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1 Introduction

Necessary and sufficient criteria of exponential and strong ergodicity for continuous-time

Markov chains (i.e. continuous-time Markov processes on a countable space), based on the mo-

ments of the first hitting time, have been developed in [1, 2], while for continuous-time Markov

processes on a general space, the given criteria (see [3, 4]) are sufficient but not necessary. In

this paper, we aim to find the necessary and sufficient conditions for both forms of ergodicity

for Markov processes with a particular state in their spaces, using different methods, and apply

the results to the study of the queue length of the M/G/1 queue with vacations.

Throughout the paper, we denote by R+ the non-negative real number set, Z+ the non-

negative integer set and N+ the positive integer set. Let (Φt)t∈R+ be a time-homogeneous

continuous-time Markov process on a locally compact separable metric space X , endowed with

the Borel σ-field B(X). We denote by P (t, x, A), t ∈ R+, A ∈ B(X) the transition probability

function of the Markov process:

P (t, x, A) = Px[Φt ∈ A] = Ex[I{Φt∈A}].

Here, Px and Ex denote respectively the probability and expectation of the Markov process Φt

under the initial condition Φ0 = x. We write P (t, x, x) = P (t, x, {x}).

The Markov process Φt is said to be ergodic if there exists (the unique) invariant probability

measure π such that

lim
t→∞

‖P (t, x, · ) − π‖ = 0 (1.1)
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for all x ∈ X , where ‖ · ‖ denotes the usual total variation norm; exponentially ergodic if it is

ergodic, and there exists some r > 0 such that

lim
t→∞

ert‖P (t, x, · ) − π‖ = 0 (1.2)

for π-a.e. x ∈ X ; strongly ergodic if it is ergodic, and

lim
t→∞

sup
x∈X

‖P (t, x, · ) − π‖ = 0. (1.3)

To obtain our results, we shall make the following assumption on the Markov process.

Assumption 1.1 There exists a state x0 such that whenever the Markov process Φt hits

x0, it will sojourn there for a random time that is positive and finite with probability 1.

The assumption seems a little strong, but there are still plenty of Markov processes satisfying

it, for example many queueing processes and all the totally stable continuous-time Markov

chains. For a Markov process satisfying the assumption, due to the Markov property and the

homogeneity, it can be easily proved that the sojourn time Tx0 in x0 is exponentially distributed

with some parameter λ, 0 < λ < ∞. Z. T. Hou, et al [5] first investigated subgeometric

convergence for such a process. Roughly speaking, subgeometric convergence is a kind of

convergence quicker than ordinary ergodicity and slower than exponential ergodicity. As its

continuation, we study exponential and strong ergodicity in the paper.

2 Exponential and Strong Ergodicity

In this section, we study exponential and strong ergodicity for Markov processes in terms of

its discrete-time skeleton chains. In the following, we first review some definitions and results

of discrete-time Markov chains.

Let Φn be a discrete-time Markov chain on X and define τx = inf{n ∈ N+ : Φn = x} to be

the first return time to the state x. The chain Φn is called ergodic, geometrically ergodic, and

strongly ergodic if (1.1)–(1.3) hold for t = n, respectively. The following proposition states the

known criteria of geometric and strong ergodicity, of which part (i) is from [6, Proposition 1]

and part (ii) is from [7, Theorem 16.0.2].

Proposition 2.1 Let Φn be an ergodic Markov chain on X with invariant probability mea-

sure π. Suppose that there exists a state x0 ∈ X such that πx0 > 0. Then

( i ) Φn is geometrically ergodic if and only if Ex0 [e
ατx0 ] < ∞ for some α > 0,

(ii) Φn is strongly ergodic if and only if sup
x∈X

Ex[τx0 ] < ∞.

For the Markov process Φt, we define τx = inf{t > 0 : Φt = x} to be the first hitting time

on x, and δx = inf{t > J1 : Φt = x} to be the first return time to x, where J1 is the first jump

time of Φt. Define τx0(h) = h inf{n ∈ N+ : Φnh = x0} to be the first hitting time on x0 of

its skeleton chain Φnh. Due to the convention, we adopt the notation τx for both discrete-time

chains and continuous-time processes. The notation’s meaning in the paper is clear and should

not cause any confusion for understanding.



Exponential and Strong Ergodicity for Markov Processes 201

The following lemma reveals the relationship between the moments of the first hitting time

of the Markov process Φt and those of its skeleton chain Φnh, which plays a crucial role in

proving Theorem 2.1.

Lemma 2.1 Suppose that the Markov process Φt satisfies Assumption 1.1. Then

( i ) Ex0 [e
rδx0 ] < ∞ for some r > 0 if and only if Ex0 [e

αδx0 (h)] < ∞ for some α > 0 and

h > 0;

(ii) sup
x∈X

Ex[τx0 ] < ∞ if and only if sup
x∈X

Ex[τx0(h)] < ∞ for any h > 0.

Proof Due to the assumption on the process, we know that P (t, x0, x0) ≥ e−λt > 0 for

all t > 0. We now prove that P (t, x0, x0) < 1 for all t > 0. We conversely assume that

P (t̂, x0, x0) = 1 for some t̂ > 0. Then for s < t̂, by Chapman-Kolmogorov equation we have

0 = P (t̂, x0, X − {x0})

=

∫

X

P (t̂ − s, x0, dy)P (s, y, X − {x0})

≥ P (t̂ − s, x0, x0)P (s, x0, X − {x0}).

Since P (t̂ − s, x0, x0) > 0, it implies that P (s, x0, X − {x0}) = 0, so P (s, x0, x0) = 1. And

for s > t̂, choose some n such that s
n

< t̂, we have P (s, x0, x0) ≥ [P ( s
n
, x0, x0)]

n = 1. Hence,

we get that P (t, x0, x0) = 1 for all t > 0, thus it conflicts Assumption 1.1.

(1) With the proved fact that 0 < P (t, x0, x0) < 1 for all t > 0, we can prove part (i) by

copying the proof of Lemma 6.2 in [1, Chapter 6], so we omit the proof.

(2) To prove (ii), we first prove the sufficiency. Suppose that sup
x∈X

Ex[τx0(h)] < ∞ for any

h > 0. It is possible that the skeleton chain Φnh can miss visits of the continuous-time process

to x0, and so result in τx0 ≤ τx0(h). Hence we have sup
x∈X

Ex[τx0 ] < ∞.

Next prove the necessity. Suppose that sup
x∈X

Ex[τx0 ] < ∞. Then we have

Ex0 [δx0 ] =

∫

X\x0

P (J1, x0, dy)Ey[τx0 ] + Ex0 [J1] ≤ sup
x∈X

Ex[τx0 ] +
1

λ
< ∞. (2.1)

Assume that Φ0 = x. Once the process Φt arrives at x0, it must stay at x0 for a positive length,

and then repeat leaving and returning infinitely. Let Dk be the kth sojourn time in x0 and Wk

be the length of the interval between the kth exit from x0 and the next visit to x0.

Note that Wk are independent and that Dk are independent of each other and the Wk.

Moreover, Dk are identically exponentially distributed with parameter λ. Define N = min{n ≥

1 | the h-skeleton is in state x0 during the interval Dn}. Then we have

Ex[τx0(h)] ≤ Ex[τx0 ] + Ex0

[ N−1∑

i=1

(Di + Wi) + h
]

≤ (h + Ex[τx0 ]) +

∞∑

n=1

Ex0

[ n−1∑

i=1

(Di + Wi)I{N=n}

]

≤ (h + Ex[τx0 ]) +

∞∑

n=1

Ex0

[ n−1∑

i=1

(Di + Wi)In−1T
k=1

{Dk≤h}

]
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≤ (h + Ex[τx0 ]) +
∞∑

n=1

Ex0

[
(n − 1)h +

n−1∑

i=1

Wi

]
(1 − e−λh)n−1

≤ (h + Ex[τx0 ]) +

∞∑

n=1

(n − 1)(h + Ex0 [δx0 ])(1 − e−λh)n−1. (2.2)

From (2.1) and (2.2), we have that sup
x∈X

Ex[τx0(h)] < ∞.

It was shown by [5] that the Markov process Φt is ergodic, subgeometrically convergent if

and only if so is any skeleton chain Φnh of Φt. Combing this fact with the following lemma, we

can say that the Markov process Φt has almost the same convergence as any skeleton chain of

Φt.

Lemma 2.2 The Markov process Φt is exponentially (resp. strongly) ergodic if and only if

any skeleton chain Φnh of Φt is geometrically (resp. strongly) ergodic.

Proof The necessity is obvious. In fact, if Φt is exponentially (resp. strongly) ergodic, by

putting t = nh in (1.2) (resp. (1.3)), then we get that the skeleton chain Φnh is geometrically

(resp. strongly) ergodic.

For the sufficiency, [6, Theorem 1] has shown that if any skeleton chain Φnh of Φt is geo-

metrically ergodic, then Φt is exponentially ergodic. Similarly, we can prove that if the skeleton

chain Φnh of Φt is strongly ergodic, then so is Φt.

We are now in a position to establish our main result.

Theorem 2.1 Suppose that the Markov process Φt is ergodic and satisfies Assumption 1.1.

Then

( i ) Φt is exponentially ergodic if and only if Ex0 [e
rδx0 ] < ∞ for some r > 0;

(ii) Φt is strongly ergodic if and only if sup
x∈X

Ex[τx0 ] < ∞.

Proof (i) In the proof Theorem 2.1 of [5], we have shown that πx0 > 0. Suppose that

Φt is exponentially ergodic. By Lemma 2.2, we know that any skeleton chain Φnh of Φt is

geometrically ergodic, and by Proposition 2.1 we know that there exists some α > 0 such that

Ex0 [e
αδx0 (h)] < ∞. Hence, it follows from Lemma 2.1 that there exists some r > 0 such that

Ex0 [e
rδx0 ] < ∞.

Conversely, suppose that Ex0 [e
rδx0 ] < ∞ for some r > 0. By Lemma 2.1 we know that there

exists some α > 0, h > 0 such that Ex0 [e
ατx0(h)] < ∞, and by Proposition 2.1 and Lemma 2.2

we know that Φt is exponentially ergodic.

(ii) Following the same lines as the proof of part (i), we easily have that part (ii) holds from

Proposition 2.1, Lemmas 2.1 and 2.2.

Remark 2.1 Part (i) of Theorem 2.1 is not an entirely new result. The sufficiency of part

(i) can also be proved with different methods. (For more details, see [4, Theorem 5.2 and

Theorem 6.2].)
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3 Length of the M/G/1 Queue with Multiple Vacations

There is much literature (e.g. [8, 9]) on M/G/1 queues with vacations. These queues include,

for example the M/G/1 queue with step-up time, with N -policy, with single vacation, or with

multiple vacations. In this section, we only study the most complicated case: the M/G/1 queue

with multiple vacations, which is denoted simply by M/G/1(E, MV) (see e.g. [10–12]), and the

corresponding results for the other queues can be easily obtained by the same method.

M/G/1(E, MV) is gotten by introducing the strategy of exhaustive service and multiple

vacations to the classical M/G/1 queue: once the system has no customers, the server begins a

vacation of random length V immediately. If, when the vacation ends, the system still has no

customers, then the server continues with further independent, identically distributed vacations

that do not end until the system has customers queueing when a vacation ends. Here V is always

assumed to be a non-negative random variable, with distribution function V (x), that has finite

first moment, i.e., E[V ] < ∞. For M/G/1(E, MV), the customers arrive according to a Poisson

process with the parameter λ, 0 < λ < ∞ and the service time B has a general distribution

B(x).

Let Qb be the number of customers in the system when one busy period begins. Then

P [Qb = j] =
vj

1 − v0
, j ∈ N+,

where

vj =

∫ ∞

0

(λt)j

j!
e−λtdV (t), j ∈ Z+

is the probability that j customers join the queue during a vacation. Denote by Dv the busy

period of M/G/1(E, MV) and by D the busy period of the classical M/G/1 queue. It is easy

to see that

{Dv | Qb = k} = {D1 + D2 + · · · + Dk}, (3.1)

where Dk is the busy period of the classical M/G/1 queue caused by the kth customer and Di’s

are independent and identically distributed. Note that Dk has the same distribution as D. Let

J be the number of vacations during a series of consecutive vacations. Then

P [J = j] = v
j−1
0 (1 − v0), j ∈ N+.

Let Vv be the vacation period of M/G/1(E, MV). Then

{Vv | J = j} = {V1 + V2 + · · · + Vj}, (3.2)

where Vi denotes the ith vacation and the Vi’s are independent and identically distributed.

Define
1

µ
=

∫ ∞

0

xdB(x) and ρ =
λ

µ
.

Let Lt be the queue length process of M/G/1(E, MV). It is known that Lt is not a Markov

process unless B(x) is exponentially distributed. We introduce a supplementary variable as
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follows:

θt = the elapsed service time of the customer being served at time t

(= 0 if the server is idle at time t).

Then (Lt, θt) becomes a continuous-time Markov process on the two-dimensional state space

X = Z+ × R+. It is easy to see that when (Lt, θt) hits the state (0, 0), it will stay there for

a random length which is exponentially distributed with the parameter λ, so (Lt, θt) satisfies

Assumption 1.1 with x0 = (0, 0). Several types of ergodicity for the discrete-time embedded

chain of L(t) were studied in [13], and polynomial convergence for (Lt, θt) was investigated in

[5]. By [5, Theorem 3.1], we know that (Lt, θt) is ergodic if and only if ρ < 1.

For a given constant r > 0, denote by G+(r) the set of all distributions such that

∫ ∞

0

erxdF (x) < ∞,

and by G+ the set of all nonnegative distributions with finite exponential moments, i.e.

G+ =
⋃

r>0

G+(r).

Lemma 3.1 Suppose that ρ < 1 for the classical M/G/1 queue. Then its busy period

distribution D(x) ∈ G+ if and only if its service time distribution B(x) ∈ G+.

Proof Let W (t) be the virtual waiting time of the classical M/G/1 queue. Then W (t) is a

Markov process satisfying Assumption 1.1 and the state 0 is the particular state x0. From [6,

Theorem 2], we know that W (t) is ergodic if and only if ρ < 1. Moreover, W (t) is exponentially

ergodic if and only if B(x) is in G+. Now suppose that ρ < 1. Then it follows from Theorem

2.1 that W (t) is exponentially ergodic if and only if E0[e
rδ0 ] = E[erD] < ∞, or equivalently,

D(x) is in G+. Hence, D(x) is in G+ if and only if B(x) is in G+.

Remark 3.1 Lemma 3.1 has been obtained with a different method (see, e.g. [14]), which

is important in the queue literature. Here, we display a new and short proof of it.

Theorem 3.1 Suppose that (Lt, θt) is ergodic. Then

( i ) (Lt, θt) is exponentially ergodic if and only if both V (x) and B(x) are in G+,

(ii) (Lt, θt) is not strongly ergodic.

Proof (i) If both V (x) and B(x) belong to G+, then there exists some r > 0, such that

E[erB] < +∞ and E[erV ] < +∞.

Since E[erB] < +∞, it implies from Lemma 3.1 that there exists some r1 > 0, such that

E[er1D] < ∞. Thus the functions E[esD] and E[esV ] are continuous in s when 0 ≤ s ≤

min{r, r1}, so we can choose an appropriate r2 that is greater than, but sufficiently close to, 0

such that

λ(E[er2D] − 1) < r, v0E[er2V ] < 1.
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Thus from (3.1), we have

E[er2Dv ] =

∞∑

k=1

P{Qb = k}E[er2(D1+D2+···+DQb
) | Qb = k]

=
∞∑

k=1

vk

1 − v0
(E[er2D])k

=

∞∑

k=1

(E[er2D])k

1 − v0

∫ ∞

0

(λt)
k

k!
e−λtdV (t)

≤
1

1 − v0

∫ ∞

0

eλ(E[er2D]−1)tdV (t)

< ∞, (3.3)

and from (3.2), we get

E[er2Vv ] =

∞∑

j=1

P{J = j}E[er2(V1+V2+···+VJ ) | J = j]

=

∞∑

j=1

(1 − v0)v
j−1
0 (E[er2V ])j

< ∞. (3.4)

Hence,

E(0,0)[e
r2δ(0,0) ] = E(0,0)[e

r2(Dv+Vv)] = E[er2Vv ]E[er2Dv ] < ∞, (3.5)

and by Theorem 2.1 we see that (Lt, θt) is exponentially ergodic.

On the other hand, if (Lt, θt) is exponentially ergodic, then by Theorem 2.1 we know that

for some r > 0,

E(0,0)[e
rδ(0,0) ] < ∞.

We get from (3.3)–(3.5) that both V (x) and B(x) are in G+.

(ii) Since

sup
x∈Z+×R+

Ex[δ(0,0)] ≥ sup
i∈Z+

E(i,0)[δ(0,0)] ≥ sup
i∈Z+

iE[D] = ∞,

it follows from Theorem 2.1 that (Lt, θt) is not strongly ergodic.

Remark 3.2 Combing Theorem 3.1 with [5, Theorem 3.3], we know that exponential

(resp. polynomial) moments of V and B determine the corresponding convergence of (Lt, θt).

It should be noted that usually queue length processes are not strongly ergodic.
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