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Abstract In this paper, the author studies the multidimensional stability of subsonic
phase transitions in a steady supersonic flow of van der Waals type. The viscosity cap-
illarity criterion (in “Arch. Rat. Mech. Anal., 81(4), 1983, 301–315”) is used to seek
physical admissible planar waves. By showing the Lopatinski determinant being non-zero,
it is proved that subsonic phase transitions are uniformly stable in the sense of Majda
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1 Introduction

The motion of an isothermal (or isentropic) 3-dimensional steady flow is governed by the

following well-known Euler equations





∂x(ρu) + ∂y(ρv) + ∂y(ρw) = 0,

∂x(ρu2 + p(ρ)) + ∂y(ρuv) + ∂y(ρuw) = 0,

∂x(ρuv) + ∂y(ρv2 + p(ρ)) + ∂y(ρvw) = 0,

∂x(ρuw) + ∂y(ρvw) + ∂y(ρw2 + p(ρ)) = 0,

(1.1)

where ρ is the density of the flow, (u, v, w)T is the velocity of the flow and p is the pressure

which is a function of ρ. Denote by U = (ρ, u, v, w)T ,

F0(U) =




ρu

ρu2 + p

ρuv

ρuw


 , F1(U) =




ρv

ρuv

ρv2 + p

ρvw


 , F2(U) =




ρw

ρuw

ρvw

ρw2 + p



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and

A1(U) = (∇UF0(U))−1∇UF1(U)

=
1

ρu(u2 − c2)




ρu2v −ρ2uv ρ2u2 0
−uvc2 ρu2v −ρuc2 0

(u2 − c2)c2 0 ρv(u2 − c2) 0
0 0 0 ρv(u2 − c2)


 ,

A2(U) = (∇UF0(U))−1∇UF2(U)

=
1

ρu(u2 − c2)




ρu2w −ρ2uw 0 ρ2u2

−uwc2 ρu2w 0 −ρuc2
0 0 ρw(u2 − c2) 0

(u2 − c2)c2 0 0 ρw(u2 − c2)


 ,

where c2 = dρp(ρ) is the sound speed. The Euler equations (1.1) can be rewritten in the

following abstract form

∂xF0(U) + ∂yF1(U) + ∂zF2(U) = 0 (1.2)

or

∂xU +A1(U)∂yU +A2(U)∂zU = 0. (1.3)

When the flow is supersonic, namely

u2 + v2 + w2 > c2, (1.4)

the system (1.1) is a hyperbolic conservation law, which is the case we are dealing with in

this paper. In such case, nonlinear waves such as shock waves, rarefaction waves and contact

discontinuities usually appear in a γ-pressure law flow. A vast literature has been devoted

to such topics and there still remain interesting open problems. See [3, 4, 9, 10, 12, 19] and

references therein.

However, in a supersonic flow of van der Waals type, besides the three kinds of nonlinear

waves mentioned in the above, subsonic phase transitions also exist due to the non-monotonicity

of the state equation, which is given by

p(τ) =
Rθ

τ − b
− a

τ2
, (1.5)

where τ ≡ ρ−1 is the specific volume of the fluid, θ is the temperature of the fluid which is

assumed to be a constant in an isothermal fluid, R is the perfect gas constant and a, b are

positive constants. For a
4bR

< θ < 8a
27bR

, the state equation (1.5) is not monotonic with respect

to τ . Precisely speaking, we can find τ∗, τ∗ ∈ (b,+∞) such that

{
dτp(τ) < 0, τ ∈ (b, τ∗) ∪ (τ∗,+∞),

dτp(τ) > 0, τ ∈ (τ∗, τ∗).
(1.6)

From the physical point of view, the fluid is in liquid phase for τ ∈ (b, τ∗), while it is in vapor

phase for τ ∈ (τ∗,+∞). The region (τ∗, τ∗) is a highly unstable region, where non state can be

found in experiment (see [5]).

A subsonic phase transition is a discontinuous solution to the Euler equation (1.1) with a

single discontinuity, which changes phases across the discontinuity and satisfies certain subsonic
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condition on both sides of the discontinuity. To explain the concept with more detail, let us

consider the following planar subsonic phase transition

U(x, y, z) =

{
U− = (ρ−, u−, v−, w0), y < σx,

U+ = (ρ+, u+, v+, w0), y > σx,
(1.7)

where ρ±, u±, v±, w0 are constant states of the flow, σ is the constant speed of the discontinuity

{y = σx} and ρ± belong to different phases. The solution (1.7) satisfies the Rankine-Hugoniot

condition

σ[F0(U)] − [F1(U)] = 0, (1.8)

and the subsonic condition

M± =
∣∣∣ σu± − v±

c±
√

1 + σ2

∣∣∣ < 1, (1.9)

where [ · ] denotes the difference of a function across the discontinuity {y = σx}, M± and

c2± = dρp(ρ±) are the Mach numbers and the sound speeds on each side of the discontinuity

{y = σx} respectively.

Due to the subsonic property (1.9), the well-known Lax entropy inequality for classical

shock waves is violated, which will be stated in detail in Section 2. Hence, other admissible

criterion is needed to single out physical admissible subsonic phase transitions. There are

several candidates, among which the viscosity capillarity criterion is an important one. The

viscosity capillarity criterion was first introduced by Slemrod [14] to study phase transitions

in an unsteady van der Waals fluid. Ever since, the study of unsteady van der Waals fluid,

especially on problems in one dimensional spaces, has been carried out in many works. See

[14, 13, 8, 5] and references therein. There are also works concerning multidimensional problems

in an unsteady van der Waals fluid. See [1, 2, 15–17] and references therein.

However, there is not much knowledge on steady van der Waals fluid. The purpose of

this paper is to reveal some insights of subsonic phase transitions in a steady supersonic flow

of van der Waals type. The viscosity capillarity criterion will be applied to select physical

admissible solution. Then, we will prove the uniform stability of multidimensional subsonic

phase transitions by showing the validity of Lopatinski condition (see [6, 11]). Without giving

much detail, here we briefly state the main result of this paper.

Theorem 1.1 There exists ν1 > 0 depending on the bounds of U± and σ given in (1.7),

such that for 0 < ν < ν1, the ν-admissible phase transition (1.7) is uniformly stable.

The definition of the parameter ν and ν-admissible will be given in Section 2, and the

uniform stability will be described in detail in Section 4.

The rest of this paper is arranged as follows. In Section 2, the viscosity capillarity is

introduced. In Section 3, we derive the linearized problem and prove the one dimensional

stability. The multidimensional stability is proved in Section 4.

2 Admissible Criterion

In this section, we explain how subsonic phase transitions violate the Lax entropy inequality

(see [7]) in a supersonic flow. Then we introduce the viscosity capillarity criterion and the

additional jump condition derived by such criterion.
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Compared with subsonic phase transitions in an unsteady fluid, those in a steady flow do

not satisfy the Lax entropy inequality either. Considering the planar wave (1.7), we assume

that the following supersonic condition is always valid in the coming arguments

u2
± − c2± > 0. (2.1)

Denote by

λ±1 =
1

u2
± − c2±

(u±v± − c±
√
△± ),

λ±2 =
v±
u±

,

λ±3 =
1

u2
± − c2±

(u±v± + c±
√
△± ),

the eigenvalues of A1(U±) respectively with △± = u2
± + v2

± − c2±, which satisfy

λ±1 < λ±2 < λ±3 . (2.2)

Then, the following theorem shows how the Lax inequality is violated.

Theorem 2.1 The subsonic condition (1.9) is equivalent to

λ±1 < σ < λ±3 (2.3)

for the planar subsonic phase transition (1.7).

Obviously, the Lax inequality for 1st-shocks (3rd-shocks), λ+
1 < σ < λ−1 (λ+

3 < σ < λ−3 ) is

no longer valid.

In order to single out physical admissible solution, Slemrod [14] proposed the viscosity

capillarity criterion for one dimensional unsteady fluids under Lagrange coordinates. Motivated

by the study of multidimensional problems, Benzoni-Gavage [1, 2] applied this criterion to

unsteady fluids under Euclid coordinates. Here, we also follow the viscosity capillarity criterion

to seek physical admissible phase transitions in a steady flow. For the simplicity of notations,

we will need the following quantities in the coming arguments. Considering the planar subsonic

phase transition (1.7), we denote by un± = σu±−v±√
1+σ2

and uτ = u±+σv±√
1+σ2

the normal velocity and

the tangential velocity on each side of the discontinuity {y = σx} respectively, j = ρ±un± the

mass transfer flux, and π = p± + j2τ±. Then, the Rankine-Hugoniot condition (1.8) and the

subsonic condition (1.9) can be rewritten as

[j] = 0, [π] = 0, [uτ ] = 0, (2.4)

and ∣∣∣un±
c±

∣∣∣ < 1 or
∣∣∣ j2

dτp(τ±)

∣∣∣ < 1, (2.5)

respectively.

Analogue to the traveling wave method for viscous shocks, the viscosity capillarity criterion

is used to find the planar wave (1.7) which admits the existence of the following traveling wave

U(ξ) = U
(y − σx

ǫ

)
(2.6)
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satisfying U(±∞) = U± and the Navier-Stokes equations





∂x(ρu) + ∂y(ρv) + ∂z(ρw) = 0,

∂x(ρu2 + p(ρ)) + ∂y(ρuv) + ∂y(ρuw) = ǫν△u− ǫ2∂x△(ρ−1),

∂x(ρuv) + ∂y(ρv2 + p(ρ)) + ∂y(ρvw) = ǫν△v − ǫ2∂y△(ρ−1),

∂x(ρuw) + ∂y(ρvw) + ∂z(w
2 + p(ρ)) = ǫν△w − ǫ2∂z△(ρ−1),

(2.7)

where △ = ∂2
x + ∂2

y + ∂2
z is the Laplace operator, ǫν is the viscosity coefficient and ǫ2 is the

capillarity coefficient with ǫ ≥ 0, ν > 0. Substituting (2.6) into (2.7) and employing the

Rankine-Hugoniot condition (2.4), we get the following hecteroclinic problem for the unknown

function τ(ξ) ≡ 1
ρ(ξ) {

τ ′′ = νjτ ′ + π − p(τ) − j2τ,

τ(±∞) = τ±,
(2.8)

where the prime ′ denotes the derivative of a function with respect to ξ. As in [2], the admis-

sibility of subsonic phase transitions can be defined by

Definition 2.1 The planar subsonic phase transition (1.7) is admissible if and only if the

problem (2.8) has a solution. The solution τ(ξ) is called the viscosity capillarity profile or

ν-profile for simplicity. The pair (τ−, τ+) is called ν-admissible.

One can find that the hecteroclinic problem (2.8) is exactly the same one for unsteady fluids

(see [2]). Thus, we can take advantage of the known results in [2]. Denote by {τm, τM} the

Maxwell equilibrium defined by the equal area rule

∫ τM

τm

(p(τm) − p(τ))dτ = 0.

Then, there exists τ1 ∈ (τM ,+∞) such that the chord connecting (τ1, p(τ1)) and (τm, p(τm)) is

tangent to the graph of p = p(τ) at (τ1, p(τ1)). With τ1 and τm, we define

j21 =
p(τ1) − p(τm)

τm − τ1
.

When ν = 0, the 0-profile satisfies

{
τ ′′ = π − p(τ) − j2τ,

τ(±∞) = τ±.
(2.9)

As in [2], a 0-profile τ (ξ; j) satisfying the first equation of (2.9) can be found by the generalized

equal area rule, which means

∫ τ+

τ−

(π − p(τ) − j2τ)dτ = 0.

Moreover, for every j (0 < j
2 ≤ j21), a unique pair (τ−(j ),τ+(j )) can be found such that

τ− and τ+ can be connected by the 0-profile with the parameters j. With the above results,

Benzoni-Gavage [2] proved the structural stability and the existence of traveling waves for small

ν by the center manifold method.
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Theorem 2.2 For 0 < j
2 ≤ j21 , there exist ν0 > 0 and neighborhoods J0, V0 of j,

(τ−(j ), τ+(j )) respectively, such that, for (j, ν) ∈ J0 × [0, ν0], there are unique pair (τ−, τ+) ∈
V0, for which τ− and τ+ are ν admissible with the parameters j.

Moreover, an additional jump condition can be derived from the above result for the sub-

sonic phase transition (1.7). As we can see from Proposition 2.1, a subsonic phase transition

has one more characteristic going out of the free boundary than a shock wave. Hence, the

Rankine-Hugoniot condition is not sufficient to guarantee the well-posedness of the correspond-

ing initial boundary value problem. Nevertheless, the viscosity capillarity criterion can provide

the following additional jump condition. By multiplying the equation in (2.8) with τ ′(ξ) and

integrating from −∞ to +∞ with respect to ξ, we get

[
f + πτ − j2

2
τ2
]

= −νa(j, ν), (2.10)

where f = − a
τ
−Rθ ln(τ − b) is the free energy of the fluid and a(j, ν) = j

∫ +∞
−∞ (τ ′(ξ; j, ν))2dξ

with τ(ξ; j, ν) being the ν-profile. Noticing a(j, ν) being a nonlocal term, we have the following

lemma in [1].

Lemma 2.1 For all ν ∈ [0, ν0], the functions a(j, ν) is continuously differentiable. More-

over, its derivatives are continuous with respect to ν at ν = 0 and are bounded depending on

the bounds of U± given in (1.7). There exists α > 0 such that for all j ∈ J

lim
ν→0

∂

∂j
a(j, ν) ≥ α > 0. (2.11)

3 Linear Problem and 1-Dimensional Stability

In this section, we propose the nonlinear problem for a multidimensional subsonic phase

transition and derive the corresponding linearized problem. Then we prove the 1-dimensional

stability for the linear problem.

3.1 Linear problem

Compared with the unsteady fluid, in a steady supersonic flow, the variable x can be re-

garded as the time variable (see [4]). Thus, we can endow the Euler equations with the initial

data

U(0, y, z) =

{
U0
−(y, z), y < ϕ0(z),

U0
+(y, z), y > ϕ0(z),

(3.1)

which changes phases across the discontinuity {y = ϕ0(z)}. With certain compatibility condi-

tions on the initial data (3.1), we can expect to construct the multidimensional subsonic phase

transition

U(x, y, z) =

{
U−(x, y, z), y < ϕ(x, z),

U+(x, y, z), y > ϕ(x, z),
(3.2)
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which satisfies the following nonlinear initial boundary value problem




∂xU± +A1(U±)∂yU± +A2(U±)∂zU± = 0, x > 0, ±(y − ϕ(x, z)) > 0,

ϕx[F0(U)] − [F1(U)] + ϕz [F2(U)] = 0, y = ϕ(x, z),

[
I(ρ) +

(ϕxu− v + ϕzw)2

2(1 + ϕ2
x + ϕ2

z)

]
= −νa(j, ν), y = ϕ(x, z),

U±(0, y, z) = U0
±(y, z), ϕ(0, z) = ϕ0(z),

(3.3)

where the second equation is the Rankine-Hugoniot condition, the third equation is a reformu-

lation of the jump condition (2.10) with I(ρ) = f + pτ and a(j, ν) = j
∫ +∞
−∞ (τ ′(ξ; j, ν))2dξ with

j = ρ±(ϕxu±−v±+ϕzw±)√
1+ϕ2

x+ϕ2
z

∣∣
y=ϕ(x,z)

and τ(ξ; j, ν) satisfying

{
τ ′′ = νjτ ′ + π − p(τ) − j2τ,

τ(±∞) = τ±|y=ϕ(x,z).

Following Majda’s approach (see [11]), we use the following transformation




x̃ = x,

ỹ = ±(y − ϕ(x, z)), ±(y − ϕ(x, z)) > 0,

z̃ = z,

Ũ(x̃, ỹ, z̃) = U(x, y, z)

(3.4)

to map the free boundary {y = ϕ(x, z)} to the fixed boundary {ỹ = 0}. Then the problem

(3.3) becomes




∂xU± ± (A1(U±) − ϕxI − ϕzA2(U±))∂yU± +A2(U±)∂zU± = 0, x, y > 0,

ϕx[F0(U)] − [F1(U)] + ϕz [F2(U)] = 0, y = 0,

[
I(ρ) +

(ϕxu− v + ϕzw)2

2(1 + ϕ2
x + ϕ2

z)

]
= −νa(j, ν), y = 0,

U±(0, y, z) = U0
±(y, z), ϕ(0, z) = ϕ0(z),

(3.5)

where we have dropped the tildes for simplicity.

Consider the perturbation, (U ǫ
+, U

ǫ
−, ϕ

ǫ), of the planar phase transition (1.7), which satisfies

the problem (3.5) and (U ǫ
+, U

ǫ
−, ϕ

ǫ)|ǫ=0 = (U+, U−, σx). Denote

(V+, V−, ψ) =
d

dǫ
(U ǫ

+, U
ǫ
−, ϕ

ǫ)
∣∣∣
ǫ=0

.

Then, the following linearized problem for the unknowns (V+, V−, ψ) can be derived from (3.5),




∂xV± ± (A1(U±) − σI)∂yV± +A2(U±)∂zV± = f±, x, y > 0,

b0ψx + b1ψz + M+V+ + M−V− = g, y = 0,

(V+, V−, ψ)|x<0 vanishes,

(3.6)

where

b0 =

(
[F0(U)]

uτ

1+σ2 ([un] + ν̃ρ+)

)
, b1 =

(
[F2(U)]

w0√
1+σ2

([un] + ν̃ρ+)

)
,

M+ =

(
σF ′

0(U+) − F ′
1(U+)

l+

)
, M− =

(
−σF ′

0(U−) + F ′
1(U−)

l−

)
,
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where

l+ =
(c2+ + ν̃j

ρ+
,
σ(un+ + ν̃ρ+)√

1 + σ2
,−un+ + ν̃ρ+√

1 + σ2
, 0
)
,

l− =
(
− c2−
ρ−

,− σun−√
1 + σ2

,
un−√
1 + σ2

, 0
)
,

with un± = (σu±−v±)√
1+σ2

, uτ = (u±+σv±)√
1+σ2

, j = ρ±un± and ν̃ = ν∂ja(j, ν).

3.2 1-dimensional stability

The 1-dimensional stability is concerned with the case that (V+, V−, ψ) does not depend on

the variable z, which indicates the main problem is the problem (3.6) without derivatives with

respect to z, namely




∂xV± ± (A1(U±) − σI)∂yV± = f±, x, y > 0,

b0ψx + M+V+ + M−V− = g, y = 0,

(V+, V−, ψ)|x<0 vanishes.

(3.7)

The above problem is essentially a one dimensional initial boundary value problem, for which

we have the following result on the stability (see also [18]).

Theorem 3.1 There exists ν1 > 0 depending on the bounds of U± and σ, such that for

0 < ν < ν1, the subsonic phase transition (1.7) is stable with respect to perturbations in the

y-direction, which means the problem (3.7) being well-posed.

Proof Without loss of generality, we assume

j = ρ±un± > 0 and u± > 0, (3.8)

and other cases can be studied similarly. The main idea of the proof is to show that the

boundary values of outgoing characteristics and the free boundary can be determined by the

boundary conditions, for which we need to calculate the eigenvalues and eigenvectors of the

matrix A1(U±) − σI. The eigenvalues of A1(U±) − σI are

λ±1 =
1

u2
± − c2±

(u±v± − c±
√
△± ) − σ,

λ±3 =
1

u2
± − c2±

(u±v± + c±
√
△± ) − σ

of multiplicity 1 and

λ±2 =
v±
u±

− σ

of multiplicity 2, where △± = u2
± + v2

± − c2±. The corresponding right eigenvectors are

r±1 =
(
− ρ±(u±

√
△± − v±c±)

c±(u2
± − c2±)

,−u±v± − c±
√
△±

u2
± − c2±

, 1, 0
)T

,

r±3 =
(ρ±(u±

√
△± + v±c±)

c±(u2
± − c2±)

,−u±v± + c±
√
△±

u2
± − c2±

, 1, 0
)T
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and

r±21 = (0, u±, v±, 0)T , r±22 = (0, 0, 0, 1)T

respectively. Denote by

V± = v±1 r
±
1 + v±21r

±
21 + v±22r

±
22 + v±3 r

±
3

the decompositions of V± on the bases (r±1 , r
±
21, r

±
22, r

±
3 ) respectively. Noting the subsonic con-

dition (2.3) and the assumption (3.8), we have

λ±2 < 0 < λ±3 .

Accordingly, the boundary conditions of (3.7) can be rewritten as

(b0,M−r
−
1 ,M−r

−
21,M−r

−
22,M+r

+
3 )




ψx

v−1
v−21
v−22
v+
3




= g−(M1r
−
3 ,M+r

+
1 ,M+r

+
21,M+r

+
22)




v−3
v+
1

v+
21

v+
21


 (3.9)

to separate the outgoing characteristics together with the free boundary from the incoming

characteristics. Obviously, the necessary and sufficient condition for the well-posedness of the

problem (3.7) is that the determinant

D ≡ det
(
b0,M−r

−
1 ,M−r

−
21,M−r

−
22,M+r

+
3

)
(3.10)

does not vanish. Direct computation yields

D=
λ−1 λ

−
2

2
λ+

3 ρ−u−√
1 + σ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[ρu] ρ−

c−

√
△− ρ−u− 0 ρ+

c+

√
△+

[ρu2 + p] ρ−

c−
(u−

√
△− + v−c−) 2ρ−u2

− 0 ρ+

c+
(u+

√
△+ − v+c+)

[ρu]w0
ρ−w0

c−

√
△− ρ−u−w0 1 ρ+w0

c+

√
△+

[ρuv] ρ−

c−
(v−
√
△− − u−c−) 2ρ−u−v− 0 ρ+

c+
(v+
√
△+ + u+c+)

uτ ([un]+eνρ+)√
1+σ2

uτ u−un− 0 −uτ + ν̃
ρ+

c+

√
△+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
λ−1 λ

−
2

2
λ+

3 ρ−u−√
1 + σ2

∣∣∣∣∣∣∣∣∣∣∣

[ρu] ρ−

c−

√
△− ρ−u−

ρ+

c+

√
△+

[ρu2 + p] ρ−

c−
(u−

√
△− + v−c−) 2ρ−u2

−
ρ+

c+
(u+

√
△+ − v+c+)

[ρuv] ρ−

c−
(v−
√
△− − u−c−) 2ρ−u−v−

ρ+

c+
(v+
√
△+ + u+c+)

uτ ([un]+eνρ+)√
1+σ2

uτ u−un− −uτ + ν̃
ρ+

c+

√
△+

∣∣∣∣∣∣∣∣∣∣∣

≡λ
−
1 λ

−
2

2
λ+

3 ρ−u−√
1 + σ2

(I + ν̃II),

where

I =

∣∣∣∣∣∣∣∣∣∣∣

[ρu] ρ−

c−

√
△− ρ−u−

ρ+

c+

√
△+

[ρu2 + p] ρ−

c−
(u−

√
△− + v−c−) 2ρ−u2

−
ρ+

c+
(u+

√
△+ − v+c+)

[ρuv] ρ−

c−
(v−
√
△− − u−c−) 2ρ−u−v−

ρ+

c+
(v+
√
△+ + u+c+)

uτ [un]√
1+σ2

uτ u−un− −uτ

∣∣∣∣∣∣∣∣∣∣∣
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=
ρ−u−[ρ]2√

1 + σ2

(√△+

√
△−

c+c−
un+un− + u2

τ

)
(u2

− + v2
−) > 0,

II =

∣∣∣∣∣∣∣∣∣∣∣

[ρu] ρ−

c−

√
△− ρ−u−

ρ+

c+

√
△+

[ρu2 + p] ρ−

c−
(u−

√
△− + v−c−) 2ρ−u2

−
ρ+

c+
(u+

√
△+ − v+c+)

[ρuv] ρ−

c−
(v−
√
△− − u−c−) 2ρ−u−v−

ρ+

c+
(v+
√
△+ + u+c+)

uτ ρ+√
1+σ2

0 0 ρ+

c+

√
△+

∣∣∣∣∣∣∣∣∣∣∣

=
ρ2
+ρ

2
−u−

c2+c
2
−j

√
1 + σ2

((√△+

c+
un+ + uτ

)(
uτ −

√
△−
c−

un−
)
(u2

τ + un+un−)

+
(√△+

√
△−

c+c−
un+un− − 2

√
△+

c+
un+uτ − u2

τ

)
(u2

− + v2
−)
)
, (3.11)

which implies II is a bounded term depending on the bounds of U± and σ. Therefore, we claim

that for sufficiently small ν, the determinant △ is nonzero.

4 Multidimensional Stability

First, let us introduce the uniform stability in [11]. Denote V = (V+, V−)T and denote by

V̂ (s, ω, y) =
1

(2π)2

∫ ∞

0

∫ ∞

−∞
e−(sx+iωz)V (x, y, z)dzdx

the Laplace-Fourier transform of V in (x, z) with Res > 0. Then from (3.6), we know that V̂

satisfies
∂V̂

∂y
= B(s, ω)V̂ + f̂ , (4.1)

where

B(s, ω) =

(
−(A1(U+) − σI)−1(sI + iωA2(U+)) 0

0 (A1(U−) − σI)−1(sI + iωA2(U−))

)

and f̂ = ((A1(U+) − σI)−1f̂+,−(A1(U−) − σI)−1f̂−)T .

Denote by {λj}l
j=1 all distinct eigenvalues of B(s, ω) with multiplicity being mj . Obviously,

we have

C
8 =

l⊕

j=1

Ker[(λjI −B(s, ω))mj ].

Introduce

E+(s, ω) = {wj ∈ Ker[(λjI −B(s, ω))mj ] | Reλj < 0, 1 ≤ j ≤ l},

the space of boundary values of all bounded solutions of the special form

V̂ (s, ω, y) =
∑

Reλj<0

eλjy

mj−1∑

p=0

yp

p!
(λjI −B(s, ω))pwj

to (4.1) with f̂ ≡ 0. Then the uniform stability result can be stated in detail by the following

theorem.
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Theorem 4.1 There exists ν1 > 0 depending on the bounds of U± and σ given in (1.7)

such that for 0 < ν < ν1, the ν-admissible subsonic phase transition (1.7) is uniformly stable,

i.e. there exists η > 0 such that the estimate

inf
Res≥0

|s|2+ω2=1

|(b0s+ ib1ω)µ+ M+V+ + M−V−|2 ≥ η2(|V+|2 + |V−|2 + µ2) (4.2)

holds for all V = (V+, V−) ∈ E+(s, ω) and µ ∈ R.

4.1 The space E+(s, ω)

In order to establish the estimate (4.2), we need to investigate the structure of the space

E+(s, ω). For simplicity, we only consider the case that

j = ρ±un± > 0 and u± > 0, (4.3)

and other cases can be studied similarly.

Taking the Laplace-Fourier transform on the equation of (3.6) with f± = 0 and making the

transformation V̂± = T±Ẑ± with

T± =




0 0 ρ±

c±
0

1√
1+σ2

σ√
1+σ2

− c±σ

un±

√
1+σ2

0

1√
1+σ2

− 1√
1+σ2

c±

un±

√
1+σ2

0

0 0 0 1




(4.4)

yield

∂Ẑ±
∂y

= ∓N±(s, ω)Ẑ±, (4.5)

where

N± =




−sσ − es
un±

0 c±s

un±
0

0 −sσ − es
un±

c±es
u2

n±

0

− c±un±s

u2
n±

−c2
±

c±es
u2

n±
−c2

±

−sσ − (u2
n±+c2

±)es
(u2

n±
−c2

±
)un±

− iωc±un±

√
1+σ2

u2
n±

−c2
±

0 0 − iωc±
√

1+σ2

un±
−sσ − es

un±




with s̃ = suτ + iωw0

√
1 + σ2.

The eigenvalues of N−(s, ω) with negative real part for Res > 0 are

λ−1 = −sσ − s̃

un±

of multiplicity 2 and

λ−2 =
−un−s̃− c− +

√
D−

u2
n− − c2−

of multiplicity 1, where +
√ · denotes the positive real part square root of a complex value and

D− = s̃2 + (s2 − ω2(1 + σ2))(u2
n− − c2−),
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the corresponding right eigenvectors are

e−11 = (0, iωun−
√

1 + σ2, 0, s̃)T , (4.6)

e−12 = (iω
√

1 + σ2, 0, 0,−s)T , (4.7)

and

e−2 =
( c−s
un−

,− c−s̃

u2
n−
,

c−
u2

n− − c2−

( c−s̃
un−

− +
√
D−
)
,
iωc−

√
1 + σ2

un−

)T

. (4.8)

The eigenvalue of −N+(s, ω) with a negative real part for Res > 0 is

λ+
3 =

−un+s̃+ c+
+
√
D+

u2
n+ − c2+

,

where

D+ = s̃2 + (s2 − ω2(1 + σ2))(u2
n+ − c2+)

and corresponding right eigenvector is

e+3 =
( c+s
un+

,− c−s̃

u2
n+

,
c+

u2
n+ − c2+

( c+s̃
un+

+ +
√
D+

)
,
iωc−

√
1 + σ2

un+

)T

. (4.9)

Remark 4.1 The above eigenvalues and eigenvectors can be continuously extended to the

case Res ≥ 0, where the notation +
√ · is still used without causing any confusion.

Considering the above eigenvectors, we have

Lemma 4.1 (e−11, e
−
12, e

−
2 , e

+
3 ) are linearly dependent for |s|2 + ω2 = 1 and Res ≥ 0 except

at {(s, ω) | s̃2 + u2
n−(s2 − ω2(1 + σ2)) = 0 or ω = 0}.

Proof When ω = 0, the vectors e−11 and e−12 are obviously linear dependent.

When s̃2+u2
n−(s2−ω2(1+σ2)) = 0, the third component of the vector e−2 is zero. Therefore,

the determinant
∣∣∣∣∣∣∣∣∣

0 iω
√

1 + σ2 c−s

un−

iωun−
√

1 + σ2 0 − c−es
u2

n−

s̃ s
iωc−

√
1+σ2

un−

∣∣∣∣∣∣∣∣∣
= − iωc−

√
1 + σ2

un−
(s̃2 + u2

n−(s2 − ω2(1 + σ2))) = 0

tells that the vectors e−11, e
−
12, e

−
2 are linearly dependent in this case.

In the above critical cases, the following lemmas help us to find the bases of E+(s, ω).

Lemma 4.2 When ω = 0, the vectors

e−11 = (uτ , un−, 1, 0)T , (4.10)

e−12 = (0, 0, 0, 1)T , (4.11)

together with (4.8) and (4.9) are linearly independent.

Lemma 4.3 When s̃2 + u2
n−(s2 − ω2(1 + σ2)) = 0 and ω 6= 0, we have

s =
ω
√

1 + σ2

u2
− + v2

−

(
− uτw0i ± un−

√
u2
− + v2

− + w2
0

)
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and λ−1 = λ−2 . Then the vector

e−2 = (0, 2c−, un−, 0)
T

(4.12)

together with (4.6), (4.7) and (4.9) is linearly independent.

Combining the above propositions, if we naturally expand the eigenvectors as
(
e−11
0

)
,

(
e−12
0

)
,

(
e−2
0

)
,

(
0
e+3

)
,

then the bases of E+(s, ω) are given for |s|2 + ω2 = 1 and Res ≥ 0.

4.2 Lopatinski determinant

Now, we are ready to prove the uniform stability of subsonic phase transitions.

Proof of Theorem 4.1 Taking the Laplace-Fourier transformation on the boundary con-

dition in (3.5) with g = 0 yields

(sb0 + iωb1)ψ̂ + M+V̂+ + M−V̂− = 0. (4.13)

Employing the transformation (4.4) and multiplying the boundary condition (4.13) from the

left by the invertible matrix




1√
1+σ2

0 0 0 0

− uτ√
1+σ2

1
1+σ2

σ
1+σ2 0 0

0 − σ
1+σ2

1
1+σ2 0 0

−w0 0 0 1 0

0 0 0 0 1




,

we get the following boundary condition

cψ̂ + M̃+Ẑ+ + M̃−Ẑ− = 0, (4.14)

where

c =




es[ρ]
1+σ2

s[p]
1+σ2

0
iω[p]es

1+σ2 ([un] + ν̃ρ+)



, M̃± =

(
±M 0

±

l̃±

)

with

M 0
± =




0 ρ±
ρ±(u2

n±−c2
±)

c±un±
0

j 0 0 0

0 −2j − ρ±(u2
n±−c2

±)

c±
0

0 0 0 j
√

1 + σ2



,

l̃+ =
(
0, un+ + ν̃ρ+, ν̃

ρ+(u2
n+ − c2+)

un+c+
, 0
)
,

l̃− = (0,−un−, 0, 0).
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To establish the estimate (4.2), we need to prove the determinant

L ≡ det(c, M̃+e
+
3 , M̃−e

−
11, M̃−e

−
12, M̃−e

−
2 )

nonzero, for which we consider the following three cases.

(i) ω = 0.

This case is indeed one dimensional, which is already proved in Theorem 3.1. Here we omit

the detail.

(ii) s̃2 + u2
n−(s2 − ω2(1 + σ2)) = 0 and ω 6= 0.

In this case, we have

L = (1 + σ2)

·

∣∣∣∣∣∣∣∣∣∣∣∣∣

es[ρ]
1+σ2

ρ +
√

D+

un+
iωρ−un− 0 ρ−

c−
(u2

n− + c2−)
s[p]

1+σ2 ρ+c+s 0 iωρ−un− 0

0 ρ+

( c+es
un+

− +
√
D+

)
−2iωρ−u2

n− 0 − ρ−un−

c−
(u2

n− + 3c2−)

iω[p] iωρ+c+(1 + σ2) s̃ρ−un− −sρ−un− 0es
1+σ2 ([un] + ν̃ρ+) − c+es

un+
+ ν̃

ρ+
+
√

D+

un+
iωu2

n− 0 2ρ−u2
n−c−

∣∣∣∣∣∣∣∣∣∣∣∣∣

≡ I + ν̃O(1),

where

I =
2iωρ+j

3c+c−[τ ]s̃2

1 + σ2

(
s̃2 +

un+

c+

+
√
D+

)

is nonzero and O(1) is a bounded term depending on the bounds of U± and σ given in (1.7).

Therefore, in this case, we claim that there exits ν1 > 0, such that for 0 < ν < ν1, L is nonzero.

(iii) ω 6= 0 and s̃2 + u2
n−(s2 − ω2(1 + σ2)) 6= 0.

In this case, direct calculation yields

L = (1 + σ2)

·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

es[ρ]
1+σ2

ρ +
√

D+

un+
iωρ−un− 0 − ρ−

+
√

D−

un−

s[p]
1+σ2 ρ+c+s 0 iωρ−un− 0

0 ρ+

( c+es
un+

− +
√
D+

)
−2iωρ−u2

n− 0 ρ−
( c−es

un−
+ +
√
D−

)

iω[p] iωρ+c+(1 + σ2) s̃ρ−un− −sρ−un− iωρ−c−(1 + σ2)es
1+σ2 ([un] + ν̃ρ+) − c+es

un+
+ ν̃

ρ+
+
√

D+

un+
iωu2

n− 0 − c−es
un−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≡ iωρ+ρ−(s̃2 + u2
n−(s2 − ω(1 + σ2)))

c+c−un+un−
(I + ν̃ II),

where

I = −[τ ]2
(
s̃2 +

un+un−
c+c−

+
√
D+

+
√
D−
)
,

II = [un]τ−(s2 − ω2(1 + σ2))(u2
n− − c2−)

s̃+ un+

c+

+
√
D+

s̃+ un−

c−
+
√
D−

+
s̃

j

(un−
c−

+
√
D− +

un+

c+

+
√
D+

)
.
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Let us solve the equation I = 0 on the compact set {(s, ω) | |s|2 + ω2 = 1,Res ≥ 0}, which

means solving the equation

c+c−s̃ = −un+un−
+
√
D+

+
√
D− (4.15)

for the unknown (s, ω). Denote

α =
s2 − ω2(1 + σ2)

s̃2
. (4.16)

Taking the square on both sides of (4.15) yields the following equation for the unknown α

α2c2+c
2
−(M2

+ − 1)(M2
− − 1) + α(c2+(M2

+ − 1) + c2−(M2
− − 1)) +

(
1 − 1

M2
+M

2
−

)
= 0,

which has two real roots

α =
1

2c2+c
2
−(M2

+ − 1)(M2
− − 1)

(−(c2+(M2
+ − 1) + c2−(M2

− − 1)) ±
√
△ ) (4.17)

with

△ = (c2+(M2
+ − 1) + c2−(M2

− − 1))2 − 4c2+c
2
−(M2

+ − 1)(M2
− − 1)

(
1 − 1

M2
+M

2
−

)
,

where the one with the minus sign should be neglected. From (4.16) and |s|2 + ω2 = 1, we get

the zero points of I

(s1,2, ω1,2) =
(
± κ+√

1 + |κ+|2
,± 1√

1 + |κ+|2
)
,

(s3,4, ω3,4) =
(
± κ−√

1 + |κ−|2
,± 1√

1 + |κ−|2
)
,

(4.18)

where

κ± =
i
√

1 + σ2

αu2
τ − 1

(
− αuτw0 ±

√
α(u2

τ + w2
0) − 1

)
. (4.19)

For every (s, ω) ∈ {(s, ω) | |s|2 +ω2 = 1,Res ≥ 0} away from (si, ωi) (i = 1, 2, 3, 4), the item

I is nonzero, which indicates that we can find ν(s,ω) > 0, M(s,ω) > 0 and open neighborhood

O(s,ω) of (s, ω) such that for 0 < ν < ν(s,ω), the estimate

|I + ν̃ II| > M(s,ω) (4.20)

holds for (s, ω) ∈ O(s,ω).

When (s, ω) ∈
4⋃

i=1

{(si, ωi)}, the item I vanishes. However, in such situation, the imaginary

part of I + ν̃ II satisfies

|Im(I + ν̃ II)| = ν̃
∣∣∣ s̃
j

(un−
c−

+
√
D− +

un+

c+

+
√
D+

)∣∣∣ > 0

for ν > 0. Thus we can find ν(si,ωi) = ν0 > 0 with ν0 given in Theorem 2.2, M(si,ωi) > 0 and

open neighborhoods O(si,ωi) of (si, ωi) (i = 1, 2, 3, 4), such that for 0 < ν < ν(si,ωi) the estimate

|I + ν̃ II| > M(si,ωi) (4.21)

holds for (s, ω) ∈ O(si,ωi).
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Therefore, we can find a finite subset {O(sk,ωk)}N
k=1 of {O(s,ω) | |s|2 + ω2 = 1,Res ≥ 0}

covering the compact set {(s, ω) | |s|2 + ω2 = 1,Res ≥ 0}. By setting νa = min
k=1,··· ,N

{ν(sk,ωk)}
and Ma = min

k=1,··· ,N
{M(sk,ωk)}, we claim that for 0 < ν < νa the estimate

|I + ν̃ II| > Ma (4.22)

holds for (s, ω) ∈ {(s, ω) | |s|2 + ω2 = 1,Res ≥ 0}.
Combining the three cases, we draw the conclusion of Theorem 4.1.
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