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Solutions to Some Open Problems in Fluid Dynamics

Linghai ZHANG∗

Abstract Let u = u(x, t, u0) represent the global solution of the initial value problem for

the one-dimensional fluid dynamics equation

ut − εuxxt + δux + γHuxx + βuxxx + f(u)x = αuxx, u(x, 0) = u0(x),

where α > 0, β ≥ 0, γ ≥ 0, δ ≥ 0 and ε ≥ 0 are constants. This equation may be viewed

as a one-dimensional reduction of n-dimensional incompressible Navier-Stokes equations.

The nonlinear function satisfies the conditions f(0) = 0, |f(u)| → ∞ as |u| → ∞, and

f ∈ C1(R), and there exist the following limits

L0 = lim sup
u→0

f(u)

u3
and L∞ = lim sup

u→∞

f(u)

u5
.

Suppose that the initial function u0 ∈ L1(R)∩ H2(R). By using energy estimates, Fourier

transform, Plancherel’s identity, upper limit estimate, lower limit estimate and the results

of the linear problem

vt − εvxxt + δvx + γHvxx + βvxxx = αvxx, v(x, 0) = v0(x),

the author justifies the following limits (with sharp rates of decay)

lim
t→∞

h
(1 + t)m+1/2

Z
R

|uxm(x, t)|2dx
i

=
1

2π

�
π

2α

�1/2 m!!

(4α)m

h Z
R

u0(x)dx
i2

,

if Z
R

u0(x)dx 6= 0,

where 0!! = 1, 1!! = 1 and m!! = 1 · 3 · · · · (2m − 3) · (2m − 1). Moreover

lim
t→∞

h
(1 + t)m+3/2

Z
R

|uxm (x, t)|2dx
i

=
1

2π

�
π

2α

�1/2 (m + 1)!!

(4α)m+1

h Z
R

ρ0(x)dx
i2

,

if the initial function u0(x) = ρ0
′(x), for some function ρ0 ∈ C1(R) ∩ L1(R) andZ

R

ρ0(x)dx 6= 0.
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1 Introduction

1.1 Model equations

Let u = u(x, t, u0) denote the global solution of the Cauchy problem for the one-dimensional

fluid dynamics equation

∂u

∂t
− ε

∂3u

∂x2∂t
+ δ

∂u

∂x
+ γH

∂2u

∂x2
+ β

∂3u

∂x3
+
∂f(u)

∂x
= α

∂2u

∂x2
, (1.1)

u(x, 0) = u0(x). (1.2)

This equation may be viewed as the one-dimensional reduction of the n-dimensional incom-

pressible Navier-Stokes equations. In this equation, u = u(x, t, u0) is a real-valued function of

x ∈ R, t > 0 and u0, f(u) is a smooth function of u, typically, f(u) = au3 + bu4 + cu5, for three

real constants a, b and c. The parameters α > 0, β ≥ 0, γ ≥ 0, δ ≥ 0 and ε ≥ 0 are real, and

H stands for the Hilbert transform, which is defined by

Hu(x, t) =
1

π
P.V.

∫

R

u(y, t)

y − x
dy,

where P.V. denotes the Cauchy principal value of the singular integral. The global solution of

the Cauchy problem satisfies the boundary conditions

lim
x→±∞

u(x, t) = 0, lim
x→±∞

ux(x, t) = 0, lim
x→±∞

uxx(x, t) = 0 for all t > 0.

In this paper, we are going to investigate the exact limit

lim
t→∞

{
(1 + t)m+1/2

∫

R

|uxm(x, t)|2dx
}

or lim
t→∞

{
(1 + t)m+3/2

∫

R

|uxm(x, t)|2dx
}
.

Equation (1.1) contains the following equations as special examples.

(I) When β = γ = ε = 0 and δ = 1, (1.1) becomes the Burgers equation

∂u

∂t
+
∂u

∂x
+
∂f(u)

∂x
= α

∂2u

∂x2
.

(II) When β = γ = 0 and δ = ε = 1, (1.1) becomes the Benjamin-Bona-Mahony-Burgers

equation
∂u

∂t
− ∂3u

∂x2∂t
+
∂u

∂x
+
∂f(u)

∂x
= α

∂2u

∂x2
.

(III) When β = ε = 0 and γ = δ = 1, (1.1) becomes the Benjamin-Ono-Burgers equation

∂u

∂t
+
∂u

∂x
+H

∂2u

∂x2
+
∂f(u)

∂x
= α

∂2u

∂x2
.

(IV) When β = δ = 1, and γ = ε = 0, (1.1) becomes the Korteweg-de Vries-Burgers

equation
∂u

∂t
+
∂u

∂x
+
∂3u

∂x3
+
∂f(u)

∂x
= α

∂2u

∂x2
.

We will use the famous Fourier splitting technique, which is attributable primarily to the original

ideas of Maria E. Schonbek (see [12, 13]). Specifically, the method is postulated to accomplish

sharp rate of decay of global solutions of dissipative equations.
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1.2 Some known results

Here are some well-known results related to problem (1.1)–(1.2).

In 1989, Amick, Bona and Schonbek [4] established the exact limit of the global solution of

the following Cauchy problem

ut − uxxt + ux + uux = αuxx, u(x, 0) = u0(x).

They proved that

lim
t→∞

[
(1 + t)1/2

∫

R

|u(x, t)|2dx
]

=
4α2µ2

2π
√
α

∫

R

exp(−2x2)

[1 + µ√
π

∫ ∞
x exp(−ξ2)dξ]2

dx,

where

µ = exp
[
− 1

2α

∫

R

u0(x)dx
]
− 1.

Motivated by this result, we study the exact limit of solutions of the more general nonlinear,

dispersive, dissipative wave equation (1.1), which may be derived from fluid dynamics.

Theorem 1.1 (Existence and Uniqueness) Let the initial function u0 ∈ L1(R) ∩H2(R).

Suppose that the nonlinear function f is sufficiently smooth, satisfying the following estimates

|f(u)| ≤ C1|u|3 for all |u| ≤ 1,

|f(u)| ≤ C2|u|5 for all |u| ≥ 1

for some positive constants C1 > 0 and C2 > 0. A concrete example of the nonlinear function

is f(u) = u3 + u4 + u5. Then there exists a unique global strong solution u ∈ L∞(R+, H2(R))∩
L2

loc(R
+, H3(R)) to the Cauchy problem (1.1)–(1.2). There also hold the uniform energy esti-

mates

sup
t>0

∫

R

[|u(x, t)|2 + ε|ux(x, t)|2]dx ≤
∫

R

[|u0(x)|2 + ε|u0x(x)|2]dx,

2α

∫ ∞

0

∫

R

|ux(x, t)|2dxdt ≤
∫

R

[|u0(x)|2 + ε|u0x(x)|2]dx.

The existence and uniqueness of the global strong solution of problem (1.1)–(1.2) can be

demonstrated by applying Leray-Schauder’s fixed point theorem. We omit the details of the

proof. The strong solution is also smooth, due to the presence of the dissipation.

Formally, the global solution of equation (1.1) may be represented by

u(x, t) =
1

2π

∫

R

exp(ixξ) exp
[
− α|ξ|2 − i ξ(β|ξ|2 + γ|ξ| − δ)

1 + ε|ξ|2 t
]
û0(ξ)dξ

− 1

2π

∫ t

0

{∫

R

exp(i xξ) exp
[
− α|ξ|2 − i ξ(β|ξ|2 + γ|ξ| − δ)

1 + ε|ξ|2 (t− τ)
]

· i ξ

1 + ε|ξ|2 f̂(u)(ξ, τ)dξ
}

dτ.
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Define the semigroup operator

[Stu0](x) =
1

2π

∫

R

exp(ixξ) exp[−α|ξ|2t+ i ξ(β|ξ|2 + γ|ξ| − δ)t]û0(ξ)dξ.

If ε = 0, then we have the solution representation

u(x, t) = [Stu0](x) −
∫ t

0

[St−τf(u( · , τ))](x)dτ.

Theorem 1.2 (Decay Estimates with Sharp Rates of Decay)

(I) Let u0 ∈ H2(R). Then the unique global solution of the Cauchy problem (1.1)–(1.2)

enjoys the limit

lim
t→∞

∫

R

|u(x, t)|2dx = 0.

However, here the rate of convergence may be arbitrarily slow.

(II) Let u0 ∈ L1(R) ∩H2(R) and

∫

R

u0(x)dx 6= 0.

Then the unique global solution enjoys the decay estimates

C1 ≤ (1 + t)1/2

∫

R

|u(x, t)|2dx+ (1 + t)3/2

∫

R

|ux(x, t)|2dx ≤ C2.

In these estimates, C1 and C2 are positive constants, independent of time.

(III) Let u0 ∈ L1(R) ∩H2(R) and

∫

R

u0(x)dx = 0,

∫

R

ρ0(x)dx 6= 0,

where u0(x) = d
dxρ0(x). Then there hold the decay estimates

C3 ≤ (1 + t)3/2

∫

R

|u(x, t)|2dx+ (1 + t)5/2

∫

R

|ux(x, t)|2dx ≤ C4,

where C3 and C4 are also positive constants, independent of time.

Amick, Bona and Schonbek [4], Bona and Luo [5–6], Dix [8–10] and Zhang [15–20] estab-

lished these results for various similar/simpler model equations. Theorem 1.2 is a summary of

these known decay results.

1.3 Main goal

In this paper, we will evaluate the following limits explicitly, in terms of the integral of the

initial data and the model parameters.

(I) lim
t→∞

[
(1 + t)1/2

∫

R

|u(x, t)|2dx
]
, lim

t→∞

[
(1 + t)m+1/2

∫

R

|uxm(x, t)|2dx
]
,

where m ≥ 1 is any integer, the initial data u0 ∈ L1(R) ∩H2(R) and

∫

R

u0(x)dx 6= 0.
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(II) lim
t→∞

[
(1 + t)3/2

∫

R

|u(x, t)|2dx
]
, lim

t→∞

[
(1 + t)m+3/2

∫

R

|uxm(x, t)|2dx
]
,

where the initial data u0 ∈ L1(R)∩H2(R), u0(x) = d
dxρ0(x), and ρ0 ∈ C1(R)∩L1(R). Moreover

∫

R

u0(x)dx = 0,

∫

R

ρ0(x)dx 6= 0.

1.4 The main results

Here are the main results of this paper. These results may be applied to dynamical systems,

in particular, to Hausdorff dimension of global attractors of the model equations.

Theorem 1.3 Suppose that the initial data u0 ∈ L1(R) ∩H2(R), and that
∫

R

u0(x)dx 6= 0.

Then the unique global solution of the Cauchy problem (1.1)–(1.2) enjoys the limits

lim
t→∞

{
(1 + t)1/2

∫

R

|u(x, t)|2dx
}

=
1

2π

( π

2α

)1/2[ ∫

R

u0(x)dx
]2

,

lim
t→∞

{
(1 + t)m+1/2

∫

R

|uxm(x, t)|2dx
}

=
1

2π

( π

2α

)1/2 m!!

(4α)m

[ ∫

R

u0(x)dx
]2

.

Theorem 1.4 Suppose that u0 ∈ L1(R) ∩ H2(R), and that u0(x) = ρ′0(x), ρ0 ∈ C1(R) ∩
L1(R), with ∫

R

ρ0(x)dx 6= 0.

Then the unique global solution of the Cauchy problem (1.1)–(1.2) enjoys the limits

lim
t→∞

{
(1 + t)3/2

∫

R

|u(x, t)|2dx
}

=
1

2π

( π

2α

)1/2 1

4α

[ ∫

R

ρ0(x)dx
]2

,

lim
t→∞

{
(1 + t)m+3/2

∫

R

|uxm(x, t)|2dx
}

=
1

2π

( π

2α

)1/2 (m+ 1)!!

(4α)m+1

[ ∫

R

ρ0(x)dx
]2

.

These results will be established in Section 2.

The rates of decay in both Theorem 1.3 and Theorem 1.4 are optimal. Even if the initial

data u0 satisfies
∫

R

u0(x)dx = 0,

∫

R

xu0(x)dx = 0,

the decay rates in Theorem 1.4 cannot be improved simply because the equation is nonlinear.

The precise limits are new.

Remark 1.1 Suppose that u0 ∈ L1(R) ∩H2(R). By using similar ideas as those displayed

in this work, we may be able to establish the limits

lim
t→∞

(1 + t)
{
(1 + t)m+1/2

∫

R

|uxm(x, t)|2dx− 1

2π

( π

2α

)1/2 m!!

(4α)m

[ ∫

R

u0(x)dx
]2}

,

if
∫

R
u0(x)dx 6= 0;

lim
t→∞

(1 + t)2
{
(1 + t)m+3/2

∫

R

|uxm(x, t)|2dx− 1

2π

( π

2α

)1/2 (m+ 1)!!

(4α)m+1

[ ∫

R

ρ0(x)dx
]2}

,
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if
∫

R
u0(x)dx = 0. We will use the same letters C, C1, C2, · · · to denote many positive, time-

independent constants and they may be different from one place to another.

2 The Mathematical Analysis

2.1 Linear analysis

Let v = v(x, t, v0) be the global solution of the initial value problem for the linear equation

vt − εvxxt + δvx + γHvxx + βvxxx = αvxx, (2.1)

v(x, 0) = v0(x). (2.2)

Lemma 2.1 (I) Suppose that the initial data v0 ∈ L1(R)∩H2(R). Then the unique global

solution of the Cauchy problem (2.1)–(2.2) enjoys the limit

lim
t→∞

{
(1 + t)m+1/2

∫

R

|vxm(x, t)|2dx
}

=
1

2π

( π

2α

)1/2 m!!

(4α)m

[ ∫

R

v0(x)dx
]2

,

if
∫

R
v0(x)dx 6= 0. Furthermore,

lim
t→∞

{
(1 + t)m+3/2

∫

R

|vxm(x, t)|2dx
}

=
1

2π

( π

2α

)1/2 (m+ 1)!!

(4α)m+1

[ ∫

R

σ0(x)dx
]2

,

if v0(x) = σ′
0(x), σ0 ∈ C1(R) ∩ L1(R), and

∫

R

σ0(x)dx 6= 0.

(II) Suppose now that v0 ∈ L1(R) ∩H2(R), and

∫

R

|xv0(x)|dx+

∫

R

|x3v0(x)|dx <∞.

Then

lim
t→∞

{
(1 + t)

[
(1 + t)m+1/2

∫

R

|vxm(x, t)|2dx− 1

2π

( π

2α

)1/2 m!!

(4α)m

(∫

R

v0(x)dx
)2]}

=
1

2π

( π

2α

)1/2 (m+ 1)!

(4α)m+1

{[∫

R

xv0(x)dx
]2

−
[ ∫

R

v0(x)dx
][ ∫

R

x2v0(x)dx
]}
.

Furthermore, if ∫

R

v0(x)dx = 0,

∫

R

xv0(x)dx = 0,

then

lim
t→∞

{
(1 + t)2

[
(1 + t)m+3/2

∫

R

|vxm(x, t)|2dx− 1

2π

( π

2α

)1/2 (m+ 1)!!

(4α)m+1

(∫

R

σ0(x)dx
)2]}

=
1

8π

( π

2α

)1/2 (m+ 2)!

(4α)m+2

{[∫

R

xσ0(x)dx
]2

−
[ ∫

R

σ0(x)dx
][ ∫

R

x2σ0(x)dx
]}
.
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Proof Let v0 ∈ L1(R) ∩H2(R). Then the Fourier transform v̂0 is continuous everywhere.

It is straightforward to prove that the Fourier transform of the global solution of the linear

problem (2.1)–(2.2) is given by

v̂(ξ, t) = exp
[
− α|ξ|2 − i ξ(β|ξ|2 + γ|ξ| − δ)

1 + ε|ξ|2 t
]
v̂0(ξ).

Then

tm+1/2

∫

R

|vxm(x, t)|2dx

=
tm+1/2

2π

∫

R

|ξ|2m|v̂(ξ, t)|2dξ

=
tm+1/2

2π

∫

R

|ξ|2m exp
(
− 2α|ξ|2

1 + ε|ξ|2 t
)
|v̂0(ξ)|2dξ

=
1

2π

∫

R

|η|2m exp
(
− 2α|η|2

1 + ε|η|2/t
)
|v̂0(t−1/2η)|2dη

→ 1

2π

∫

R

|η|2m exp(−2α|η|2)|v̂0(0)|2dη

=
1

2π

( π

2α

)1/2 m!!

(4α)m

[ ∫

R

v0(x)dx
]2

,

as t → ∞, where η = t1/2ξ, 0!! = 1, m!! = 1 · 3 · · · · · (2m − 3) · (2m − 1). Now, let

v0 ∈ L1(R) ∩H2(R), v0(x) = σ′
0(x), and

∫

R

σ0(x)dx 6= 0.

Then v̂0(ξ) = i ξσ̂0(ξ). Very similar to the above, we obtain

tm+3/2

∫

R

|vxm(x, t)|2dx

=
tm+3/2

2π

∫

R

|ξ|2m|v̂(ξ, t)|2dξ

=
tm+3/2

2π

∫

R

|ξ|2m+2 exp
(
− 2α|ξ|2

1 + ε|ξ|2 t
)
|σ̂0(ξ)|2dξ

=
1

2π

∫

R

|η|2m+2 exp
(
− 2α|η|2

1 + ε|η|2/t
)
|σ̂0(t

−1/2η)|2dη

→ 1

2π

∫

R

|η|2m+2 exp(−2α|η|2)|σ̂0(0)|2dη

=
1

2π

( π

2α

)1/2 (m+ 1)!!

(4α)m+1

[ ∫

R

σ0(x)dx
]2

,

as t→ ∞, where η = t1/2ξ. Note that

lim
t→∞

[
(1 + t)m+1/2

∫

R

|vxm+1(x, t)|2dx
]

= 0,

if
∫

R
v0(x)dx 6= 0; and

lim
t→∞

[
(1 + t)m+3/2

∫

R

|vxm+1(x, t)|2dx
]

= 0,
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if
∫

R
v0(x)dx = 0. Noting also that for any initial data v0 ∈ L1(R)∩H2(R), we have the Fourier

transform

v̂0(ξ) =

∫

R

exp(−ixξ)v0(x)dx.

Suppose now that

∫

R

|xv0(x)|dx+

∫

R

|x3v0(x)|dx <∞.

Thus, for any integer m ≥ 1, formally we get

dmv̂0
dξm

(0) = (−i )m

∫

R

xmv0(x)dx,

d2mv̂0
dξ2m

(0) = (−1)m

∫

R

x2mv0(x)dx,

d2m+1v̂0
dξ2m+1

(0) = (−1)m+1i

∫

R

x2m+1v0(x)dx.

Note that even-order derivatives are real while odd-order derivatives are purely imaginary. We

want to isolate the real part from the imaginary part in the Taylor expansion. Thus we have

v̂0(ξ) =

∞∑

m=0

1

(2m)!

d2mv̂0
dξ2m

(0)ξ2m +

∞∑

m=0

1

(2m+ 1)!

d2m+1v̂0
dξ2m+1

(0)ξ2m+1

=

∞∑

m=0

(−1)m

(2m)!
ξ2m

[ ∫

R

x2mv0(x)dx
]
− i

∞∑

m=0

(−1)m

(2m+ 1)!
ξ2m+1

[ ∫

R

x2m+1v0(x)dx
]
.

Replacing ξ by t−1/2η in this above equation, where t > 0, we have

t[|v̂0(t−1/2η)|2 − |v̂0(0)|2]

= t
{∣∣∣

∞∑

m=0

(−1)m

(2m)!

η2m

tm

[ ∫

R

x2mv0(x)dx
]∣∣∣

2

− |v̂0(0)|2
}

+
∣∣∣

∞∑

m=0

(−1)m

(2m+ 1)!

η2m+1

tm

[ ∫

R

x2m+1v0(x)dx
]∣∣∣

2

=
{ ∞∑

m=1

(−1)m

(2m)!

η2m

tm−1

[ ∫

R

x2mv0(x)dx
]}{

2v̂0(0) +

∞∑

m=1

(−1)m

(2m)!

η2m

tm

[ ∫

R

x2mv0(x)dx
]}

+
∣∣∣η

∫

R

xv0(x)dx+
∞∑

m=1

(−1)m

(2m+ 1)!

η2m+1

tm

[ ∫

R

x2m+1v0(x)dx
]∣∣∣

2

.

Therefore

lim
t→∞

{t[|v̂0(t−1/2η)|2 − |v̂0(0)|2]} = η2
{[∫

R

xv0(x)dx
]2

−
[ ∫

R

v0(x)dx
][ ∫

R

x2v0(x)dx
]}
.

If ∫

R

v0(x)dx = 0, v0(x) = σ′
0(x),
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then

lim
t→∞

{t[|σ̂0(t
−1/2η)|2 − |σ̂0(0)|2]} =

[ ∫

R

xσ0(x)dx
]2

−
[ ∫

R

σ0(x)dx
][ ∫

R

x2σ0(x)dx
]
.

These calculations are formally correct, because we are not sure if the improper integrals∫
R
|x|mv0(x)dx are convergent or not when m is large. However, we may use the following

Taylor formula

v̂0(ξ) =

∫

R

v0(x)dx − iξ

∫

R

xv0(x)dx − ξ2

2

∫

R

x2v0(x)dx +
iξ3

6

∫

R

x3 exp(−ixζ)v0(x)dx,

where 0 < |ζ| < |ξ|.
Now we get (without loss of generality, let ε = 0 in this part)

t
{
tm+1/2

∫

R

|vxm(x, t)|2dx− 1

2π

( π

2α

)1/2 m!!

(4α)m

[ ∫

R

v0(x)dx
]2}

=
1

2π

∫

R

|η|2m exp
(
− 2α|η|2

1 + ε|η|2/t
)
{t[|v̂0(t−1/2η)|2 − |v̂0(0)|2]}dη

→ 1

2π

∫

R

|η|2m+2 exp(−2α|η|2)
{[∫

R

xv0(x)dx
]2

−
[ ∫

R

v0(x)dx
][ ∫

R

x2v0(x)dx
]}

dη

=
1

2π

( π

2α

)1/2 (m+ 1)!!

(4α)m+1

{[∫

R

xv0(x)dx
]2

−
[ ∫

R

v0(x)dx
][ ∫

R

x2v0(x)dx
]}
,

as t→ ∞. Now suppose that

∫

R

v0(x)dx = 0.

Let v0(x) = σ′
0(x), where σ0 ∈ C1(R) ∩ L1(R). Then

t2
{
tm+3/2

∫

R

|vxm(x, t)|2dx− 1

2π

( π

2α

)1/2 (m+ 1)!!

(4α)m+1

[ ∫

R

σ0(x)dx
]2}

=
1

2π

∫

R

|η|2m+2 exp
(
− 2α|η|2

1 + ε|η|2/t
)
{t2[|σ̂0(t

−1/2η)|2 − |σ̂0(0)|2]}dη

→ 1

2π

∫

R

|η|2m+2 exp(−2α|η|2)
{[∫

R

xσ0(x)dx
]2

−
[ ∫

R

σ0(x)dx
][ ∫

R

x2σ0(x)dx
]}

=
1

8π

( π

2α

)1/2 (m+ 2)!

(4α)m+2

{[∫

R

xσ0(x)dx
]2

−
[ ∫

R

σ0(x)dx
][ ∫

R

x2σ0(x)dx
]}
,

as t→ ∞. The proof of Lemma 2.1 is completed.

2.2 Nonlinear analysis

Define w(x, t) = u(x, t) − v(x, t) and w0(x) = u0(x) − v0(x). Then we find that

wt − εwxxt + δwx + γHwxx + βwxxx + f(u)x = αwxx, (2.3)

w(x, 0) = w0(x). (2.4)
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Lemma 2.2 The Fourier transform of w is

ŵ(ξ, t) = exp
[
− α|ξ|2 − i ξ(β|ξ|2 + γ|ξ| − δ)

1 + ε|ξ|2 t
]
ŵ0(ξ)

−
∫ t

0

{
exp

[
− α|ξ|2 − i ξ(β|ξ|2 + γ|ξ| − δ)

1 + ε|ξ|2 (t− τ)
] i ξ

1 + ε|ξ|2 f̂(u)(ξ, τ)
}

dτ.

Additionally, if |f(u)| ≤ C|u|3+κ on R, for two constants C > 0 and 0 ≤ κ ≤ 2, then there hold

the estimates

|ŵ(ξ, t)| ≤ |ŵ0(ξ)| + C|ξ|
{ ∫ t

0

[ ∫

R

|u(x, τ)|2dx
](5+κ)/(3−κ)

dτ
}(3−κ)/4

·
{ ∫ t

0

[ ∫

R

|ux(x, τ)|2dx
]
dτ

}(1+κ)/4

≤





|ŵ0(ξ)| + C|ξ|(1 + t)1/8, if

∫

R

u0(x)dx 6= 0,

|ŵ0(ξ)| + C|ξ|, if

∫

R

u0(x)dx = 0.

Suppose now that û0(0) = 0 and w0 = 0. Then there holds the estimate

|ŵ(ξ, t)| ≤ min
{
C|ξ|, C

|ξ|
}
, ∀ t > 0.

Proof The representation of the Fourier transform of the global solution of problem (2.3)–

(2.4) is very easy to verify. We skip the details. As before, let |f(u)| ≤ C|u|3+κ, for all u ∈ R.

Furthermore, by using Gagliardo-Nirenberg’s interpolation inequality and Hölder’s inequality,

we have the following estimates (below 0 ≤ κ ≤ 2)

∫ t

0

[ ∫

R

|u(x, τ)|3+κdx
]
dτ

≤
∫ t

0

[
‖u( · , τ)‖1+κ

L∞(R)

∫

R

|u(x, τ)|2dx
]
dτ

≤
∫ t

0

[ ∫

R

|u(x, τ)|2dx
](5+κ)/4[ ∫

R

|ux(x, τ)|2dx
](1+κ)/4

dτ

≤
{∫ t

0

[ ∫

R

|u(x, τ)|2dx
](5+κ)/(3−κ)

dτ
}(3−κ)/4[ ∫ t

0

∫

R

|ux(x, τ)|2dxdτ
](1+κ)/4

.

Therefore, by the results of Theorem 1.2(II), we obtain the following estimates

|ŵ(ξ, t)| ≤ |ŵ0(ξ)| + |ξ|
∫ t

0

|f̂(u)(ξ, τ)|dτ

≤ |ŵ0(ξ)| + C|ξ|
{ ∫ t

0

[ ∫

R

|u(x, τ)|2dx
](5+κ)/(3−κ)

dτ
}(3−κ)/4

·
[ ∫ t

0

∫

R

|ux(x, τ)|2dxdτ
](1+κ)/4

≤ |ŵ0(ξ)| + C|ξ|(1 + t)1/8.
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If û0(0) = 0 and w0 = 0, then by Theorem 1.2(III), we have |ŵ(ξ, t)| ≤ C|ξ|. Performing the

Fourier transform to equation (2.3), we have

(1 + ε|ξ|2)ŵt(ξ, t) + [α|ξ|2 − i ξ(β|ξ|2 + γ|ξ| − δ)]ŵ(ξ, t) + f̂(u)x(ξ, t) = 0.

By using this equation, we get

d

dt
[|ŵ(ξ, t)|2] =

d

dt
[ŵ(ξ, t)ŵ(ξ, t)] = ŵt(ξ, t)ŵ(ξ, t) + ŵ(ξ, t)ŵt(ξ, t)

= − 2α|ξ|2
1 + ε|ξ|2 |ŵ(ξ, t)|2 − 2

1 + ε|ξ|2 Re [f̂(u)x(ξ, t)ŵ(ξ, t)].

Equivalently, we have

d

dt

{
exp

( 2α|ξ|2
1 + ε|ξ|2 t

)
|ŵ(ξ, t)|2

}
+

2

1 + ε|ξ|2 exp
( 2α|ξ|2

1 + ε|ξ|2 t
)
Re [f̂(u)x(ξ, t)ŵ(ξ, t)] = 0.

Integrating in time and using w0 = 0, we find

exp
( 2α|ξ|2

1 + ε|ξ|2 t
)
|ŵ(ξ, t)|2 = − 2

1 + ε|ξ|2
∫ t

0

exp
( 2α|ξ|2

1 + ε|ξ|2 τ
)
Re [f̂(u)x(ξ, τ)ŵ(ξ, τ)]dτ.

Applying Gronwall’s inequality, (The Gronwall’s inequality: Let the nonnegative functions g

and h satisfy the given inequality [g(t)]2 ≤ C2 + 2
∫ t

0 g(τ)h(τ)dτ for all t > 0, where C ≥ 0 is a

constant. Then g(t) ≤ C +
∫ t

0
h(τ)dτ.) we obtain the estimate

exp
( α|ξ|2

1 + ε|ξ|2 t
)
|ŵ(ξ, t)|

≤ C|ξ|
1 + ε|ξ|2

∫ t

0

exp
( α|ξ|2

1 + ε|ξ|2 τ
)[ ∫

R

|u(x, τ)|2dx
](5+κ)/4[ ∫

R

|ux(x, τ)|2dx
](1+κ)/4

dτ

≤ C

|ξ| exp
( α|ξ|2

1 + ε|ξ|2 t
)

for all t > 0.

The proof of Lemma 2.2 is completed.

Lemma 2.3 Let the initial data satisfy u0 = v0 ∈ L1(R) ∩H2(R) and
∫

R

u0(x)dx 6= 0.

Then the Cauchy problem (2.3)–(2.4) enjoys the decay estimates

(1 + t)1/2

∫

R

[|u(x, t) − v(x, t)|2 + ε|ux(x, t) − vx(x, t)|2]dx ≤ C

(1 + t)1/2
, (2.5)

(1 + t)m+1/2

∫

R

[|uxm(x, t) − vxm(x, t)|2 + ε|uxm+1(x, t) − vxm+1(x, t)|2]dx ≤ Cm

(1 + t)1/2
, (2.6)

where the positive constants C and Cm are independent of time.

Proof Multiplying equation (2.3) by 2w and integrating the result with respect to x over

R, we get

d

dt

∫

R

[|w(x, t)|2 + ε|wx(x, t)|2]dx+ 2α

∫

R

|wx(x, t)|2dx+ 2

∫

R

w(x, t)f(u)xdx = 0,
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where, for all t > 0,

∫

R

w(x, t)wx(x, t)dx = 0,

∫

R

w(x, t)Hwxx(x, t)dx = 0,

∫

R

w(x, t)wxxx(x, t)dx = 0,

∫

R

u(x, t)f(u(x, t))xdx = 0.

Applying the famous Plancherel’s identity to this energy equation yields

d

dt

∫

R

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ + 2α

∫

R

|ξ|2|ŵ(ξ, t)|2dξ + 2

∫

R

i ξv̂(ξ, t)f̂(u)dξ = 0,

or equivalently, we have

d

dt

{
(1 + t)2

∫

R

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ
}

+ 2α(1 + t)2
∫

R

|ξ|2|ŵ(ξ, t)|2dξ

= 2(1 + t)

∫

R

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ − 2(1 + t)2
∫

R

i ξv̂(ξ, t)f̂(u)(ξ, t)dξ.

Let t > ε
α . Define a small, time-dependent interval

B(t) = {ξ ∈ R : α(1 + t)|ξ|2 ≤ 1 + ε|ξ|2}.

Then

2α(1 + t)2
∫

R

|ξ|2|ŵ(ξ, t)|2dξ

= 2α(1 + t)2
∫

B(t)

|ξ|2|ŵ(ξ, t)|2dξ + 2α(1 + t)2
∫

B(t)c

|ξ|2|ŵ(ξ, t)|2dξ

≥ 2(1 + t)

∫

B(t)c

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ

= 2(1 + t)

∫

R

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ − 2(1 + t)

∫

B(t)

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ.

Thus

d

dt

{
(1 + t)2

∫

R

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ
}

≤ 2(1 + t)

∫

B(t)

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ + 2(1 + t)2
∣∣∣
∫

R

ξv̂(ξ, t)f̂(u)(ξ, t)dξ
∣∣∣.

By using some well-known decay estimates (see Lemma 2.1 and Theorem 1.2), we get

∣∣∣
∫

R

ξv̂(ξ, t)f̂(u)(ξ, t)dξ
∣∣∣ = 2π

∣∣∣
∫

R

vxf(u)dx
∣∣∣

≤ C‖vx( · , t)‖L∞(R)

∫

R

|u(x, t)|3+κdx

≤ C‖vx( · , t)‖L∞(R)

[ ∫

R

|u(x, t)|2dx
](5+κ)/4[ ∫

R

|ux(x, t)|2dx
](1+κ)/4

≤ C(1 + t)−2−κ/2.
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Furthermore, by using Lemma 2.2, we find

2(1 + t)

∫

B(t)

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ ≤ C(1 + t)1/4

∫

B(t)

dξ ≤ C(1 + t)−1/4.

Therefore

d

dt

{
(1 + t)2

∫

R

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ
}
≤ 2(1 + t)

∫

B(t)

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ + C(1 + t)−κ/2

≤ C(1 + t)−1/4 + C(1 + t)−κ/2 ≤ C.

Integrating this inequality with respect to time leads to

(1 + t)2
∫

R

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ ≤
∫

R

(1 + ε|ξ|2)|ŵ0(ξ)|2dξ + C(1 + t).

Now (2.5) is proved. The estimate (2.6) can be established similarly. The proof of Lemma 2.3

is completed now.

Lemma 2.4 Let u0 = v0 ∈ L1(R) ∩H2(R), u0(x) = ρ′0(x), ρ0 ∈ C1(R) ∩ L1(R), and

∫

R

ρ0(x)dx 6= 0.

Then, there exists a positive number λ, such that the Cauchy problem (2.3)–(2.4) enjoys the

decay estimates

(1 + t)3/2

∫

R

[|u(x, t) − v(x, t)|2 + ε|ux(x, t) − vx(x, t)|2]dx ≤ C

[1 + λ ln(1 + t)]λ
, (2.7)

(1+t)m+3/2

∫

R

[|uxm(x, t)−vxm(x, t)|2+ε|uxm+1(x, t)−vxm+1(x, t)|2]dx ≤ Cm

[1 + λ ln(1 + t)]λ
, (2.8)

where the positive constants C and Cm are independent of time.

Proof The proof is rather similar to that of Lemma 2.3. The main difference is the way to

split the frequency space into two time-dependent regions. As what we did in Lemma 2.3, we

may obtain

d

dt

{
(1 + t)4

∫

R

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ
}

+ 2α(1 + t)4
∫

R

|ξ|2|ŵ(ξ, t)|2dξ

= 4(1 + t)3
∫

R

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ − 2(1 + t)4
∫

R

i ξv̂(ξ, t)f̂(u)(ξ, t)dξ.

Let t > 2ε
α . Define

D(t) = {ξ ∈ R : α(1 + t)|ξ|2 ≤ 2(1 + ε|ξ|2)},

Ω(t) = {ξ ∈ R : α(1 + t)|ξ|2ω(t) ≤ 2(1 + ε|ξ|2)},

where

ω(t) =
1

[1 + λ ln(1 + t)]2λ
,
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and λ is a positive number to be determined later. It is easy to see that

2α(1 + t)4
∫

D(t)

|ξ|2|ŵ(ξ, t)|2dξ ≤ 4(1 + t)3
∫

D(t)

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ,

2α(1 + t)4
∫

D(t)c

|ξ|2|ŵ(ξ, t)|2dξ ≥ 4(1 + t)3
∫

D(t)c

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ.

Choose λ = 2. Now we have

2α(1 + t)4
∫

Ω(t)c

|ξ|2|ŵ(ξ, t)|2dξ − 4(1 + t)3
∫

Ω(t)c

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ

= 2α(1 + t)4
∫

D(t)c

|ξ|2|ŵ(ξ, t)|2dξ − 4(1 + t)3
∫

D(t)c

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ

+ 2α(1 + t)4
∫

D(t)∩Ω(t)c

|ξ|2|ŵ(ξ, t)|2dξ − 4(1 + t)3
∫

D(t)∩Ω(t)c

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ ≥ 0.

Let t > 0 be sufficiently large. Overall, we find that

2α(1 + t)4
∫

Ω(t)c

|ξ|2|ŵ(ξ, t)|2dξ ≥ 4(1 + t)3
∫

Ω(t)c

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ.

Thus

d

dt

{
(1 + t)4

∫

R

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ
}

≤ 4(1 + t)3
∫

Ω(t)

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ + 2(1 + t)4
∣∣∣
∫

R

ξv̂(ξ, t)f̂(u)(ξ, t)dξ
∣∣∣.

By using some well-known decay estimates (see Lemma 2.1 and Theorem 1.2), we get

∣∣∣
∫

R

ξv̂(ξ, t)f̂(u)(ξ, t)dξ
∣∣∣ = 2π

∣∣∣
∫

R

vxf(u)dx
∣∣∣

≤ C‖vx( · , t)‖L∞(R)

∫

R

|u(x, t)|3+κdx

≤ C‖vx( · , t)‖L∞(R)

[ ∫

R

|u(x, t)|2dx
](5+κ)/4[ ∫

R

|ux(x, t)|2dx
](1+κ)/4

≤ C(1 + t)−4−κ.

Furthermore, by using Lemma 2.2, we find

4(1 + t)3
∫

Ω(t)

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ ≤ C(1 + t)2
∫

Ω(t)

dξ ≤ C(1 + t)3/2

[1 + λ ln(1 + t)]λ
.

Therefore

d

dt

{
(1 + t)4

∫

R

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ
}
≤ 4(1 + t)3

∫

Ω(t)

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ + C(1 + t)−κ

≤ C(1 + t)3/2

[1 + λ ln(1 + t)]λ
.

Integrating this inequality with respect to time leads to

(1 + t)4
∫

R

(1 + ε|ξ|2)|ŵ(ξ, t)|2dξ ≤
∫

R

(1 + ε|ξ|2)|ŵ0(ξ)|2dξ +
C(1 + t)5/2

[1 + λ ln(1 + t)]λ
.
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Now (2.7) is proved. The estimate (2.8) can be established similarly. The proof of Lemma 2.4

is completed.

Lemma 2.5 (I) Suppose that u0 = v0 ∈ L1(R) ∩H2(R) and

∫

R

u0(x)dx 6= 0.

Then the unique global solution of the Cauchy problem (1.1)–(1.2) enjoys the limits

lim
t→∞

{
(1 + t)1/2

∫

R

[|u(x, t)|2 + ε|ux(x, t)|2]dx
}

= lim
t→∞

{
(1 + t)1/2

∫

R

[|v(x, t)|2 + ε|vx(x, t)|2]dx
}
,

lim
t→∞

{
(1 + t)m+1/2

∫

R

[|uxm(x, t)|2 + ε|uxm+1(x, t)|2]dx
}

= lim
t→∞

{
(1 + t)m+1/2

∫

R

[|vxm(x, t)|2 + ε|vxm+1(x, t)|2]dx
}
.

(II) Suppose that u0 = v0 ∈ L1(R) ∩H2(R), u0(x) = ρ′0(x), ρ0 ∈ C1(R) ∩ L1(R), and

∫

R

ρ0(x)dx 6= 0.

Then

lim
t→∞

{
(1 + t)3/2

∫

R

[|u(x, t)|2 + ε|ux(x, t)|2]dx
}

= lim
t→∞

{
(1 + t)3/2

∫

R

[|v(x, t)|2 + ε|vx(x, t)|2]dx
}
,

lim
t→∞

{
(1 + t)m+3/2

∫

R

[|uxm(x, t)|2 + ε|uxm+1(x, t)|2]dx
}

= lim
t→∞

{
(1 + t)m+3/2

∫

R

[|vxm(x, t)|2 + ε|vxm+1(x, t)|2]dx
}
.

Proof Below we are going to use the notation ‖uxm( · , t)‖ε defined by

‖uxm( · , t)‖2
ε = ‖uxm( · , t)‖2

L2(R) + ε‖uxm+1( · , t)‖2
L2(R).

If ε = 0 and m = 0, then it is just the regular L2-norm. If ε > 0 and m = 0, then it is

equivalent to the H1-norm. If ε ≥ 0 and m ≥ 1, then ‖uxm( · , t)‖ε is a seminorm and the

triangle inequality is still valid. By using triangle inequality, first of all, we have the upper

bound estimate

(1 + t)m/2+1/4‖uxm( · , t)‖ε

= (1 + t)m/2+1/4‖vxm( · , t) + uxm( · , t) − vxm( · , t)‖ε

≤ (1 + t)m/2+1/4‖vxm( · , t)‖ε + (1 + t)m/2+1/4‖uxm( · , t) − vxm( · , t)‖ε

≤ (1 + t)m/2+1/4‖vxm( · , t)‖ε + C(t),
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where we have taken the results of Lemma 2.3 into account. Recall that C(t) ≡ C
(1+t)1/4 → 0 as

t→ ∞. Now we get

lim sup
t→∞

[(1 + t)m/2+1/4‖uxm( · , t)‖ε] ≤ lim
t→∞

[(1 + t)m/2+1/4‖vxm( · , t)‖ε].

On the other hand, we have the lower bound estimate

(1 + t)m/2+1/4‖uxm( · , t)‖ε

= (1 + t)m/2+1/4‖vxm( · , t) + uxm( · , t) − vxm( · , t)‖ε

≥ (1 + t)m/2+1/4‖vxm( · , t)‖ε − (1 + t)m/2+1/4‖uxm( · , t) − vxm( · , t)‖ε

≥ (1 + t)m/2+1/4‖vxm( · , t)‖ε − C(t).

Therefore, we also get

lim inf
t→∞

[(1 + t)m/2+1/4‖uxm( · , t)‖ε] ≥ lim
t→∞

[(1 + t)m/2+1/4‖vxm( · , t)‖ε].

By coupling these two estimates together, we obtain

lim sup
t→∞

[(1 + t)m/2+1/4‖uxm( · , t)‖ε] ≤ lim inf
t→∞

[(1 + t)m/2+1/4‖uxm( · , t)‖ε].

Therefore, there exists the limit

lim
t→∞

[(1 + t)m+1/2‖uxm( · , t)‖2
ε] = lim

t→∞
[(1 + t)m+1/2‖vxm( · , t)‖2

ε].

The other case may be proved very similarly, where we may take

C(t) ≡ C

[1 + 2 ln(1 + t)]2
→ 0,

as t→ ∞. Now the proof of Lemma 2.5 is completed.

3 The Main Results and Proofs

Theorem 3.1 Suppose that u0 = v0 ∈ L1(R) ∩H2(R), and

∫

R

u0(x)dx 6= 0.

Then the unique global solution of the Cauchy problem (1.1)–(1.2) enjoys the limits

lim
t→∞

{
(1 + t)1/2

∫

R

[|u(x, t)|2 + ε|ux(x, t)|2]dx
}

=
1

2π

( π

2α

)1/2[ ∫

R

u0(x)dx
]2

,

lim
t→∞

{
(1 + t)m+1/2

∫

R

[|uxm(x, t)|2 + ε|uxm+1(x, t)|2]dx
}

=
1

2π

( π

2α

)1/2 m!!

(4α)m

[ ∫

R

u0(x)dx
]2

.

Proof Note that for any integer m ≥ 0, we have

lim
t→∞

[
(1 + t)m+1/2

∫

R

|uxm+1(x, t)|2dx
]

= lim
t→∞

[
(1 + t)m+1/2

∫

R

|vxm+1(x, t)|2dx
]

= 0.



Solutions to Some Open Problems in Fluid Dynamics 195

Therefore, there exists the limit

lim
t→∞

[(1 + t)m+1/2‖uxm( · , t)‖2
ε] = lim

t→∞
[(1 + t)m+1/2‖vxm( · , t)‖2

ε]

= lim
t→∞

[(1 + t)m+1/2‖vxm( · , t)‖2
L2(R)]

=
1

2π

( π

2α

) m!!

(4α)m

∣∣∣
∫

R

u0(x)dx
∣∣∣
2

.

The proof of Theorem 3.1 is completed.

Theorem 3.2 Suppose that u0 ∈ L1(R) ∩ H2(R), and that u0(x) = ρ′0(x), ρ0 ∈ C1(R) ∩
L1(R), with ∫

R

ρ0(x)dx 6= 0.

Then the unique global solution enjoys the limits

lim
t→∞

{
(1 + t)3/2

∫

R

[|u(x, t)|2 + ε|ux(x, t)|2]dx
}

=
1

2π

( π

2α

)1/2 1

4α

[ ∫

R

ρ0(x)dx
]2

,

lim
t→∞

{
(1 + t)m+3/2

∫

R

[|uxm(x, t)|2 + ε|uxm+1(x, t)|2]dx
}

=
1

2π

( π

2α

)1/2 (m+ 1)!!

(4α)m+1

[ ∫

R

ρ0(x)dx
]2

.

Proof It is very similar to the proof of Theorem 3.1.

The proofs of Theorems 1.3 and 1.4 may be accomplished by coupling the results of Theorems

3.1 and 3.2, respectively, and the following limits

lim
t→∞

{
(1 + t)m+1/2

∫

R

|uxm+1(x, t)|2dx
}

= 0, if

∫

R

u0(x)dx 6= 0.

and

lim
t→∞

{
(1 + t)m+3/2

∫

R

|uxm+1(x, t)|2dx
}

= 0, if

∫

R

u0(x)dx = 0,

respectively.

Given two initial functions u0 and ũ0 in L1(R)∩H2(R), there exist two solutions u = u(x, t)

and ũ = ũ(x, t) of problem (1.1)–(1.2) corresponding to u0 and ũ0, respectively.

Theorem 3.3 (I) There holds the limit

lim
t→∞

{
(1 + t)m+1/2

∫

R

[|uxm(x, t) − ũxm(x, t)|2 + ε|uxm+1(x, t) − ũxm+1(x, t)|2]dx
}

=
1

2π

( π

2α

)1/2 m!!

(4α)m

{∫

R

[u0(x) − ũ0(x)]dx
}2

,

if
∫

R
[u0(x) − ũ0(x)]dx 6= 0.

(II) There holds the limit

lim
t→∞

{
(1 + t)m+3/2

∫

R

[|uxm(x, t) − ũxm(x, t)|2 + ε|uxm+1(x, t) − ũxm+1(x, t)|2]dx
}

=
1

2π

( π

2α

)1/2 (m+ 1)!!

(4α)m+1

{∫

R

ρ0(x)dx
}2

,

if
∫

R
[u0(x) − ũ0(x)]dx = 0, u0(x) − ũ0(x) = ρ′0(x) and ρ0 ∈ C1(R) ∩ L1(R).
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Proof The idea of the proof is very similar to those presented in the proofs of Lemmas

2.3–2.5 and Theorems 3.1–3.2. Define ψ(x, t) = u(x, t) − ũ(x, t), φ(x, t) = v(x, t) − ṽ(x, t), and

ψ0(x) = φ0(x) = u0(x) − ũ0(x). Then ψ and φ satisfy

ψt − εψxxt + δψx + γHψxx + βψxxx + [f(u) − f(ũ)]x = αψxx,

ψ(x, 0) = ψ0(x),

and

φt − εφxxt + δφx + γHφxx + βφxxx = αφxx,

φ(x, 0) = φ0(x).

Then, very similar to the above, we obtain the estimates

(1 + t)m+1/2

∫

R

[|ψxm(x, t) − φxm(x, t)|2 + ε|ψxm+1(x, t) − φxm+1(x, t)|2]dx ≤ C

(1 + t)1/2
,

if
∫

R

[u0(x) − ũ0(x)]dx 6= 0

and

(1 + t)m+3/2

∫

R

[|ψxm(x, t) − φxm(x, t)|2 + ε|ψxm+1(x, t) − φxm+1(x, t)|2]dx ≤ C

[1 + 2 ln(1 + t)]2
,

if
∫

R

[u0(x) − ũ0(x)]dx = 0.

The other similar details are omitted.

The results of Theorem 3.3 imply that for each fixed integer m ≥ 0, the nonlinear operator

Lm : u0 7→ lim
t→∞

{
(1 + t)m+1/2

∫

R

[|uxm(x, t)|2 + ε|uxm+1(x, t)|2]dx
}1/2

is Lipschitz continuous. Note that the unique solution u depends on the initial data u0. Indeed,

for any two initial functions u0 and ũ0 in L1(R) ∩H2(R), there holds the estimate

|Lmu0 − Lmũ0| ≤
[ 1

2π

( π

2α

)1/2 m!!

(4α)m

]1/2[ ∫

R

|u0(x) − ũ0(x)|dx
]
.

Remark 3.1 For |f(u)| = O(|u|3+κ), as |u| → ∞, with large κ, if the initial data is

sufficiently small, then the existence and uniqueness of the global solution of problem (1.1)–

(1.2) are also true. We focused on the exact limits of the global solutions for the case 0 ≤ κ ≤ 2,

with arbitrarily large initial data. The existence and uniqueness of the global strong solution

are open for (1.1)–(1.2) with large κ and large u0.



Solutions to Some Open Problems in Fluid Dynamics 197

Remark 3.2 The model equation (1.1) can be written as

Put + Qu+ Rux + F(u, ux, uxx) = 0,

where F(u, ux, uxx) is a nonlinear function of u, ux and uxx, P , Q and R are linear differ-

ential operators, specifically, P and Q are dissipative operators, ∂xR is a dispersive operator.

Additionally,

P̂u(ξ, t) = p(ξ)û(ξ, t), p(0) = 1, p(ξ) ≥ 1, ∀ ξ ∈ R,

Q̂u(ξ, t) = q(ξ)û(ξ, t), q(0) = 0, q(ξ) > 0, ∀ ξ 6= 0,

R̂u(ξ, t) = r(ξ)û(ξ, t), r(0) ∈ R, r(ξ) ∈ R, ∀ ξ ∈ R,

where p, q and r are even functions of ξ. In this paper, we only considered the particular case

Pu = u− εuxx, Qu = −αuxx, Ru = δ + γHux + βuxx, and F(u, ux) = f(u)x.

Remark 3.3 Many mathematicians have investigated the existence of global attractors and

the existence of inertial manifolds of infinite-dimensional dynamical systems governed by dissi-

pative nonlinear partial differential equations, including our model equation (1.1), the Navier-

Stokes equations, the Benard flow problem and the Bingham fluid. Inertial manifold is a

finite-dimensional invariant Lipschitz manifold which attracts exponentially all orbits and con-

tains the global attractor. Estimates of Hausdorff dimension and fractal dimension of the global

attractor and inertial manifold have been obtained by using various advanced techniques. Some

authors have constructed finite-dimensional manifolds (approximate finite-dimensional inertial

manifolds) and applied the results to reaction diffusion equations. An approximate inertial

manifold can be defined as a finite-dimensional Lipschitz manifold and a thin surrounding

neighborhood into which any orbit enters in a finite time. It is clear that the global attrac-

tor lies in this neighborhood. The lowest dimension of inertial manifolds for some particular

system (e.g. the one-dimensional Kuramoto-Sivashinski equation) have also been established.

The finite-dimensional global attractor and the inertial manifold open an important way for

the reduction of the dynamics of infinite-dimensional dissipative differential equations to a

finite-dimensional system. More precisely, people consider a finite-dimensional system that will

capture all the asymptotic behavior of the original system. It has been suggested and ex-

pected that the limit will determine the Hausdorff dimension and the fractal dimension of the

global attractor and the inertial manifold. Therefore, we study the evolution of the functions

(1+t)m+1/2
∫

R
|uxm(x, t)|2dx, where the integerm ≥ 0. In particular, we investigate their limits

as t→ ∞. It turns out that the sharp Hausdorff dimension and fractal dimension of the global

attractor depend on the exact limit of a physically important quantity. The exact limits of the

physical quantities may play significant roles in the evaluations of the Hausdorff dimension and

fractal dimension of the global attractor and the inertial manifold of the infinite-dimensional

dynamical systems.
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