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Abstract In this paper, the authors investigate three aspects of statistical inference for the
partially linear regression models where some covariates are measured with errors. Firstly,
a bandwidth selection procedure is proposed, which is a combination of the difference-
based technique and GCV method. Secondly, a goodness-of-fit test procedure is proposed,
which is an extension of the generalized likelihood technique. Thirdly, a variable selection
procedure for the parametric part is provided based on the nonconcave penalization and
corrected profile least squares. Same as “Variable selection via nonconcave penalized like-
lihood and its oracle properties” (J. Amer. Statist. Assoc., 96, 2001, 1348–1360), it is
shown that the resulting estimator has an oracle property with a proper choice of regu-
larization parameters and penalty function. Simulation studies are conducted to illustrate
the finite sample performances of the proposed procedures.
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1 Introduction

Parametric regression provides powerful tools for analyzing practical data when the models

are correctly specified, but may suffer from large modeling biases if the structures of models

are misspecified. As an alternative, nonparametric smoothing eases the concerns on modeling

biases. However, the nonparametric method is hampered by the so-called “curse of dimension-

ality” in multivariate settings (see [14, 22] among others). One of the methods for attenuating

this difficulty is to model covariate effects via a partially linear structure, a combination of

linear and nonparametric parts. This results in the partially linear regression models (see [12]).

In general, a partially linear regression model can be written as

Y = Xτβ + g(U) + ε, (1.1)

where Y is the response, both X and U are possibly vector-valued covariates, ε is a random

error independent of (X, U) with E(ε) = 0 and Var(ε) = σ2, β is an unknown parameter vector

having the same dimension as X , g( · ) is an unknown smooth function, and the superscript (τ )

denotes the transpose of a vector or a matrix.
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The partially linear regression model has broad applicability in the fields of biology, eco-

nomics, education and social sciences. This model and various associated estimators, test

statistics, and generalizations have generated a substantial body of literature, which include

[6–8, 11, 13, 21, 23, 28–31]. To name just a few.

In many practical situations, however, there often exist covariate measurement errors. For

example, it has been well documented in the literature that covariates such as blood pressure,

urinary sodium chloride level and exposure to pollutants are often subject to measure error.

Some work has been done in the estimation of regression coefficients of the partially linear model

(1.1) in the presence of additive measurement errors in the predictors. For example, Cui and Li

[10] and Liang, Härdle and Carroll [27] discussed the estimation problem when the covariates are

measured with additive errors by the nearest neighbor estimation and general kernel smoothing

for the nonparametric component, respectively. Liang [26] discussed estimation of the partially

linear model with measurement errors in the nonparametric part.

However, according to the knowledge of the authors, there is no article investigating statis-

tical inference beyond point estimation for partially linear regression models with measurement

errors, whereas the statistical inference theory has been well developed for partially linear re-

gression models without measurement errors. Actually, even for classical regression models

with measurement errors, there have not yet been many articles investigating statistical infer-

ence except recent papers by Cheng and Tsai [9] and You and Xu [33]. Cheng and Tsai [9]

investigated the invariance property of score tests for assessing heteroscedasticity, first-order

autoregressive disturbance, and the need for a Box-Cox per transformation in the context of

linear regression models with additive measurement errors. They showed that the score tests

for measurement error models are identical to the corresponding well-established tests derived

from the standard linear regression models. You and Xu [33] provided a procedure to select

the significant covariates of the linear regression models in which some or all covariates are

measured with errors. The proposed method is based on the combination of a nonconcave

penalization and a corrected least squares, and it simultaneously selects significant covariates

and estimates the unknown regression coefficients.

The objective of the present paper is to fill this gap. In this paper, same as [27], we consider

the case that the covariate vector X is measured with additive errors, and U is error free, i.e.,

we can not observe X but W where

W = X + ζ, (1.2)

and ζ is the measurement error vector. We assume that ζ is independent of (X, U, ε), E(ζ) = 0

and Cov(ζ) = Σζ where Σζ is assumed known, same as in [24, 34] among others. However, we

will take up the case that it is estimated in Section 6.

Due to the curse of dimensionality, for simplicity, we assume that U is univariate throughout

this paper. Suppose that the dimension of X is p, and {(Yi, Wi, Ui)}n
i=1 is a random sample

from model (1.1) with measurement errors (1.2).

The contribution of this paper is three fold. We first propose a simple bandwidth selection

procedure which is based on the combination of the difference technique and GCV method.

After fitting model (1.1), one often asks if there exists a parametric structure for g( · ). This

amounts to testing if g( · ) is in a certain parametric form. However, for such a frequently-

asked question, there are limited tools available for model (1.1) with measurement errors (1.2).

We propose a goodness-of-fit test procedure, which is an extension of the generalized likelihood

technique proposed by Fan, Zhang and Zhang [19] to the setting of partially linear measurement
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error model. The bootstrap method is used to evaluate the p-value of the test.

Like traditional parametric regression, covariate selection is also important in the semi-

parametric model (1.1) with measurement errors (1.2). To reduce possible modeling biases,

the nonlinear terms and interactions between covariates are often introduced. This makes the

number of covariates in the parametric part of semiparametric model (1.1) easily be large. It

is common in practice to include only important variables in the model to enhance predictabil-

ity and to give a parsimonious description between the response and the covariates. Due to

the complexity caused by measurement errors, the well-developed stepwise deletion and best

variable selection can not be extended to semiparametric model (1.1). Recently, Fan and Li

[15] proposed a covariate selection method via nonconcave penalized likelihood. This method

deletes insignificant covariates by estimating their coefficients as 0 and simultaneously selects

significant covariates and estimates regression coefficients. From their simulations, Fan and Li

[15] showed that the penalized likelihood estimator with smoothly clipped absolute deviation

(SCAD) penalty outperforms the best subset variable selection in terms of computational cost

and stability using the terminology of [3]. In addition, they have demonstrated that with a

proper choice of regularization parameters and penalty functions (such as SCAD), the penal-

ized likelihood estimator possesses an oracle property. Namely, the true regression coefficients

that are zero are automatically estimated as zero, and the remaining coefficients are estimated

as well as if the correct submodel is known in advance. Hence, the SCAD and its siblings are

ideal for variable selection, at least from the theoretical point of view. Fan and Li [16, 17], Cai

et. al. [4] and Fan and Peng [18] extended their nonconcave penalized likelihood approach to

the Cox model, frailty model, multivariate Cox model, longitudinal partially linear model and

regression model with infinite parameters. These nice properties encourage us to extend the

technique to model (1.1) with measurement errors (1.2).

The layout of the remainder of this paper is as follows. In Section 2, we present the corrected

profile least squares estimation proposed by Liang, Härdle and Carroll [27]. A bandwidth

selection is described in Section 3. A bootstrap based test for the goodness of fit of models is

developed in Section 4. A model selection procedure is shown in Section 5. Section 6 states

the corresponding results when the measurement error variance Σζ is estimated. Simulations

are conducted in Section 7. Section 8 concludes. The proofs of the main results are collected

in Appendix.

2 Corrected Profile Least Squares Estimation

A corrected profile least squares estimation proposed by Liang, Härdle and Carroll [27] has

the following form

β̂n =
( n∑

i=1

ŴiŴ
τ
i − nΣζ

)−1 n∑

i=1

ŴiŶi,

where Ŷ = (Ŷ1, · · · , Ŷn)τ = (In − S)Y, Ŵ = (Ŵ1, · · · , Ŵn)τ = (In − S)W,

S =




(1 0)(Dτ
U1

ωU1
DU1

)−1Dτ
U1

ωU1

...
(1 0)(Dτ

Un
ωUnDUn)−1Dτ

Un
ωUn


 , Du =




1 U1−u
h

...
...

1 Un−u
h


 ,

ωu = diag(Kh(U1−u), · · · , Kh(Un −u)), K( · ) is a kernel function, h is a bandwidth, Kh( · ) =
K( ·

h )

h , Y = (Y1, · · · , Yn)τ , and W = (W1, · · · , Wn)τ . Moreover, the fact g(Ui) = E(Yi −
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Xτ
i β |Ui) = E(Yi − W τ

i β |Ui) suggests one to estimate the nonparametric component g( · ) by

ĝn(u) = (1 0)(Dτ
uωuDu)−1Dτ

uωu(Y − Wβ̂n).

The following assumptions are needed to present the asymptotic properties of β̂n and ĝn(u),

and other results developed in the subsequent sections.

Assumption 2.1 The random variable U has a bounded support Ω. Its density function

f( · ) is Lipschitz continuous and bounded away from 0 on its support.

Assumption 2.2 There is an s > 2 such that E‖X‖2s < ∞ and E‖ζ‖2s < ∞ and for

some δ < 2 − s−1, such that n2δ−1h → ∞ as n → ∞.

Assumption 2.3 g( · ) has the continuous second derivative in Ω.

Assumption 2.4 The function K( · ) is a symmetric density function with compact support

and the bandwidth satisfies nh4

(log log n)1/2
→ 0 and nh2

(log n)2→∞ as n → ∞.

The following theorem gives the asymptotic normality of β̂n.

Theorem 2.1 Suppose that Assumptions 2.1–2.4 hold. Then the corrected profile least

squares estimator β̂n of β is asymptotically normal, namely

√
n(β̂n − β) →D N(0,Σ−1

1 Σ2Σ
−1
1 ), as n → ∞,

where Σ1 = E{X − E(X |U)}{X − E(X |U)}τ and

Σ2 = E(ε − ζτβ)2Σ1 + σ2Σζ + E{(ζζτ − Σζ)ββτ (ζζτ − Σζ)}.

The following theorem gives the asymptotic normality of the estimator ĝn( · ).

Theorem 2.2 Suppose that Assumptions 2.1–2.4 hold. Then the local linear estimator

ĝn( · ) of g( · ) is asymptotically normal, namely

√
nh

{
ĝn(u0) − g(u0) −

h2

2

µ2
2 − µ1µ3

µ2 − µ2
1

g′′(u0)
}
→D N(0,Σ3), as n → ∞,

where

Σ3 =
(c2

0ν0 + 2c0c1ν1 + c2
1ν2)

f(u0)
(σ2 + βτΣζβ)

with c0 = µ2

(µ2−µ2

1
)
, c1 = − µ1

(µ2−µ2

1
)
, µj =

∫ ∞

−∞
ujK(u)du, νj =

∫ ∞

−∞
ujK2(u)du.

It should be noted that Liang, Härdle and Carroll [27] just presented the convergence rate

of ĝn( · ), no asymptotic normality.

3 Bandwidth Selection Procedure

The corrected profile least square estimators β̂n and local linear estimator ĝn( · ) depend

on the choice of bandwidth. Furthermore, the issue of bandwidth selection arises naturally in

practice. Selecting bandwidths for semiparametric models, particularly for estimating the para-

metric component, was posed by Bickel and Kwon [2] as an important and unsolved problem.

As discussed by Fan in [2], the estimation of the parametric component does not very sensitively
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depend on the choice of bandwidth, as long as the selected bandwidth does not create excessive

biases in the estimation of the nonparametric components. The reason is that the biases in the

estimation of nonparametric components can not be averaged out in the process of estimating

the parametric component, yet the variance in nonparametric estimation can be averaged out.

Hence, we choose a bandwidth that is suitable for estimating function g( · ).
We propose to use the following technique to determine an appropriate value of the smooth-

ing parameter h. We first construct a root-n consistent estimator β̂
⋆

n of β which does not

involve h, and then, based on the modified data set {Yi −W τ
i β̂

⋆

n, Ui}n
i=1, select an appropriate

value of h by CV method.

Let the sample {(Yi, Wi, Ui)}n
i=1 be ordered according to variable U . Under some mild

conditions, the spacing between Ui+1 −Ui is Op(
1
n ) so that g(Ui+1)− g(Ui) = Op(

1
n ). Then by

model (1.1),

Yi+1 − Yi = (Xi+1,1 − Xi,1)β1 + · · · + (Xi+1,p − Xi,p)βp + g(Ui+1) − g(Ui) + εi+1 − εi

= (Xi+1,1 − Xi,1)β1 + · · · + (Xi+1,p − Xi,p)βp + εi+1 − εi + Op

( 1

n

)
,

where Xi = (Xi,1, · · · , Xi,p)
τ , and β = (β1, · · · , βp)

τ . Let ε⋆
i ’s be corrected stochastic errors

with ε⋆
i = εi+1 − εi. Thus, the nonparametric function g( · ) in model (1.1) is eliminated. The

coefficient β can be estimated by ordinary least-squares from the above approximation model.

That is

β̃
⋆

n =
{ n−1∑

i=1

(Xi+1 − Xi)(Xi+1 − Xi)
τ
}−1 n−1∑

i=1

(Xi+1 − Xi)(Yi+1 − Yi).

However, in our case Xi can not be observed. Therefore, we propose the following corrected

estimator

β̂
⋆

n =
{ n−1∑

i=1

(Wi+1 − Wi)(Wi+1 − Wi)
τ − 2(n − 1)Σζ

}−1 n−1∑

i=1

(Wi+1 − Wi)(Yi+1 − Yi).

Under some regularity conditions, we can show β̂
⋆

n is root-n consistent.

Based on β̂
⋆

n, we can get the modified data set {Yi − W τ
i β̂

⋆

n, Ui}n
i=1. Then the usual cross-

validation method can be used. Define the squares cross-validation function by

CV(h) = n−1
n∑

i=1

{Yi − W τ
i β̂

⋆

n − ĝh,−i(Ui)}2, (3.1)

where ĝh,−i( · ) is the local linear estimate from the data {Yi − W τ
i β̂

⋆

n, Ui}n
i=1 omitting the ith

point (Yi − W τ
i β̂

⋆

n, Ui). Depending on the smoothing parameter h, formula (3.1) is used as

an overall measure of effectiveness of the estimation scheme. The cross-validation bandwidth

selector is the one that minimizes (3.1), namely ĥCV = argmin
h

CV(h).

4 Goodness of Fit Test Based on Bootstrap

To test whether model (1.1) holds with a specified parametric form such as a linear model,

we propose a goodness-of-fit test by comparing the pseudo residual sums of squares (PRSS)

between parametric and semiparametric fittings. This method is an extension of the generalized
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likelihood technique developed by Fan, Zhang and Zhang [19] to the partially linear regression

models with measurement errors.

Consider the null hypothesis

H0 : g(u) = a(u, θ), (4.1)

where a( · , θ) is a given family of function indexed by unknown parameter vector θ. Let θ̂n be

an estimator of θ. The pseudo residual sum of squares under the null hypothesis is

PRSS0 = n−1
n∑

i=1

{Yi − W τ
i β̂n − a(Ui, θ̂n)}2.

Analogously, the pseudo residual sum of squares corresponding to model (1.1) is

PRSS1 = n−1
n∑

i=1

{Yi − W τ
i β̂n − ĝn(Ui)}2.

The test statistic is defined as

Tn =
PRSS0 − PRSS1

PRSS1
=

PRSS0

PRSS1
− 1.

We have the following theorem for Tn.

Theorem 4.1 Under the null hypothesis (4.1) and Assumptions 2.1– 2.4, if h → 0 in such

a way that nh3/2 → ∞, then the test statistic

rKTn →D χ2
δn

, as n → ∞,

where

rK =
(
K(0) − 1

2

∫
K2(u)du

){∫ (
K(u) − 1

2
K ∗ K(u)

)2

du
}−1

,

δn = rK
|U|
h

(
K(0) − 1

2

∫
K2(u)du

)
,

K ∗ K denotes the convolution of K and |U| is the length of the support Ω of U .

We reject the null hypothesis (4.1) for large values of Tn. The following bootstrap approach

is used to evaluate p-value of the test.

(1) By fitting the model, we estimate the pseudo residuals by

ε̂i = Yi − W τ
i β̂n − ĝn(Ui), i = 1, · · · , n.

(2) Generate the bootstrap residuals {ε⋆
i }n

i=1 from the empirical distribution of the central-

ized residuals {ε̂i − ε}n
i=1 where ε = n−1

n∑
i=1

ε̂i. Define

Y ⋆
i = W τ

i β̂n + ĝn(Ui) + ε⋆
i for i = 1, · · · , n.

(3) Calculate the bootstrap test statistic T ⋆
n based on the sample {Ui, Wi, Y

⋆
i }n

i=1.

(4) Reject the null hypothesis H0 when Tn is greater than the upper-α point of the condi-

tional distribution of T ⋆
n given by {Ui, Wi, Yi}n

i=1.
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The p-value of the test is simply the relative frequency of the event {T ⋆
n ≥ Tn} in the

replications of the bootstrap sampling. For the sake of simplicity, we use the same band-

width in calculating T ⋆
n as that in Tn. Note that we bootstrap the centralized residuals from

the semiparametric fit instead of the parametric fit, because the semiparametric estimator of

the residuals is always consistent, no matter the null or the alternative hypothesis is correct.

The method should provide a consistent estimator of the null distribution even when the null

hypothesis does not hold.

5 Covariate Selection

Model selection is an indispensable tool for statistical data analysis. However, the problem

has not been studied in the semiparametric regression model with measurement errors. Fan and

Li [15] proposed a variable selection method via nonconcave penalized likelihood and found some

oracle properties. These nice properties encourage us to extend the technique to the partially

linear regression model (1.1) with measured errors (1.2). It gives us a quick and effective method

for eliminating unimportant variables. We here propose a nonconcave penalized corrected profile

least squares procedure, which is described as follows.

5.1 Penalized corrected profile least squares

Suppose that β consists of p components, and some of these are not significant. A penalized

corrected profile least squares takes the form

L(β) ≡ ℓ(β) + n

p∑

s=1

λsps(|βs|),

where the ps( · )’s are penalty functions, λs’s are tuning parameters which control the model

complexity and can be selected by some data-driven methods, such as cross-validation or gen-

eralized cross validation, and

ℓ(β) =
1

2
(Y − Wβ − G)

τ
(Y − Wβ − G) − n

2
βτΣζβ,

where G = (g(U1), · · · , g(Un))τ , Y and W are defined in Section 2. Here the penalty functions

ps( · ) and the regularization parameters λs are not necessarily the same for all s = 1, · · · , p.

This allows us to incorporate prior information for the unknown coefficients by using different

penalty functions or taking different values of λs. For instance, we may wish to keep important

predictors in the parametric part of model (1.1) and hence do not want to penalize their

coefficients. For ease of presentation, we denote λsps( · ) by pλs( · ).
After eliminating the nuisance function g( · ) by the profile techniques, we obtain the follow-

ing penalized corrected profile least squares:

L(β) =
1

2
(Ŷ − Ŵβ)τ (Ŷ − Ŵβ) − n

2
βτΣζβ + n

p∑

s=1

λsps(|βjs|), (5.1)

where Ŷ and Ŵ are defined in Section 2.

Many penalty functions, such as the family of Lq-penalty (q ≥ 0), have been used for

penalized least squares and penalized likelihood in various parametric models. For instance,

q = 0 corresponds to the entropy penalty, L1 penalty results in the LASSO, proposed by
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Tibshirani [32], and bridge regression (see [20]) corresponds to 0 < q < 1. Antoniadis and

Fan [1] and Fan and Li [15] provided various insights into how a penalty function should be

chosen. They advocate that a good penalty function should yield an estimator with the following

three properties: unbiasedness for a large true coefficient to avoid unnecessary estimation bias,

sparsity (estimating a small coefficient as zero) to reduce model complexity, and continuity to

avoid unnecessary variation in model prediction. Necessary conditions are given in [1]. None

of the Lq penalties produce any estimator satisfying simultaneously the above three properties.

According to [15], a simple penalty function, which results in an estimator with the three desired

properties, is the smoothly clipped absolute deviation (SCAD) penalty. Its first derivative is

defined by

p′λ(β) = λ
{

I(β ≤ λ) +
(aλ − β)+
(a − 1)λ

I(β > λ)
}

for some a > 2 and β > 0,

and pλ(0) = 0. The SCAD involves two unknown parameters, λ and a. Fan and Li [15] suggested

using a = 3.7 from a Bayesian point of view. Hence, this value will be used throughout the rest

of the paper.

5.2 Asymptotic properties

Now, we study the asymptotic properties of the resulting estimator of the penalized corrected

profile least squares (5.1). First, we establish the convergence rate of the penalized corrected

profile least squares estimator. Assume that all penalty functions pλs( · ) are negative, non-

decreasing with pλs(0) = 0. Denote by β0 the true value of β, and

an = max
s

{|p′λs
(|β0s|)| : β0s 6= 0}, bn = max

s
{|p′′λs

(|β0s|)| : β0s 6= 0}.

Then, we have the following theorem.

Theorem 5.1 Suppose that Assumptions 2.1–2.4 hold. If an and bn tend to zero as n →
∞, then with probability tending to one, there exists a local minimizer β̃n of L(β) such that

‖β̃n − β0‖ = Op(n
−1/2 + an).

Theorem 5.1 demonstrates how the rate of convergence of the penalized corrected profile

least squares estimator β̃n depends on λs. To achieve the root-n convergence rate, we have to

take λs small enough so that an = O(n−1/2). Next, we establish the oracle property for the

penalized corrected profile least squares estimator β̃n. For ease of presentation, we assume,

without loss of generality, that all of the first q components of β0 are not equal to 0, and all

other p − q components are equal to 0.

Let

B=diag{p′′λ1
(|β01|), · · · , p′′λq

(|β0q|)} and b=(p′λ1
(|β01|)sgn(β01), · · · , p′λq

(|β0q|)sgn(β0q))
τ .

Further, let β̃n1 consist of the first q components of β̃n and β̃n2 consist of the last p − q ones.

Theorem 5.2 (Oracle Property) Assume that λs → 0 and
√

nλs → ∞ as n → ∞ for

s = 1, · · · , p, and the penalty function pλs(|βs|) satisfies that

lim inf
n→∞

lim inf
βs→0+

pλs(βs)

λs
> 0. (5.2)
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If an = O(n−1/2), then under the conditions of Theorem 5.1, with probability tending to 1, the

root-n consistent local minimizer β̃n = (β̃
τ

n1, β̃
τ

n2)
τ in Theorem 5.1 must satisfy

( i ) (Sparsity) β̃n2 = 0;

(ii) (Asymptotic Normality)

√
n (Σ

(1)
1 + B){β̃n1 − β01 + (Σ

(1)
1 + B)−1b} →D Nq(0,Σ

(1)
2 ),

where Σ
(1)
1 and Σ

(1)
2 consist of the first q rows and columns of Σ1 and Σ2, respectively, and Σ1

and Σ2 are defined in Theorem 2.1.

From Theorem 5.2, if λs → 0,
√

nλs → ∞ for s = 1, · · · , p, an = O(n−1/2), and condition

(5.2) is satisfied, then the resulting estimator possesses an oracle property. This implies that the

procedure correctly specifies the true model and estimates the unknown regression coefficients

as efficiently as we knew the submodel. If all the penalty functions are SCAD, then an tends

to 0 as n → ∞, and hence the resulting estimator possesses the oracle property.

5.3 Choice of regularization parameters

It is challenging to find the solution of the penalized corrected profile least squares of (5.1)

because the penalty function pλs(|βs|), such as the Lq penalty (0 < q ≤ 1) and the SCAD

penalty, is irregular at the origin and may not have a second derivative at some points. Following

[15], we can locally approximate the penalty functions by quadratic functions as follows. Given

an initial value β(0) that is close to the minimizer of (5.1). If β
(0)
s is very close to 0 (for instance,

|β(0)
s | less than a prescribed value η), then set β̂s = 0. Otherwise, the penalty pλs(|βs|) can be

locally approximated by a quadratic function as

[pλs(|βs|)]′ = p′λs
(|βs|)sgn(βs) ≈

{
p′λs

(|β(0)
s |)

|β(0)
s |

}
βs.

The further details can be found in [15]. With the local quadratic approximation, the Newton-

Raphson algorithm can be implemented directly for minimizing L(β).

To implement the method described in the previous sections, it is desirable to have an

automatic data-driven method for estimating the tuning parameters λ1, · · · , λp. Similarly to

[15], we can estimate (λ1, · · · , λp) by minimizing an approximate generalized cross-validation

score.

6 Estimated Errors Variance

Although in some cases the measurement error covariance matrix Σζ has been established

by independent experiments, in others it is unknown and must be estimated. According to

[5, Chapter 3], the usual method for doing so is by partial replication, so that we observe

Wij = Xi + ζij , j = 1, · · · , mi.

For notational convenience, same as [27], we consider here only the case that mi ≤ 2 and

assume that a fraction δ of the data has such replicates. Let W i and Y i be the corresponding

sample means of the replicates. Then a consistent, unbiased moment estimator for Σζ , is

Σ̂ζ =

n∑
i=1

mi∑
j=1

(Wij − W i)(Wij − W i)
τ

n∑
i=1

(mi − 1)
.
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Correspondingly, the corrected profile least squares estimator is

β̌n =
{ n∑

i=1

Ŵ iŴ
τ

i − n(1 − δ/2)Σ̂ζ

}−1 n∑

i=1

Ŵ iŶ i,

where (Ŷ 1, · · · , Ŷ n)τ = (In−S)(Y 1, · · · , Y n)τ , and (Ŵ 1, · · · , Ŵn)τ = (In−S)(W 1, · · · , Wn)τ .

According to [27], β̌n is root-n consistent and asymptotically normal with asymptotic covariance

matrix Σ−1
1 ΓΣ−1

1 , where

Γ = (1 − δ)E{(ε − ζτβ)(X − E(X |U))}⊗2 + δE{(ε − ζ
τ
β)(X − E(X |U))}⊗2

+ (1 − δ)E
[{(

ζζτ −
(
1 − δ

2

)
Σζ

)
β

}⊗2

+ ζζτε2
]

+ δE
[{(

ζζ
τ −

(
1 − δ

2

)
Σζ

)
β

}⊗2

+ ζζ
τ
ε2

]
,

A⊗2 = AAτ and ζ refers to the mean of two ζ’s.

If we replace Yi by Y i and Wi by W i in Sections 3–5, the bandwidth selection method still

work, Theorems 4.1, 5.1 and 5.2 still hold except that Σ
(1)
2 consists of the first q rows and

columns of Γ.

7 Some Simulation Studies

In this section, we carry out some simulation studies to demonstrate the finite sample

performances of the proposed procedures.

Example 7.1 (Σζ Known) The data are generated from the following semiparametric

regression model

yi = xi1β1 + xi2β2 + · · · + xi8β8 + g(ui) + εi, i = 1, · · · , n,

wis = xis + ζis,

where xi = (xi1, · · · , xi8)
τ ∼ N(0, 4I8), β1 = β2 = β3 = β7 = β8 = 0, β4 = 0.2, β5 = 1.5,

β6 = 2, ui ∼ U(0, 1), g(u) = sin(2πu), εi ∼ N(0, 1) and ζi = (ζi1, · · · , ζi8)
τ ∼ N(0,Σζ). We

take Σζ = I8, 0.5I8 and 0.3I8.

The means and standard deviations of RGMSEs over 1,000 simulated data are summarized

in the rows labeled “SM” and “STD” of Table 1, respectively. Here, the RGMSE means the

Relative GMSE, the ratio of GMSE of an underlying procedure to that of the corrected profile

least squares estimator without penalization. And for estimator βn, the GMSE is defined as

GMSE = (βn − β)τ
( 1

n
ŴτŴ − Σζ

)
(βn − β).

In addition, the average number of zero coefficients is also reported in Table 1, where the row

labeled “C” presents the average number, restricted only to the true zero coefficients, while the

row label “I” depicts the average number of coefficients erroneously set to 0.

Moreover, we also study the case that Σζ is unknown.

Example 7.2 (Σζ Unknown) For w, we have replicated measurements

wijs = xis + ζijs, i = 1, · · · , n, j = 1, 2, s = 1, · · · , 8,
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Table 1 Relative approximate model error for Example 7.1 with known Σζ

n = 200 n = 300 n = 400 n = 500

Σζ = I8 SM 0.5002 0.4651 0.4668 0.4376
STD 0.2580 0.2526 0.2587 0.2537
C 4.6720 4.7200 4.7500 4.7780
I 0.5540 0.4320 0.2960 0.1760

Σζ = 0.5I8 SM 0.4862 0.4921 0.4985 0.4950
STD 0.2465 0.2507 0.2431 0.2431
C 4.7000 4.7200 4.7240 4.7100
I 0.0980 0.0160 0.0020 0

Σζ = 0.3I8 SM 0.5054 0.5147 0.4866 0.4970
STD 0.2638 0.2452 0.2379 0.2514
C 4.6800 4.7300 4.7680 4.7060
I 0.0080 0.0040 0 0

Table 2 Relative approximate model error for Example 7.2 with unknown Σζ

n = 200 n = 300 n = 400 n = 500

Σζ = I8 SM 0.4887 0.4971 0.4894 0.4762
STD 0.2625 0.2517 0.2512 0.2508
C 4.7080 4.7020 4.7040 4.7560
I 0.5920 0.4140 0.2840 0.1980

Σζ = 0.5I8 SM 0.4779 0.4971 0.5060 0.4979
STD 0.2518 0.2508 0.2455 0.2422
C 4.7260 4.7640 4.7580 4.7380
I 0.0900 0.0200 0.0060 0

Σζ = 0.3I8 SM 0.5027 0.5270 0.5100 0.4713
STD 0.2470 0.2330 0.2453 0.2332
C 4.7140 4.7160 4.7300 4.7840
I 0.0160 0 0 0

and other symbols are the same as those in Example 7.1. The results are summarized in Table

2. Here, for estimator βn, the GMSE is defined as

GMSE = (βn − β)τ
( 1

n
ŴτŴ − Σ̂ζ

)
(βn − β).

From Tables 1 and 2, we can see that the proposed covariate selection procedure performs

very well. Whether Σζ is known or unknown almost has no influence on the results.

The following example is used to demonstrate the level and power of the proposed bootstrap

based goodness-of-fit test.

Example 7.3 The data are generated from the following semiparametric regression model

yi = xi1β1 + xi2β2 + g(ui) + εi, i = 1, · · · , n,

wis = xis + ζis,

where (xi1, xi2)
τ ∼ N(0, 4I2), β1 = 1, β2 = 1.5, ui ∼ U(0, 1), εi ∼ N(0, 1) and ζi = (ζi1, ζi2)

τ ∼
N(0,Σζ). We take Σζ = 0.5I2 and n = 200. We consider the following null hypothesis:

H0 : g(Ui) = θUi for all i = 1, · · · , n (a linear regression model)
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against the alternative

H1 : g(Ui) 6= θUi for at least one i.

The power function is evaluated under the following alternatives indexed by c:

H1 : g(Ui) = θUi + sin(cπUi), i = 1, · · · , n.

The goodness-of-fit test described in Section 4 is applied to simulations with 500 replicates.

Figure 1 plots the simulated power curve against c. When the null hypothesis is true, the

power is very close to the significance level 5%. This demonstrates that bootstrap estimate of

the null distribution is accurate. The power curve also shows that our test is quite powerful.
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Figure 1 The power curve of testing the goodness of fit of model with n = 200

and Σζ = 0.5I2. Power curve (slide) and 5% level (dotted)

8 Concluding Remarks

Covariate with measurement error is very common in practical application. In this paper,

we have placed the emphasis on the partially linear regression models in which the covariates

of the parametric part are measured with additive errors. We studied the statistical inference

of this type of models. We proposed a simple bandwidth selection procedure which is a combi-

nation of the difference-based technique and cross validation method. Moreover, we proposed a

goodness-of-fit test, which is an extension of the generalized likelihood technique to the setting

of such models. In addition, we proposed a covariate selection procedure to select the significant

covariates in the parametric part of such a model. The procedure is based on the nonconcave

penalization and corrected profile least squares, and the resulting estimator owns an oracle

property.

In some situations, the additivity of the measurement errors may be not true (cf. [24, 25]

and so on). Thus, new procedures are needed to develop. Moreover, to extend our results to

more general semiparametric measurement error regression models such as varying-coefficient

partially linear measurement error regression models is also an interesting topic.
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Appendix Proofs of Main Results

The proof of Theorem 2.1 is similar to [27, Theorem 3.1]. Combining the root-n consistency,

Theorem 2.2 is a traditional result of nonparametric regression. The proof of Theorem 4.1 is

similar to [19, Theorem 5]. Therefore, we focus our proof on Theorems 5.1 and 5.2.

In order to prove Theorems 5.1 and 5.2, we first present a lemma.

Lemma A.1 Under the conditions of Theorem 5.2, with probability tending to 1, for any

given β∗
1 satisfying ‖β∗

1 − β01‖ = Op(n
−1/2) and any constant c,

L{(β∗τ
1 ,0τ )τ} = min

‖β∗

2
‖≤cn−1/2

L{(β∗τ
1 , β∗τ

2 )τ}.

Proof The proof is the same as that of [17, Lemma A.1]. We are going to show that with

probability tending to 1 as n → ∞, for any β∗
1 satisfying ‖β∗

1 −β01‖ = Op(n
−1/2), and ‖β∗

2‖ ≤
cn−1/2, ∂L(β∗)

∂βs
and β∗

s have the same signs for β∗
s ∈ (−cn−1/2, cn−1/2) for s = q + 1, · · · , p.

Thus, the minimizer attains at β2 = 0.

For β∗
s 6= 0 and s = q + 1, · · · , p,

∂L(β∗)

∂βs
= ℓ′s(β

∗) + np′λs
(|β∗

s |) sgn(β∗
s ),

where ℓ′s(β
∗) = ∂ℓ(β∗)

∂βs
. It is easy to see

ℓ′s(β
∗) = −

n∑

i=1

Ŵis(Ŷi − Ŵ τ
i β0) − n

p∑

j=1

β0jΣζjs +
n∑

i=1

ŴisŴ
τ
i (β∗ − β0) − n

p∑

j=1

(β∗
j − β0j)Σζjs,

where Σζjs is the (j, s)th element of Σζ . By the same argument as for the proof of Theorem

2.1, we can show that

n−1
n∑

i=1

Ŵis(Ŷi − Ŵ τ
i β0) −

p∑

j=1

β0jΣζjs = Op(n
−1/2).

Further, noting that ‖β∗ − β0‖ = Op(n
−1/2) by the assumption, we can show that n−1ℓ′s(β

∗)

is of the order Op(n
−1/2). Therefore

∂L(β∗)

∂βs
= nλs{λ−1

s p′λs
(|β∗

s |) sgn(β∗
s ) + Op(n

− 1

2 λ−1
s )}.

Since

lim inf
n→∞

lim inf
|β∗

s |→0+
λ−1

s p′λs
(|β∗

s |) > 0 and (n
1

2 λs)
−1 → 0,

the sign of the derivative is completely determined by that of β∗
s . This completes the proof.

Proof of Theorem 5.1 Let

L(β) =
1

2
(Ŷ − Ŵβ)τ (Ŷ − Ŵβ) − n

2
βτΣζβ + n

p∑

s=1

pλs(|βs|).

Denote αn = n−1/2 + an. It is sufficient to show that for any given d > 0, there exists a large

constant c such that

P
{

inf
‖u‖=c

L(β + αnu) ≥ L(β)
}
≥ 1 − d.
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This implies, with probability at least 1−d, there exists a local minimizer in the ball {β+αnu :

‖u‖ ≤ c}. Define

Dn(u) = L(β + αnu) − L(β).

Note that pλs(0) = 0 and pλs(|βs|) is nonnegative. Therefore, it holds that

n−1Dn(u) ≥ 1

2n
{(Ŷ − Ŵ(β + αnu))τ (Ŷ − Ŵ(β + αnu)) − (Ŷ − Ŵβ)τ (Ŷ − Ŵβ)}

− 1

2
{(β + αnu)τΣζ(β + αnu) − βτΣζβ} +

q∑

s=1

{pλs(|βs + αnus|) − pλs(|βs|)}.

Clearly

1

2n
{(Ŷ − Ŵ(β + αnu))τ (Ŷ − Ŵ(β + αnu)) − (Ŷ − Ŵβ)τ (Ŷ − Ŵβ)}

− 1

2
{(β + αnu)τΣζ(β + αnu) − βτΣζβ}

=
α2

n

2n
uτŴτŴu− 1

n
(αnŴu)τ (Ŷ − Ŵβ) − αnβτΣζu − α2

n

2
uτΣζu

=
α2

n

2n
uτŴτŴu− 1

n
(αnŴu)τ (ε̂ − ζ̂β) − αnβτΣζu − α2

n

2
uτΣζu

=
α2

n

2
uτ

( 1

n
ŴτŴ − Σζ

)
u − αn

n
uτŴ(ε − ζβ) − αnβ

τ
Σζu + op(n

− 1

2 αn‖u‖)

=
α2

n

2
uτ

( 1

n
ŴτŴ − Σζ

)
u − αn

n
uτ (X̂ + ζ̂)(ε − ζβ) − αnβτΣζu + op(n

− 1

2 αn‖u‖)

=
α2

n

2
uτ

( 1

n
ŴτŴ − Σζ

)
u − αn

n
uτX∗(U)(ε − ζβ) − αn

n
uτζε + αnβτ

( 1

n
ζτζ − Σζ

)
u

+ Op(n
− 1

2 αn‖u‖)

=
α2

n

2
uτ

( 1

n
ŴτŴ − Σζ

)
u − αn

{ 1

n
uτX∗(U)(ε − ζβ) +

1

n
uτζε − uτ

( 1

n
ζτζ − Σζ

)
β

}

+ Op(n
− 1

2 αn‖u‖)

= J1 + J2 + Op(n
− 1

2 αn‖u‖),

say, where ζ = (ζ1, · · · , ζn)τ , ε = (ε1, · · · , εn)τ , ε̂ = (In − S)ε, ζ̂ = (In − S)ζ, and X̂∗(U) =

(E(X1 |U1), · · · , E(Xn |Un))τ . Since when n is large enough

1

n
ŴτŴ − Σζ = Cov(X − E(X |U)) + Op(n

− 1

2 ) > 0,

J1 is of the order c2α2
n. Note that n−1/2αn = Op(α

2
n). By choosing a sufficiently large c, J1

will dominate the second term, uniformly in ‖u‖ = c. Furthermore,

p∑

s=1

{pλs(|βs + αnus|) − pλs(|βs|)}

is bounded by √
qαnan‖u‖ + α2

nbn‖u‖2 = cα2
n(
√

q + bnc)

by the Taylor expansion and Cauchy-Schwarz inequality, where q is the number of components

of β1. cα2
n(
√

q + bnc) is dominated by J1 as bn → 0, by taking c sufficiently large. This

completes the proof of the theorem.
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Proof of Theorem 5.2 Part (i) directly follows by Lemma A.1. Now we prove Part (ii).

Using argument similar to the proof of Theorem 5.1, it can be shown that there exists a β̃n1

in Theorem 5.1 that is a root-n consistent minimizer of L{(βτ
1 ,0τ )τ}, satisfying the penalized

corrected profile least squares equations:

∂L{(β̃τ

n1,0
τ )τ}

∂β1

= 0.

Further, we have

∂L{(β̃τ

n1,0
τ )τ}

∂β1

= −Ŵ(1)(Ŷ − Ŵ(1)β1) − nΣ
(1)
ζ β1 + (Ŵ(1)Ŵ(1)τ − nΣ

(1)
ζ )(β̃n1 − β1)

− n[b + {B + op(1)}(β̃n1 − β1)],

where Ŵ(1) consists of the first q columns of Ŵ, and Σ
(1)
ζ consists of the first q rows and

columns of Σζ .

Similarly to Theorem 2.1, we can show that

− 1√
n
{Ŵ(1)(Ŷ − Ŵ(1)β1) + nΣ

(1)
ζ β1} →D N(0,Σ

(1)
2 ), as n → ∞,

where Σ
(1)
2 consists of the first q rows and columns of Σ2. Thus, by Slutsky’s Theorem, it

follows that √
n {Σ(1)

1 + B}{β̃n1 − β1 + (Σ
(1)
1 + B)−1b} →D N(0,Σ

(1)
2 ),

where Σ
(1)
1 consists of the first q rows and columns of Σ1. This completes the proof of Theorem

5.2.
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