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Abstract The authors prove that every complex Banach space admits an equivalent real

norm that is far away from being a complex norm. Furthermore, this real norm can be
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1 Introduction

As we all know, any complex Banach space is topologically identic to its underlying real

space. However, they differ algebraically and geometrically. The aim of this paper is to show

two ways to obtain real Banach spaces whose norm is not complex.

Given a complex Banach space X , we let XR denote the underlying real Banach space of

X . It is obvious that if ‖ · ‖ is an equivalent complex norm on X then this norm induces on

XR an equivalent real norm ‖ · ‖R. Therefore, given an equivalent real norm ‖ · ‖r on XR, we

will say that this norm comes from a complex norm on X if there exists an equivalent norm

‖ · ‖ on X such that ‖ · ‖R = ‖ · ‖r. Obviously, ‖ · ‖r comes from a complex norm if and only if

‖λx‖r = |λ|‖x‖r for all λ ∈ C and x ∈ X .

In this paper we will show, in two different ways (algebraically and geometrically), that

there always exists an equivalent real norm ‖ · ‖r on XR that cannot come from a complex

norm.

To finish the introduction, we will introduce the notation that we will make use of. Let X

denote a normed space. Then BX and SX will respectively denote the closed unit ball of X and

the unit sphere of X . Whenever we refer to a closed ball or sphere of center x and radius ε we

will add (x, ε) next to the right of the above expressions.

2 Geometric Renorming

If we look at any 1-dimensional complex Banach space as a real space, we realize that its

unit ball is strictly convex. In particular, this unit ball is free of convex sets with non-empty

interior relative to the unit sphere. We can easily find many examples of complex spaces whose

unit sphere does contain non-trivial segments. Nevertheless, the next theorem shows that this
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cannot happen if we substitute “non-trivial segment” with “convex set with non-empty interior

relative to the unit sphere” in the sentence right above.

Theorem 2.1 Let X be a complex Banach space. If C ⊂ SX is a convex set, then

intSX
(C) = ∅.

Proof Assume that there are c ∈ C and r > 0 such that BX(c, r) ∩ SX ⊆ C. Now, choose

λ ∈ C \ {1} with |λ| = 1 and |λ − 1| < r. Obviously, λc ∈ BX(c, r) ∩ SX , therefore λc ∈ C.

Since C is convex, we have λc+c
2 ∈ C and hence ‖λc+c

2 ‖ = 1, but this means that λ = 1, which

is a contradiction.

We will take advantage of Theorem 2.1 to show that many real norms can be obtained that

do not come from complex norms. To do this, the following lemmas will be very helpful.

Lemma 2.1 Let X be a real Banach space. Let f ∈ SX∗ be a norm-attaining functional.

Let t ∈ (0, 1] and (sn)n∈N ⊂ [t, 1] converging to 1. Then, there exists a subsequence (snk
)k∈N of

(sn)n∈N such that for every k ∈ N there are uk, vk ∈ BX ∩ f−1({t}) with ‖uk‖ = ‖vk‖ = snk

and diam(BX ∩ f−1({t})) − ‖uk − vk‖ → 0 as k → ∞.

Proof Let us fix k ∈ N and consider ak, bk ∈ SX ∩ f−1({t}) such that

diam(BX ∩ f−1({t})) − ‖ak − bk‖ <
1

k
.

Since the segment [ak, bk] is a compact set, there exits λk ∈ (0, 1) such that the norm of

ck := λkak + (1 − λk)bk is minimum on the above segment. Observe that

t = f(ck) ≤ ‖ck‖ ≤ 1.

Thus we can find nk ∈ N big enough and use the Intermediate Value Theorem to assure the

existence of uk ∈ [ak, ck] and vk ∈ [ck, bk] such that ‖uk‖ = ‖vk‖ = snk
and ‖ak−uk‖, ‖bk−vk‖ ≤

1
k
. Obviously, we can choose the sequence (nk)k∈N to be strictly increasing. As a consequence,

diam(BX ∩ f−1({t})) − ‖uk − vk‖ → 0 as k → ∞.

Lemma 2.2 Let X be a real Banach space. Let f ∈ SX∗ be a norm-attaining functional

and consider the function

φ : [0, 1] → R

t 7→ φ(t) = diam(BX ∩ f−1({t})).

Then

(1) For every 0 < s ≤ t ≤ 1 we have

φ(t)

t
≤ φ(s)

s
.

(2) The function φ is continuous from the right.

(3) The space X is strongly rotund if and only if X is rotund and the function φ is continuous

at 1 for every norm-attaining f ∈ SX∗ .
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Proof For our purposes in this proof, let us pick an element z ∈ SX and f(z) = 1. We

will also assume that dim(X) > 1, because otherwise φ = 0. Observe that with this assumption

φ(0) = 2.

(1) Let x, y ∈ BX ∩ f−1({t}). Then ( s
t
)x, ( s

t
)y ∈ BX ∩ f−1({s}). Thus

‖x − y‖ =
t

s

∥

∥

∥

s

t
x − s

t
y
∥

∥

∥
≤ t

s
φ(s).

Since x and y were arbitrarily chosen in BX ∩ f−1({t}), we have

φ(t)

t
≤ φ(s)

s
.

(2) First, let us see that φ is continuous at 0. Let (tn)n∈N ⊂ [0, 1] be a sequence converging

to 0. For every n ∈ N, let us choose xn ∈ ker(fn) with ‖xn‖ = 1 − tn, vn = tnz + xn, and

wn = tnz −xn. Then, we have f(vn) = f(wn) = tn, ‖vn‖, ‖wn‖ ≤ 1, and ‖vn −wn‖ = 2(1− tn)

for every n ∈ N. Since

2 ≥ φ(tn) ≥ 2(1 − tn)

for every n ∈ N, we deduce that (φ(t))n∈N converges to 2 = φ(0). Finally, let us see that φ is

continuous from the right at every t ∈ (0, 1]. Let (tn)n∈N ⊂ [t, 1] be a sequence converging to t.

Then
φ(tn)

tn
≤ φ(t)

t

for all n ∈ N, which means that lim sup
n→∞

φ(tn) ≤ φ(t). Now, in accordance to Lemma 2.1, there

exists a subsequence (tnk
)k∈N of (tn)n∈N such that for every k ∈ N we can choose uk, vk ∈

BX ∩ f−1({t}) with ‖uk‖ = ‖vk‖ = 1− (tnk
− t) and φ(t)−‖uk − vk‖ → 0 as k → ∞. For every

k ∈ N, let xk = (tnk
− t)z + uk and yk = (tnk

− t)z + vk. Then, we have f(xk) = f(yk) = tnk
,

‖xk‖, ‖yk‖ ≤ 1, and ‖xk − yk‖ = ‖uk − vk‖ for every k ∈ N. Therefore, lim inf
k→∞

φ(tnk
) ≥ φ(t).

This proves that (φ(tnk
))k∈N converges to φ(t), and hence φ is continuous from the right at t.

(3) Assume first that X is strongly rotund (see [2] for all definitions). We clearly have that

X is rotund. Now, let (tn)n∈N ⊂ [0, 1] be a sequence converging to 1. For every n ∈ N we

can choose xn, yn ∈ BX ∩ f−1({tn}) such that φ(tn) − ‖xn − yn‖ → 0 as n → ∞. Now, both

sequences (f(xn))n∈N and (f(yn))n∈N converge to 1, so by the strong rotundity of X we have

that both (xn)n∈N and (yn)n∈N converge to z. Next, for all n ∈ N,

φ(tn) = φ(tn) − ‖xn − yn‖ + ‖xn − yn‖
≤ φ(tn) − ‖xn − yn‖ + ‖xn − z‖ + ‖z − yn‖,

that is, (φ(tn))n∈N converges to 0. Observe that

φ(1) = diam(BX ∩ f−1({1})) = diam({z}) = 0

because X is rotund. Conversely, let (xn)n∈N ⊂ BX be a sequence such that (f(xn))n∈N

converges to 1. By hypothesis, φ(f(xn)) → φ(1) = 0 as n → ∞. Now, xn, f(xn)z ∈ BX ∩
f−1({f(xn)}) for all n ∈ N. Thus

‖xn − z‖ ≤ ‖xn − f(xn)z‖ + ‖f(xn)z − z‖
≤ φ(f(xn)) + |f(xn) − 1|
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for all n ∈ N, that is, the sequence (xn)n∈N converges to z.

Lemma 2.3 Let X be a real Banach space with dim(X) > 1. Then, X can be equivalently

renormed to have a convex subset in its unit ball with non-empty interior relative to the unit

sphere and of diameter greater than or equal to δ, for any previously fixed δ ∈ (0, 2).

Proof Let f ∈ SX∗ be a norm-attaining functional and consider the function

φ : [0, 1] → R

t 7→ φ(t) = diam(BX ∩ f−1({t})).

According to Lemma 2.2, φ is continuous at 0. Therefore we can find 0 < t < 1 closed enough

to 0 such that φ(t) ≥ δ. Finally, let us consider the new norm on X whose unit ball is given

by B := BX ∩ f−1([−t, t]). We obviously have that B ⊂ BX , therefore ‖ · ‖ ≤ ‖ · ‖B, and

diamB(BX ∩ f−1({t})) ≥ diam(BX ∩ f−1({t})) ≥ δ.

Now, we can state and prove the main theorem in this section.

Theorem 2.2 Let X be a complex Banach space. Then, XR can be equivalently renormed

so that the new real norm on XR cannot come from a complex norm.

Proof According to Lemma 2.3, XR can be equivalently renormed to have a convex subset

with non-empty interior relative to the unit sphere. Now, by applying Lemma 2.1, we deduce

that this new norm cannot come from a complex norm.

Notice that we can improve Lemma 2.3 by showing that the convex subset with non-empty

interior relative to the unit sphere actually can be chosen to have diameter equal to 2. In order

to prove this, we will make use of the following result, which can be found in [3].

Theorem 2.3 (see [3]) Let X and Y be real Banach spaces. The unit ball of X ⊕∞ Y has

a convex subset with non-empty interior relative to the unit sphere if and only if either the unit

ball of X or the unit ball of Y has a convex subset with non-empty interior relative to the unit

sphere.

Theorem 2.4 Let X be a real Banach space with dim(X) > 1. Then, X can be equivalently

renormed to have a convex subset in its unit ball with non-empty interior relative to the unit

sphere and of diameter equal to 2.

Proof Let us take x ∈ SX and x∗ ∈ SX∗ such that x∗(x) = 1. Then, X is isomorphic

to Y := Rx ⊕∞ ker(x∗). Finally, Rx possesses convex subsets in this unit ball with non-empty

interior relative to the unit sphere (for instance, {x} and {−x}). Therefore, according to

Theorem 2.3, Y possesses such subsets (for instance, {x} × Bker(x∗) and {−x} × Bker(x∗)).

The final results of this section show that the norm 1 does also serve our purposes.

Lemma 2.4 Let X and Y be real Banach spaces. Let (x∗, y∗) ∈ SX∗⊕∞Y ∗ and (x, y) ∈
SX⊕1Y . Then, (x∗, y∗)(x, y) = 1 if and only if x∗(x) = ‖x‖ and y∗(y) = ‖y‖.

Proof Suppose that either x∗(x) < ‖x∗‖‖x‖ or y∗(y) < ‖y∗‖‖y‖. Then

1 = (x∗, y∗)(x, y) = x∗(x) + y∗(y) < ‖x∗‖‖x‖ + ‖y∗‖‖y‖ ≤ ‖x‖ + ‖y‖ = 1,
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which is a contradiction. Conversely, if x∗(x) = ‖x‖ and y∗(y) = ‖y‖, then

(x∗, y∗)(x, y) = x∗(x) + y∗(y) = ‖x‖ + ‖y‖ = 1.

Note that the next lemma follows from the previous one without making use of any proof.

Remember that a point in the unit sphere of a real Banach space is said to be a smooth point

of the unit ball if there is only one functional in the unit sphere of the dual attaining its norm

at the point.

Lemma 2.5 Let X and Y be real Banach spaces. Then, an element (x, y) ∈ SX⊕1Y is a

smooth point of BX⊕1Y if and only if x, y 6= 0 and x
‖x‖ and y

‖y‖ are respectively smooth points

of BX and BY .

Remark 2.1 Let X be a real Banach space. Then, for every a, b ∈ X \ {0} we have

∥

∥

∥

a

‖a‖ − b

‖b‖
∥

∥

∥
≤ 2

‖b‖‖a − b‖.

Theorem 2.5 Let X and Y be real Banach spaces. The unit ball of X ⊕1 Y has a convex

subset with non-empty interior relative to the unit sphere if and only if both the unit ball of X

and the unit ball of Y have a convex subset with non-empty interior relative to the unit sphere.

Proof Let C ⊂ SX⊕1Y be a convex subset with non-empty interior relative to SX⊕1Y .

By Hahn-Banach, there exists (x∗, y∗) ∈ SX∗⊕∞Y ∗ such that (x∗, y∗)(C) = {1}. Actually,

since intSX⊕1Y
(C) 6= ∅ we deduce that (x∗, y∗) is the only element in SX∗⊕∞Y ∗ such that

(x∗, y∗)(C) = {1} and all elements in intSX⊕1Y
(C) are smooth points (see, for instance, [1, 4],

or [3].) There also are ε > 0 and (x, y) ∈ C such that BX⊕1Y ((x, y), ε) ∩ SX⊕1Y ⊆ C. By

Lemma 2.5, we have that x, y 6= 0. Now, we will show that BY ( y

‖y‖ , ε)∩SY ⊆ (y∗)−1({1})∩BY .

So, let v ∈ BY ( y
‖y‖ , ε) ∩ SY . Then, (x, ‖y‖v) ∈ SX⊕1Y and

‖(x, y) − (x, ‖y‖v)‖1 = ‖y‖
∥

∥

∥

y

‖y‖ − v
∥

∥

∥
≤ ε.

As a consequence,

(x, ‖y‖v) ∈ C and (x∗, y∗)(x, ‖y‖v) = 1.

By applying Lemma 2.4, we have y∗(v) = 1. Similarly, intSX
((x∗)−1({1})∩BX) 6= ∅. Conversely,

let x∗ ∈ SX∗ and y∗ ∈ SY ∗ such that

intSX
((x∗)−1({1}) ∩ BX), intSY

((y∗)−1({1}) ∩ BY ) 6= ∅.

Let x ∈ SX , y ∈ SY , and ε > 0 such that

BX(x, ε) ∩ SX ⊆ (x∗)−1({1}) ∩ BX ,

BX(y, ε) ∩ SX ⊆ (y∗)−1({1}) ∩ BY .

We will show that

BX⊕1Y

((x

2
,
y

2

)

,
ε

4

)

∩ SX⊕1Y ⊆ (x∗, y∗)−1({1}) ∩ BX⊕1Y .
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So, let (u, v) ∈ BX⊕1Y ((x
2 , y

2 ), ε
4 ) ∩ SX⊕1Y . Then, by Remark 2.1, we have

∥

∥

∥

u

‖u‖ − x
∥

∥

∥
=

∥

∥

∥

u

‖u‖ −
x
2

‖x
2‖

∥

∥

∥
≤ 2

‖x
2 ‖

∥

∥

∥
u − x

2

∥

∥

∥
≤ ε.

This means that
u

‖u‖ ∈ BX(x, ε) ∩ SX ⊆ (x∗)−1({1}) ∩ BX

and thus

x∗(u) = ‖u‖.
Likewise, y∗(v) = ‖v‖. Therefore, by applying Lemma 2.4, we have

(u, v) ∈ (x∗, y∗)−1({1}) ∩ BX⊕1Y .

3 Algebraic Renorming

In this section, we will take advantage of the algebraical properties of complex spaces to find

real norms that cannot come from complex norms. In concrete terms, we have the following

remark that clarifies quite well the real structure of a complex Banach space.

Remark 3.1 Let X be a complex vector space and let ‖ · ‖r be a real norm on XR. The

following conditions are equivalent:

(1) The norm ‖ · ‖r comes from a complex norm on X .

(2) For every x ∈ X , we have ‖x‖r = ‖ix‖r and spanR{x, ix} = Rx ⊕2 R(ix).

In particular, if X is a complex Banach space then every x ∈ XR is contained in a 2-

dimensional Hilbert subspace of XR.

The conclusion that we infer from the last remark is that, given any complex Banach space

X , XR has many 2-dimensional Hilbert subspaces. This gives us the hint to find the appropriate

real renorming that we are looking for. Nevertheless, we want to present first the following

theorem, which shows that Theorem 2.1 can be generalized to real spaces that have many

2-dimensional Hilbert subspaces.

Theorem 3.1 Let X be a real Banach space such that every x ∈ X is contained in a

2-dimensional Hilbert subspace. Then, the unit ball BX of X is free of convex subsets with

non-empty interior relative to the unit sphere.

Proof Let C ⊂ SX be convex and have non-empty interior relative to SX . Let c ∈ intSX
(C).

By hypothesis, there is d ∈ X such that Y := span{c, d} is a Hilbert space of dimension 2. Now,

we have c ∈ intSY
(C ∩ Y ) and this is impossible because the unit ball BY of Y is free of convex

subsets with non-empty interior relative to the unit sphere.

The next remark shows, as expected, that the converse to Theorem 3.1 does not hold in

general.

Remark 3.2 If we let X stand for ℓ2
p then the unit ball of X is free of convex subsets

with non-empty interior relative to the unit sphere, but no element x ∈ X is contained in a

2-dimensional Hilbert subspace.



Real Renormings on Complex Banach Spaces 245

The next theorem that we present is an improvement of Remark 3.1 and suggests some hints

to prove the main theorem in this section.

Theorem 3.2 Let X be a complex vector space and let ‖ · ‖r be a real norm on XR. The

following conditions are equivalent:

(1) The norm ‖ · ‖r comes from a complex norm on X.

(2) For every x ∈ X we have spanR{x, ix} = Rx ⊕2 R(ix).

Proof Note that, according to Remark 3.1, we only need to show that ‖x‖r = ‖ix‖r for

every x ∈ X . So, let x ∈ X . By hypothesis,

spanR{x + ix,−x + ix} = R(x + ix) ⊕2 R(−x + ix),

in other words,

4‖ix‖2
r = ‖(x + ix) + (−x + ix)‖2

r = ‖x + ix‖2
r + ‖ − x + ix‖2

r = 2‖x‖2
r + 2‖ix‖2

r,

which implies that ‖x‖r = ‖ix‖r.

To finish, we state and prove the main theorem in this section, which shows, among other

things, that Theorem 3.1 is really a generalization of Theorem 2.1.

Theorem 3.3 Let X be a complex Banach space. Then, XR can be equivalently renormed

so that the new real norm on XR cannot come from a complex norm but verifies that every

x ∈ XR is contained in a 2-dimensional Hilbert subspace.

Proof Let us fix an element x ∈ XR with ‖x‖ = 1. We can consider on N := spanR{x, ix}
the following equivalent norm:

‖αx + β(x + ix)‖s :=
√

|α|2 + |β|2

for all α, β ∈ R. Observe that span
R
{x, ix} endowed with the norm ‖ · ‖s is a Hilbert space (it

is, in fact, Rx ⊕2 R(x + ix)). Furthermore,

‖x‖s = 1 and ‖ix‖s = ‖(−x) + (x + ix)‖s =
√

2.

Now, let M be a topological complement for Cx in X . We can consider on XR = N ⊕ MR the

following equivalent norm:

‖y‖r :=
√

‖n‖2
s + ‖m‖2

for all y ∈ XR, where y = n + m with n ∈ N and m ∈ MR. Finally, we will show that the norm

‖ · ‖r verifies the required properties:

(1) The real norm ‖ · ‖r does not come from a complex norm on X . Indeed,

‖ix‖r = ‖ix‖s =
√

2 6= 1 = |i|‖x‖s = |i|‖x‖r.

(2) Every y ∈ XR is contained in a 2-dimensional Hilbert subspace. Indeed, let us write

y = n + m with n ∈ N and m ∈ MR. Let n′ be an element in the orthogonal (Rn)⊥ of Rn in

N endowed with the norm ‖ · ‖s. We will show that

spanR{y, y′} = Ry ⊕2 R(y′),
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where y′ = n′ + im. Let us take any λ, γ ∈ R. Then

‖λy + γy′‖2
r = ‖(λn + γn′) + (λm + γim)‖2

r

= ‖λn + γn′‖2
s + ‖(λ + iγ)m‖2

= ‖λn‖2
s + ‖γn′‖2

s + ‖λm‖2 + ‖γim‖2

= ‖λn + λm‖2
r + ‖γn′ + γim‖2

r

= ‖λy‖2
r + ‖γy′‖2

r.
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