(x) may be viewed as averaging f in the t variable over surface r(x, t) with respect to

the singular integral kernel K(t). They arise naturally in many different areas of analysis and

geometry (see [2, 4]).

In the study of singular Radon transform, a curvature condition has been developed for

proving boundedness of these operators. It was proved in [2] that there exists a unique collection

of vector fields Xα defined in some neighborhood of x0 with (α1 · · ·αk) 6= 0, such that

r(x, t) ∼ exp
(∑

α

tα

α!
Xα

)
(x), as t→ 0. (1.2)
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The curvature condition of [2] at a point x0 ∈ R
n can be stated as follows.

Curvature Condition r satisfies curvature condition (C) at x0, if there exists m > 0 such

that

r(x, t) = exp
( ∑

0<|α|≤m

tα

α!
Xα

)
+R(x, t),

where R(x, t) = O(|t|m+1), and the vector fields {Xα : |α| ≤ m} together with all their iterated

commutators of degree ≤ m span the tangent space to R
n at x0.

Let K0(t) be the restriction of K(t) to the annulas A0 = {t ∈ Rk : a
2 ≤ |t| ≤ a}. If

K0(t) ∈ C1(A0), the Lp boundedness of T in (1.1) was shown by Christ, Nagel, Stein and

Wainger [2] when the curvature condition (C) holds. In this note, we study singular Radon

transforms with rough kernels. We improve the main results in [2] by proving Lp-boundedness

of T in (1.1) under some weaker assumptions on the regularity of the kernel. Our results are

as follows.

Theorem 1.1 Suppose that r(x, t) satisfies the curvature condition (C) at x0 and K0 is in

the Orlics space Llog L(A0). Then the operator T in (1.1) is bounded on L2(Rn).

Theorem 1.2 Suppose that r(x, t) satisfies the curvature condition (C) at x0 and K0 ∈

Lq(A0) for some 1 < q <∞. Then the operator T in (1.1) is bounded from Lp(Rn) to itself for

every 1 < p <∞.

2 Proof of Main Results

Inspired by the arguments presented in [2, 5], we reduce the study of the singular Radon

transform T defined by (1.1) to one on nilpotent Lie group by a lifting technique, where proving

Lp-boundedness is less complicated. One of the consequences of this lifting is that we have

local dilations, which allow us to re-scale crucial estimates on the annulas A0 (see [2]). Let

X̃α denote corresponding lifted vector fields defined in an open subset of the extended space

R
d = R

n × R
d−n. When t is small, we define r̃ by

r̃(x, z, t) = exp
( ∑

0<|α|≤|m|

X̃α

α!
tα

)
(x, z) + (R(x, t), 0),

where R(x, t) = O(|t|m+1).

Denote by π : R
n × R

d−n 7→ R
n the projection π(x, z) = x. Then we have π(r̃(x, z, t)) =

r(x, t) and let ψ(x, z) be a cut-off function in R
d. We define

T̃ (F )(x, z) = ψ(x, z)

∫

|t|≤a

F (r̃t(x, z))K(t)dt.

By the argument used in [2], the Lp-boundedness of T̃ implies the corresponding results for

T . Therefore it suffices to prove Theorems 1.1 and 1.2 in the extended spaces. For simplification

we still write Xα instead of X̃α, r̃ = r and d = n.
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Let g be the relatively free nilpotent Lie algebra that consists of the vector fields {Xα} and

their commutators of degree ≤ m. There is a unique simply connected Lie group G, whose

Lie algebra is g. We may identify the Lie group G with R
n. We can also choose a basis of g

consisting of {XI}, which is called basic (see [2]). For each x ∈ R
n, we define the mapping

y 7→ Qx(y) from a neighborhood of x to a neighborhood of the origin, given by

Qx(y) = u = (uI),

where y = exp
( ∑

I basic

uIXI

)
(x). There are dilations δx

r , centered at x, given by

δx
r (y) = exp

( ∑

I basic

uIr
|I|XI

)
(x).

A related quasi-distance is defined by d(x, y) = ρ(Qx(y)) with ρ(u) =
∑

I basic

|uI |
1
|I| . The

homogeneous dimension of R
n equals

∑
I basic

|I| = Q.

We now may proceed to the proof of our main results. We start by decomposing the kernel

K dyadically. Let ϕ be a bump function with suppϕ ⊆ (1, 2), such that
∑
j

2−jt ·ϕ(2−jt) = 1
ln 2 .

Set

FjK(t) = 2−j

∫
ϕ(2−js)s−kK

( t
s

)
ds.

From the identity

K(t) =
1

ln 2

∫
s−kK0

( t
s

)ds

s
,

we have the decomposition K =
∞∑

j=0

FjK0.

For K0 ∈ L logL(A0), that is, ‖K0‖L log L =
∫

A0
|K0(t)| log(2 + |K0(t)|)dt <∞, we have to

decompose it further. Let K
m

0 be the portion of K0 on the set

Em = {t ∈ A0 : 22m

≤ 2 + |K0(t)| < 22m+1

}.

Write Km
0 = K

m

0 −
χA0

|A0|

∫
A0
K

m

0 (t)dt. Then each Km
0 has mean zero and K0 =

∑
m≥0

Km
0 . It is

easy to see that

∑

m≥0

2m‖Km
0 ‖1 ≤ C

∑

m≥0

2m‖K
m

0 ‖1 ≤ C‖K0‖L log L. (2.1)

For compactly supported f ∈ C1(Rn), let

Tj(f)(x) = ψ(x)

∫
f(rt(x))FjK0(t)dt,

Tj,m(f)(x) = ψ(x)

∫
f(rt(x))FjK

m
0 (t)dt.

Then

T (f) =

∞∑

j=0

Tj(f) =

∞∑

j=0

∞∑

m=0

Tj,m(f).
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Let r−1(x, t) be the inverse mapping of r(x, t), defined by (1.2). For τ = (τ1, τ2, · · · τ2N ),

τi ∈ R
k, 1 ≤ i ≤ 2N , we set

ΓN (x, τ) = r−1
τ2N

· rτ2N−1
· · · r−1

τ2
· rτ1

(x).

Then the operator (TjT
∗
j )N may be written as

(Tj,mT
∗
j,m)N (f)(x) =

∫
f(δx

2−j (Γ
(j)
N (x, τ))ψ(x, τ))

2N∏

ν=1

(F0K
m
0 )(τ)dτ, (2.2)

where Γ(j)(x, τ) = δx
2j (ΓN (x, 2−jτ)), ψ(x, τ) ∈ C∞ has compact support with respect to x and

τ . If we substitute Km
0 by K0, the representation of the operator (TjT

∗
j )N may be obtained

similarly.

To prove our main results, we need to estimate the kernel of (Tj,mT
∗
j,m)N and (TjT

∗
j )N . By

the argument used in [2], we shall consider the smoothness of measures transported by the map

Φx, where Φx : τ 7→ Φ(x, τ) will be a given C∞ mapping from a closed finite ball B in R
2Nk

to R
n with N ≥ n. Let J(x, τ) be the determinant of some n × n sub-matrix of the Jacobian

matrix
∂Φ

∂τ
. Assume that for some α,

∂α
τ J(x, τ) 6= 0 (2.3)

for every τ ∈ B. We define the operator TΦ by

TΦ(f)(x) =

∫

B

f(Φ(x, τ))ψ(x, τ)

2N∏

ν=1

(F0K0)(τi)dτ1 · · · dτ2N

and its kernel is given by

KΦ(x, y) =

∫

B

δ(y − Φ(x, τ))ψ(x, τ)
2N∏

ν=1

(F0K0)(τi)dτ1 · · ·dτ2N , (2.4)

where δ is the Dirac measure at the origin.

We shall interpret the smoothness of KΦ by L1-Lipschitz norm, which is defined by

‖f‖Λδ = ‖f‖L1 + sup
z 6=0

|z|−δ

∫
|f(y − z) − f(y)|dy.

Proposition 2.1 Suppose that the mapping Φx is as described above and satisfies (2.3).

Then there exists a constant δ > 0 such that the following results hold:

( i ) If K0 ∈ Lq(A0), 1 < q <∞, we have

‖KΦ(x, · )‖Λδ ≤ C‖K0‖
2N
Lq(A0) (2.5)

uniformly in x;

(ii) If K0 is replaced by Km
0 , we have

‖KΦ(x, · )‖Λδ ≤ C‖Km
0 ‖2N

L∞(A0)
(2.6)
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uniformly in x.

Proof Since J(x, τ) satisfies (2.3), by [2], we have

∫

B

|J(x, τ)|−σdτ ≤ A <∞ (2.7)

for any σ < 1
k , where k = |α|. It follows that Z = {τ ∈ B : J(τ) = 0} has Lebesgue measure

zero.

We are able to cover B/Z by a collection of ball {Bj(τj , rj)} with rj = c|J(x, τj)|. If the

constant c is small enough, there will exist two positive constants A1, A2 such that

( i ) A1 ≤
∣∣ J(x,τ)
J(x,τj)

∣∣ ≤ A2, whenever τ ∈ Bj(τj , 2rj);

(ii) {Bj(τj , 2rj)}j have the bounded intersection property.

Let {ηj} be a smooth partition of unity on B/Z subordinated to the covering {Bj(τj , rj)}j

and satisfying |∇ηj | ≤ cr−1
j . We write

KΦ(x, y) =
∑

j

∫
δ(y − Φ(x, τ))ηj(τ)ψ(x, τ)

2N∏

ν=1

(F0K0)(τi)dτ1 · · · dτ2N =
∑

j

K
(j)
Φ (x, y).

Then

∫
|K

(j)
Φ (x, y)|dy ≤ C

∫

Bj(τj ,2rj)

∣∣∣∣
2N∏

ν=1

(F0K0)(τν)
∣∣∣dτ1 · · · dτ2N

≤ C

∫

Bj(τj ,2rj)

2N∏

ν=1

|K0(τν)|dτ1 · · · dτ2N , (2.8)

∫
|KΦ(x, y)|dy ≤ C

∫

B

∣∣∣
2N∏

ν=1

(F0K0)(τi)
∣∣∣dτ1 · · ·dτ2N ≤ C‖K0‖

2N
Lq(A0)

. (2.9)

Without loss of generality, we can assume that J(x, τ) is determined by the first n rows

in the matrix ∂Φ
∂τ . For τ ∈ R

2Nk, we write τ = (τ ′, τ ′′) ∈ R
n × R

2Nk−n. If Bj(τ
′
j , rj) ⊂

R
n, Bj(τ

′′
j , rj) ⊂ R

2Nk−n, we then have

Bj(τj , rj) ⊂ Bj(τ
′
j , rj) ×Bj(τ

′′
j , rj) ⊆ Bj(τj , 2rj).

For fixed τ ′′ ∈ Bj(τ
′′
j , rj), Φτ ′′(0, τ ′) = Φ(x, τ)|Bj(τ ′,rj)×{τ ′′} is one to one.

By the chain rule, we have

∇τ ′δ(y − Φτ ′′(τ ′)) = −∇yδ(y − Φτ ′′(τ ′))DΦτ ′′(τ ′).

Therefore

∇yδ(y − Φτ ′′(τ ′)) = −∇τ ′δ(y − Φτ ′′(τ ′))D−1Φτ ′′(τ ′).

For τ ′ = (ρ1, · · · , ρn) ∈ R
n, we get

∂yi
δ(y − Φτ ′′(τ ′)) = −

n∑

q=1

g(x, τ)

J(x, τ)
∂ρqδ(y − Φτ ′′(τ ′)),
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where g(x, τ) is determined by the minors of order (n − 1) of the matrix DΦτ ′′(τ ′). For

τ ∈ Bj(τ
′
j , rj), we find that

∣∣∣∂τ ′
q

( g(x, τ)
J(x, τ)

)∣∣∣ ≤
C

r2j
.

Moreover, if ρq is one of the components of τi0 , we use the integration by parts to get

∣∣∣∂ρq

( 2N∏

ν=1

(F0K0)
)
(τν)

∣∣∣ ≤ C
( ∫ 2

1

(|ϕ′(s)| + |ϕ(s)|)s−k
∣∣∣k

(τi0
s

)∣∣∣ds
) ∏

ν 6=i0

(F0K0)(τν).

We integrate by parts in the τν variable. Then

∫
|∇yK

(j)
Φ (x, y)|dy ≤ Cr−2

j

∫

Bj(τj ,2rj)

2N∏

ν=1

|K0(τν)|dτ1 · · · dτ2N . (2.10)

From (2.8) and (2.10), it follows that if 0 < δ < 1,

sup
|z|6=0

|z|−δ

∫
|K

(j)
Φ (y − z) −K

(j)
Φ (y)|dy

≤ C sup
|z|6=0

(r−2
j |z|1−δ + |z|−δ)

∫

Bj(τj ,2rj)

2N∏

ν=1

|K0(τν)|dτ1 · · · dτ2N

≤ Cr−2δ
j

∫

Bj(τj,2rj)

2N∏

ν=1

|K0(τν)|dτ1 · · ·dτ2N .

By the property of {Bj(τj , 2rj)} and (2.5), as long as δ is chosen such that δ < q
2k(q−1) , we

have

sup
|z|6=0

|z|−δ

∫
|KΦ(x, y − z) −KΦ(x, y)|dy

≤ C
∑

j

r−2δ
j

∫

Bj(τj ,2rj)

2N∏

ν=1

|K0(τν)|dτ1 · · · dτ2N

≤ C

∫

B

|J(x, τ)|−2δ
2N∏

ν=1

|K0(τν)|dτ1 · · · dτ2N

≤ C
( ∫

B

|J(x, τ)|−2δpdτ
) 1

p

· ‖K0‖
2N
Lq(A0)

≤ C‖K0‖
2N
Lq(A0)

.

Therefore we get (2.5).

If we replaceK0 byKm
0 , the analogues of inequalities (2.8) and (2.10) are given, respectively,

by ∫
|K

(j)
Φ (x, y)|dy ≤ Cr2Nk

j ‖Km
0 ‖L∞(A0)

and ∫
|∇yK

(j)
Φ (x, y)|dy ≤ Cr2Nk−2

j ‖Km
0 ‖L∞(A0).
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These imply (2.6).

We continue to prove Theorem 1.1. Since x 7→ rt(x) is a diffeomorphism from a neighborhood

of the support of ψ into R
n for all such t and 1 ≤ p ≤ ∞, by applying the Minkowski integral

inequality, we have

‖Tj,mf‖p ≤ C‖FjK
m
0 ‖1 · ‖f‖p ≤ C‖Km

0 ‖1 · ‖f‖p. (2.11)

The same result holds with the adjoint operator T ∗
j,m substituted for Tj,m. By the almost

orthogonality argument in [6], we will show that

‖T ∗
j,mTi,m‖2 + ‖Tj,mT

∗
i,m‖2 ≤ C22m+1

· 2−ε|i−j| (2.12)

for some ε > 0. We shall prove

‖T ∗
j,mTi,m‖2 ≤ C22m+1

· 2−ε|i−j|. (2.13)

The boundedness for the second term can be obtained by the same argument. Without loss of

generality, we may assume that i ≥ j in (2.13).

We need the elementary fact (see [1])

‖T ∗
j,mTi,m‖2 ≤ ‖Ti,m‖1−2−l

2 · ‖(Tj,mT
∗
j,m)2

l−1

· Ti,m‖2−l

2 .

We can take N = 2l−1 ≥ n. It suffices to show that

‖(Tj,mT
∗
j,m)NTi,m‖2 ≤ C2(2N+1)2m+1

2−ε|i−j|. (2.14)

By the formula (2.2), the kernel K(x, y) associated to the operator (Tj,mT
∗
j,m)NTi is

K(x, y) =

∫
δ(y − rt(ΓN (x, τ)))ψ(x, τ)

2N∏

ν=1

(FjK
m
0 )(τi) · (FiK

m
0 )(t)dτdt.

Since, as functions of x, rt(ΓN (x, τ)) have Jacobian determinants near 1, we have

sup
y

∫
|K(x, y)|dx ≤ C

∫ 2N∏

ν=1

(FjK
m
0 )(τi) · (FiK

m
0 )(t)dτdt ≤ C2(2N+1)2m+1

. (2.15)

On the other hand, since each mapping τ 7→ Γ(j)(x, τ) = δx
2j (ΓN (x, 2−jτ)) satisfies the

hypotheses of Proposition 2.1, we may rewrite

K(x, y) =

∫
δ(y − rt(δ

x
2−j (z′)))Kj(x, z

′)(FiK
m
0 )(t)dz′dt,

where z′ 7→ Kj(x, z
′) belongs to the L1-Lipschtz space. By the change of variables z = δx

2−j (z′),

the formula of F (x, y) becomes

K(x, y) = 2jQ

∫
δ(y − rt(z))Kj(x, δ

x
2j (z))J(x, z)(FiK

m
0 )(t)dzdt,

where 2jQJ(x, z) is the associated Jacobian determinant.
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Substituting u = rt(z), and noting that det
(

∂z
∂u

)
= 1 +O(t), we have

K(x, y) = 2jQ

∫
δ(y − u)Kj(x, δ

x
2j (r

−1
t (u)))J(x, r−1

t (u))(1 +O(t))(FiK
m
0 )(t)dudt.

By Propositions 2.1 and 3.1 of [2], we get

sup
x

∫
|K(x, y)|dy

≤ C sup
x

2jQ

∫
|J(x, r−1

t (u))[Kj(x, δ
x
2j (r

−1
t (u))) −Kj(x, δ

x
2j (u))](FiK

m
0 )(t)|dudt

+ sup
x

2jQ

∫
|J(x, r−1

t (u))Kj(x, δ
x
2j (r

−1
t (u))) · t(FiK

m
0 )(t)|dudt

≤ C2(2N+1)2m+1

2−δ|i−j| + C2−i2(2N+1)2m+1

≤ C2(2N+1)2m+1

2−δ|i−j|.

Therefore,

sup
x

∫
|K(x, y)|dy ≤ C2(2N+1)2m+1

2−δ|i−j|. (2.16)

By making use of Schur’s Lemma (see [6]), we obtain (2.14), and then (2.13) holds.

Setting Ui,m =
(i+1)2m−1∑

j=i2m

Tj,m, then for the fixed m, by (2.12), we have the estimates

‖Ui,m‖2 ≤ 2m‖Tj,m‖2 ≤ C2m‖Km
0 ‖1, (2.17)

‖U∗
i,mUj,m‖2 + ‖Ui,mU

∗
j,m‖2 ≤ C22m22m+1

2−ε2m|i−j|. (2.18)

If |i− j| ≥ k0 where k0 >
2
ε , we have

‖U∗
i,mUj,m‖2 + ‖Ui,mU

∗
j,m‖2 ≤ C22m2−δ2m|i−j| (2.19)

for some constant δ > 0. Therefore, by the Cotlar-Stein almost orthogonality and (2.1), we

have for some δ1 > 0,

‖T ‖2 =
∥∥∥

∑

m≥0

∑

i

Ui,m

∥∥∥
2
≤ C

∑

m≥0

(2m‖Ks
0‖1 + 2m2−δ12

m

) <∞,

which concludes the proof of Theorem 1.1.

Proof of Theorem 1.2 Let Φ ∈ C∞
0 (Rn) be an even nonnegative function supported in

|x| < a, and equal to 1 near the origin. It satisfies
∫

Rn Φ(x)dx = 1. Set Φj(u) = 2iQΦ(δ2j (u)),

and fix a cutoff function x ∈ C∞
0 (Rn) which is equal to 1 near x0. We define

Sj(f)(x) = χ0(x)

∫
Φj(Qx(y))χ0(y)f(y)dy,

where χ0(x) = χ(x)J(x, x)
1
2 with J(x, y) =

∣∣det
(∂Qx(y)

∂y

)∣∣.
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Finally define Rj = Sj+1 −Sj, and let Rj(x, y) be its kernel. From the result of [2], we have
∫

|Rj(x, y)|dx < C, (2.20)

∫
|Rj+l(x, y1) −Rj+l(x, y2)|dx ≤ C2(j+l)/md(y1, y2)

1
m (2.21)

for all y, y1, y2.

Since I = Sj +
∞∑

l=0

Rj+l (see [2]), we may write

T =
∞∑

j=0

Tj =
∞∑

j=0

TjSj +
∞∑

l=0

Ul,

where Ul =
∞∑

j=0

TjRj+l. If K0 ∈ Lq(A0), 1 < q < ∞, we shall show that T is bounded on each

Lp for 1 < p <∞ as well.

By using Proposition 2.1 and adaptations of the arguments in [2], we obtain

‖Ul‖2 ≤ C2−lε‖K0‖q (2.22)

for some ε > 0, and

∥∥∥
∞∑

j=0

TjSj

∥∥∥
2
≤ C‖K0‖q. (2.23)

Let Li(x, y) and P (x, y) be the kernels of Ui and
∞∑

j=0

TjSj respectively. Next, define the

ball B(x, r) = {y ∈ Rn : d(x, y) < r}. To apply the Calderón-Zygmund theory, we need the

following estimates.

Lemma 2.1 There exists a constant δ > 1 such that if y2 ∈ B(y1, r), then

∫

x/∈B(y1,δr)

|Ul(x, y1) − Ul(x, y2)|dx ≤ Cl‖K0‖q (2.24)

and
∫

x/∈B(y1,δr)

|P (x, y1) − P (x, y2)|dx ≤ C‖K0‖q (2.25)

hold for all r > 0.

Proof The proofs of (2.24) and (2.25) are similar, so we only prove the inequality (2.24)

here. Let Uj,l be the kernel of TjRj+l. This can be written as (see [2])

Uj,l(x, y) = ψ(x)

∫
Rj+l(rt(x), y)(FjK0)(t)dt.

The left-hand side of (2.24) is at most

∞∑

j=0

∫

x/∈B(y1,δr)

|Uj,l(x, y1) − Uj,l(x, y2)|dx,
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and it equals

∞∑

j=0

∫

x/∈B(y1,δr)

∣∣∣ψ(x)

∫
(Rj+l(rt(x), y1) −Rj+l(rt(x), y2))(FjK0)(t)dt

∣∣∣dx. (2.26)

Let j0 be an integer such that 2−j0−1 ≤ r ≤ 2−j0 . If j > j0 we conclude that the expression

Rj+l(x, y) appearing in (2.26) are zero provided that x /∈ B(y1, δr) and δ is chosen appropriately

large. In fact, under these conditions, from the observation d(rt(x), x) = O(t) (see [2]), we have

d(rt(x), y1) ≥ C(d(x, y1) − d(rt(x), x)) ≥ C · 2−j0 .

Similarly, we get d(rt(x), y2) ≥ C · 2−j0 . Therefore, inequalities (2.19) and (2.20) give that

(2.26) is at most a constant times

j0−l−1∑

j=0

2
j+l
m 2−

j0
m

∫
|(FjK0)(t)|dt+

j0∑

j=j0−l

∫
|Rj+l(x, y)|dx

∫
|(FjK0)(t)|dt ≤ Cl‖K0‖q.

Hence (2.24) is established and Lemma 2.1 is proved.

By the generalized Calderón-Zygmund theorem (see [6, p. 19]), Lemma 2.2 and (2.22) imply

that ‖Ul‖p ≤ Cl for 1 < p < 2. Then real interpolation gives ‖Ul‖p ≤ C2−ε′l for some

ε′ > 0. We conclude
∥∥ ∞∑

l=0

Ul

∥∥
p
≤ C. Take into account the inequalities (2.23) and (2.25), the

boundedness of operator
∞∑

j=0

TjSj on Lp, for 1 < p < 2, is deduced from the Calderón-Zygmund

theorem directly. Therefore T is bounded on Lp for 1 < p < 2. The result for 2 < p < ∞

follows by duality. We finish the proof of Theorem 1.2.
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