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1 Introduction

In this paper, we consider existence and concentration phenomena of ground states of the

following coupled nonlinear Schrödinger equations

{
h2∆u − V1(x)u + µ1u

3 + βuv2 = 0,

h2∆v − V2(x)v + µ2v
3 + βu2v = 0,

in R
N , (1.1)

as the small parameter h tends to zero. Precisely, we consider existence of ground states for

sufficiently small h and then asymptotical behaviors of these ground states as h tends to zero.

The small parameter h refers to Planck constant. In physics, Planck constant is a real constant.

From this point of view, we are studying problem of semiclassical limit for Schrödinger type

systems and hence the relations between classical and quantum mechanics. In this paper, we

assume that N = 2, 3, µi, i = 1, 2 and β are positive constants, and the potential functions

Vi(x), i = 1, 2 are bounded. We remark that the ground state here coincides with the definition

in [29, 30].

The above systems model many physical problems, especially in nonlinear optics and double

Bose-Einstein condensate. In fact, these equations are satisfied by solitary waves of some time-

dependent nonlinear Schrödinger systems appearing in nonlinear optics when the potentials

are constants. µi is positive when the i-th component of the beam is self-focusing. β is the

interactions between the first and the second component of the beam. As β > 0, the interaction

is attractive, and the interaction is repulsive if β < 0. The present paper concerns the case
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that β > 0 and sufficiently large. The interaction terms in these equations make difficulty not

only in studying existence but also in the analysis of asymptotic behaviors as h tends to zero.

Although these systems have variational structures, their associated energy functionals have

indefinite sign and (PS) condition is not satisfied. This is a feature of the problem.

The stationary Gierer-Mainhardt system




d∆u − u +
up

vq
= 0,

D∆v − v +
ur

vs
= 0,

in Ω, (GM)

(0 < d ≪ 1, D ≫ 1) with Neumann condition and the partial differential equation in the

shadow system (the s.s. system is indeed an ODE coupled with a PDE)

ε2u − u + up = 0, in Ω, (SS)

(ε ≪ 1), which models different diffusion that can lead to nonhomogeneous distribution of

reactants, have been extensively studied by many authors since the work of Lin, Ni and Takagi

[28, 33–35, 42]. Interested readers can find a good review in [32] and many recent references in

[47]. About the techniques of approximate-solution manifold and Liapunov-Schmidt reduction

for Gierer-Mainhadrt type problems, one can find interesting development in [4, 25] and some

of the ideas of the present paper follows from these developments. It is not our ambition to

give a review of this fast developing field and what we want to emphasize here is that most of

the interesting results on (SS) are based on the understanding of the following equation

∆w − w + wp = 0, in R
N . (Eq.1)

This is one of our motives to first consider problems on whole space. Recently, Ramos and

Yang [39] studied spiked-layered solutions for a singularly perturbed elliptic system (without

interactions) on bounded domain and their Hamiltonian functional is different from here.

Since the milestone work of Floer-Weinstein [22], there have been many contributions to the

singularly perturbed Schrödinger equation with potential

h2∆u − V (x)u + up = 0, in R
N . (Eq.2)

Under a mathematical restriction on V , using minimax arguments combined with Ekeland’s

variational principle, Rabinowitz [38] proved the existence of positive ground state. Then

Wang [44] studied the behavior of Rabinowitz’s ground state as h tends to zero and proved that

it concentrates at a global minimum point of V . Wang and Zeng [45] offered a new viewpoint

to study nonlinear Schrödinger equations, especially for those with bounded potentials, both

for existence and concentration of ground states. Ambrosetti, Malchiodi and Secchi [6] gave

multiplicity results of semiclassical solutions (solutions when h ≪ 1) through studying station-

ary points of V . Badiale and D’Aprile [7] and Ambrosetti, Malchiodi and Ni [5] firstly proved

the existence of concentrating sphere of radially symmetric solutions, especially [5] determines

the limit radii as stationary points of an auxiliary potential function. On singularly perturbed

Neumann problem with potentials on bounded domain

ε2div(J(x)∇u) − V (x)u + up = 0, in Ω, (Eq.3)

using techniques similar to (SS), Pomponio [37] studied the existence of single-peaked solu-

tions and determined the concentrating points through coefficient functions. Other important
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contributions to this problem include Del Pino-Felmer [18–20], Dance-Wei [21], Grossi [23],

Jeanjean-Tanaka [24] and so on. For more general potential cases one can refer to [3, 8, 14],

and to [12, 13, 15] for multiplicity results.

Compared with so fruitful results for singularly perturbed single semilinear elliptic equations

and reaction-diffusion systems with quite different diffusion rates, there are few results on

singularly perturbed systems. This is another motivation of this paper.

Recently, spike-layer solutions of singularly perturbed 2-coupled nonlinear Schrödinger equa-

tions {
h2∆u − λ1u + µ1u

3 + βuv2 = 0,

h2∆v − λ2v + µ2v
3 + βu2v = 0,

in Ω, (1.2)

(which arises in the Hartree-Fock theory for a double condensate) and ground states of
{

∆u − λ1u + µ1u
3 + βuv2 = 0,

∆v − λ2v + µ2v
3 + βu2v = 0,

in R
N , (1.3)

(which are standing waves of time-dependent 2-coupled nonlinear Schrödinger equations in non-

linear optics) are studied mathematically by Tai-Chia Lin and Juncheng Wei [29, 30]. Similar

ideas as for (SS), the study on spikes of (1.2) depends on our knowledge for ground states of

(1.3). One of the main tools is the employ of Nehari’s solution manifold, which has been used

by Conti, Terracini and Verzini [16] to study a class of competing species systems. Their main

conclusions for (1.3) are: (a) there exist ground states when 0 < β < β0 <
√

µ1µ2; (b) there do

not exist ground states when β < 0. As β is large, A. Ambrosetti and E. Colorado [1, 2] proved

the existence of ground states. A. Ambrosetti and E. Colorado’s proof consists of two parts.

The first step is to prove the existence of nontrivial least energy solutions using mountain pass

theorem; the second step is to prove that the nontrivial least energy solutions are in fact ground

states using Morse index. In Section 3, we will give a simplified proof for the second step in A.

Ambrosetti and E. Colorado’s proof and give a sketch of the whole proof for completeness and

later use. For other recent developments of such systems, one can refer to [11, 17].

When this work was finished, we learned that several authors have considered such Schrödin-

ger type system with trapping potentials. To the best knowledge of the author, T. Lin and J.

Wei [31] gave the first contribution to spikes of such systems for negative or small β. The present

paper will continue to study the existence and concentration of ground states of Schrödinger

systems like (1.1) for large β, under the restriction that the potentials are bounded from below

and above. The paper is organized as follows.

In Section 2, we give some preliminaries and recall some well-known results. In Section 3,

we give a sketch of the proof of the existence of ground state of problem (1.3) for sufficiently

large β . In Section 4, under the assumption that the global minimum of Vi(x) is less than its

limit at infinity, we prove the existence of ground state of problem (1.1) for sufficiently small

h. Asymptotic behaviors of these ground states as h tends to zero are studied in Section 5. It

is proved that, along a sequence hk tending to zero, the ground state sequence converges to a

ground state of equations of type (1.3) and at least one of their components concentrates at a

finite point whose location is determined by an energy function.

For convenience, we call a solution of system strictly nontrivial if each component of the

solution is not identically zero. By nontrivial solution of system, we mean that at least one

component is not identically zero. In the paper, ground state is in fact strictly nontrivial least

energy solution. Sometimes we call a nontrivial least energy solution a nontrivial ground state.
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2 Preliminaries

The energy functional for (1.3) is

I(u, v) :=

∫
1

2
|∇u|2 +

λ1

2
u2 − µ1

4
u4 +

1

2
|∇v|2 +

λ2

2
v2 − µ2

4
v4 − β

2
u2v2,

where (u, v) ∈ E and E = H1(RN ) × H1(RN ).

Let

c = inf
(u,v)∈M

I(u, v),

where

M =
{
(u, v) ∈ T

∣∣∣
∫

|∇u|2 + λ1u
2 + |∇v|2 + λ2v

2 =

∫
µ1u

4 + 2βu2v2 + µ2v
4
}

and

T = H1(RN ) \ {0} × H1(RN ) \ {0}.
Let

c̃ = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where

Γ = {γ ∈ C([0, 1], E) | γ(0) = 0, I(γ(1)) < 0}.
For any (u, v) ∈ T , set

f(t) = I(
√

t u,
√

t v),

φ(u, v) = max
t>0

f(t)

and let

d = inf
(u,v)∈T

φ(u, v).

Lemma 2.1 Suppose β > 0. Then

(1) ∀ (u, v) ∈ T , there exists unique t = t(u, v) > 0 such that (
√

t u,
√

t v) ∈ M and φ(u, v)

= f(t).

(2) c̃ = c = d.

Proof From the definitions of I and f , we have

f(t) =

∫
t

2
|∇u|2 +

t

2
λ1u

2 − t2µ1

4
u4 +

t

2
|∇v|2 +

t

2
λ2v

2 − t2µ2

4
v4 − t2β

2
u2v2

for t ≥ 0. By a direct computation, we get

ft(t0) = 0 ⇔ ∃unique t0 = t0(u, v) > 0 s.t. (
√

t0 u,
√

t0 v) ∈ M and φ(u, v) = f(t0).

For any (u, v) ∈ M , by the uniqueness of t0,

I(u, v) = max
t>0

I(
√

t u,
√

t v) = φ(u, v) ≥ inf
(u,v)∈T

φ(u, v) = d.

By the definition of c, c ≥ d. On the other hand, for any (u, v) ∈ T ,

d = inf
(u,v)∈T

φ(u, v) = inf
(u,v)∈T

I(
√

t(u, v)u,
√

t(u, v) v) ≥ c



Ground States of Coupled Nonlinear Schrödinger Equations 251

because of (
√

t(u, v)u,
√

t(u, v) v) ∈ M . Thus c = d.

For any (u, v) ∈ M , choose γ0(t) = (tAu, tAv) for sufficiently large A so that I(γ0(1)) < 0.

Then γ0 ∈ Γ and

c̃ ≤ max
t>0

I(γ0(t)) = max
t>0

I(tu, tv) = I(u, v).

Hence c̃ ≤ c.

To show c̃ ≥ c, we only need to prove that for any γ ∈ Γ, γ([0, 1]) ∩ M 6= ∅. When

0 < ‖(u, v)‖ ≪ 1,

∫
|∇u|2 + λ1u

2 + |∇v|2 + λ2v
2 >

∫
µ1u

4 + µ2v
4 + 2βu2v2.

Since I(γ(0)) = 0, γ is continuous in t ∈ [0, 1], I(γ(t)) is continuous in t and I(γ(t)) > 0 for

0 < t ≪ 1. If we set γ(t) = (ut, vt), then

∫
|∇ut|2 + λ1u

2
t + |∇vt|2 + λ2v

2
t >

∫
µ1u

4
t + µ2v

4
t + 2βu2

t v
2
t

holds for sufficiently small t. By the continuity of I(γ(t)), if γ ∈ Γ, γ([0, 1]) ∩ M = ∅, then

∫
|∇u1|2 + λ1u

2
1 + |∇v1|2 + λ2v

2
1 >

∫
µ1u

4
1 + µ2v

4
1 + 2βu2

1v
2
1 .

This is a contradiction with I(γ(1)) < 0.

The following two lemmas are well-known (see e.g. [9, 29, 30, 41]).

Lemma 2.2 There exists unique positive ground state w of






∆w − w + w3 = 0, x ∈ R
N , N ≤ 3,

max
x∈RN

w(x) = w(0),

w(x) → 0, as |x| → ∞

which is radially symmetric about the origin and exponentially decays at infinity.

Set wi(x) =
√

λi

µi
w(

√
λi x), where λi > 0, µi > 0 for i = 1, 2. Then wi is a positive ground

state of

∆wi − λiw + µiw
3 = 0, x ∈ R

N

and the corresponding least energies are

Ii =

∫
1

2
(|∇wi|2 + λiw

2
i ) − µi

4
w4

i = λ
4−N

2

i µ−1
i I0,

where

I0 =

∫
1

2
(|∇w|2 + w2) − 1

4
w4 =

1

4

∫
|∇w|2 + w2.

Lemma 2.3 H1
r (RN ) is compactly imbedded in Lp(RN ) for 2 ≤ p < 2∗ and N ≥ 2, where

2∗ = 2N
(N−2)+

, H1
r (RN ) denote the set of functions in H1(RN ) which are radially symmetric.

This lemma is due to Strauss.



252 G. M. Wei

3 Constant Potentials

The results in this section have been essentially obtained by A. Ambrosetti and E. Colorado

in [1, 2]. For completeness and later use, we give a sketch of the proof and a simplified proof of

the second step in A. Ambrosetti and E. Colorado’s proof.

Firstly, we consider the existence of ground states of
{

∆u − λu + µ1u
3 + βuv2 = 0,

∆v − λv + µ2v
3 + βu2v = 0,

in R
N , N = 2, 3. (3.1)

Theorem 3.1 Assume N = 2, 3 and β > max{µ1, µ2}. Then problem (3.1) has a ground

state.

Proof First we consider this problem in the space of radial functions Er = H1
r (RN ) ×

H1
r (RN ). The associated energy functional is

Ir(u, v) =

∫
1

2
|∇u|2 +

λ

2
u2 − µ1

4
u4 +

1

2
|∇v|2 +

λ

2
v2 − µ2

4
v4 − β

2
u2v2,

where (u, v) ∈ Er.

Define

cr = inf
γ∈Γ

max
θ∈[0,1]

Ir(γ(θ)),

where

Γ = {γ ∈ C([0, 1], Er) | γ(0) = 0, Ir(γ(1)) < 0}.
Recall that, by Lemma 2.3, H1

r (RN ) is compactly imbedded into Lp(RN ) for 2 ≤ p < 2∗

and N ≥ 2. So it follows that Ir satisfies (PS) condition on Er. By mountain pass theorem

(see e.g. [46]), cr is a critical value of Ir in Er and cr is the least energy of radial solutions. A

similar proof as for Lemma 2.1 implies that

cr = c∗r := inf
(u,v)∈Mr

Ir(u, v),

where

Mr =
{
(u, v) ∈ Tr

∣∣∣
∫

|∇u|2 + λu2 + |∇v|2 + λv2 =

∫
µ1u

4 + µ2v
4 + 2βu2v2

}
,

Tr = {(u, v) ∈ Er |u 6= 0 or v 6= 0 }.

Suppose that (ur, vr) is a minimizer and a critical point of Ir|Mr
. Since

Ir(u, v) =
1

2
‖(u, v)‖2 + o(‖(u, v)‖2),

where cr ≥ c for some positive constant c, it follows that (ur, vr) is a nontrivial solution of

(3.1). Next we will show that (ur, vr) is strictly nontrivial.

Let w, I0, wi, Ii, i = 1, 2 be as in Lemma 2.2 with λ = λi.

Let u = aw1, v = bw2, where a2 =
1−µ

−1

2
β

1−β2µ
−1

1
µ
−1

2

, b2 =
1−µ

−1

1
β

1−β2µ
−1

1
µ
−1

2

. Then (u, v) ∈ Mr and

Ir(u, v) =
1

4

∫
|∇u|2 + λu2 + |∇v|2 + λv2

=
1

4

∫
a2(|∇w1|2 + λw2

1) + b2(|∇w2|2 + λw2
2)

= a2I1 + b2I2.
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In fact, (u, v) satisfies
∫

|∇u|2 + λu2 =

∫
µ1u

4 + βu2v2,

∫
|∇v|2 + λv2 =

∫
µ2v

4 + βu2v2.

Assume µ1 ≥ µ2. By direct computation, noting that Ii = λ
4−N

2 µ−1
i I0, i = 1, 2, we have

a2I1 + b2I2 < min{I1, I2} ⇔ µ2
1 − 2µ1β + β2

µ1(µ1µ2 − β2)
< 0.

Therefore, when β > max{µ1, µ2},

cr = c∗r ≤ I(aw1, bw2) = a2I1 + b2I2 < min{I1, I2}.

This implies that ur and vr are not trivial. By elliptic regularity and maximum principle,

(ur, vr) is a positive classical solution of (3.1). From [10, 40], all the positive solutions vanishing

at infinity are radially symmetric at the origin. Hence the radial ground state (ur, vr) is also a

ground state. This finishes the proof.

Remark 3.1 Since Mr includes the Nehari manifold with two equations defined in [30],

the ground state we get coincides with the definition in [30].

As for λ1 6= λ2, we extend Theorem 3.1 to the following corollary.

Corollary 3.1 There exists Λ0 = Λ0(λ1, λ2, µ1, µ2, w) such that, for β ≥ Λ0, problem (1.3)

has a ground state.

Proof Let w, I0, wi, Ii, i = 1, 2 be as in Lemma 2.2. The same arguments as in the proof

of Theorem 3.1 imply the existence of a nontrivial solution (u0, v0). What we need to show is

that this nontrivial solution is a ground state.

Let u = aw1, v = bw2, where

a2 =
1 − βλ1λ

−1
2 µ−1

1 δ1

1 − β2µ−1
1 µ−1

2 δ1δ2

, b2 =
1 − βλ−1

1 λ2µ
−1
2 δ2

1 − β2µ−1
1 µ−1

2 δ1δ2

,

and δ1, δ2 are given by
∫

w2(x)w2
(√

λ2

λ1
x
)

= δ1

∫
w4,

∫
w2(x)w2

(√
λ1

λ2
x
)

= δ2

∫
w4.

For β ≫ 1, we have 0 < a2 ≪ 1, 0 < b2 ≪ 1. By direct computation, (u, v) ∈ M . In fact,
∫

|∇u|2 + λ1u
2 =

∫
µ1u

4 + βu2v2,

∫
|∇v|2 + λ2v

2 =

∫
µ2v

4 + βu2v2.

Hence

I(u, v) =

∫
1

2
|∇u|2 +

λ1

2
u2 − µ1

4
u4 +

1

2
|∇v|2 +

λ2

2
v2 − µ2

4
v4 − β

2
u2v2

=
1

4
(a2λ

4−N
2

1 µ−1
1 + a2λ

4−N
2

1 µ−1
1 )

∫
|∇w|2 + w2

= a2I1 + b2I2

< min{I1, I2}

when β is sufficiently large. This implies that u0 and v0 are both non zero functions and (u0, v0)

must be a ground state.
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4 Existence of Ground States for Varying Potentials

In this and the next section, following the idea in [45], we study the existence and concen-

tration of ground states of
{

h2∆u − V1(x)u + µ1u
3 + βuv2 = 0,

h2∆v − V2(x)v + µ2v
3 + βu2v = 0,

in R
N , (1.1)

under the assumption that N = 2, 3 and Vi(x), i = 1, 2, satisfy

Vi ∈ C1(RN ), λi ≤ Vi(x) ≤ Λi, (V )

where λi, Λi are positive constants. Note that the λi in this section is not the λi in section 3.

We always assume that this condition holds in the following sections.

Let

uh(x) = uh(hx), vh(x) = vh(hx). (4.1)

If (uh, vh) is a ground state of (1.1), then (uh, vh) is a ground state of
{

∆u − V1(hx)u + µ1u
3 + βuv2 = 0,

∆v − V2(hx)v + µ2v
3 + βu2v = 0.

(4.2)

Define

ch = inf
γ∈Γ

max
t∈[0,1]

Ih(γ(t)),

c∗h = inf
(u,v)∈Mh

Ih(u, v),

where

Ih(u, v) =

∫
1

2
(|∇u|2 + V1(hx)u2 + |∇v|2 + V2(hx)v2) − µ1

4
u4 − µ2

4
v4 − β

2
u2v2,

Γh = {γ ∈ C([0, 1], Eh) | γ(0) = 0, Ih(γ(1)) < 0},

Eh =
{
(u, v)

∣∣∣u, v ∈ H1(RN ),

∫
V1(hx)u2 < ∞,

∫
V2(hx)v2 < ∞

}
,

Mh =
{
(u, v) ∈ Th

∣∣∣
∫

|∇u|2 + V1(hx)u2 + |∇v|2 + V2(hx)v2 =

∫
µ1u

4 + 2βu2v2 + µ2v
4
}

,

Th = {(u, v) ∈ Eh | u 6= 0 or v 6= 0 }.

Just as in the proof of Lemma 2.1, it can be easily shown that ch = c∗h.

For fixed s ∈ R
N , define

E(s) = inf
(u,v)∈Ms

Is(u, v),

where

Is(u, v) =

∫
1

2
(|∇u|2 + V1(s)u

2 + |∇v|2 + V2(s)v
2) − µ1

4
u4 − µ2

4
v4 − β

2
u2v2,

Ms =
{
(u, v) ∈ T

∣∣∣
∫

|∇u|2 + V1(s)u
2 + |∇v|2 + V2(s)v

2 =

∫
µ1u

4 + 2βu2v2 + µ2v
4
}

.

From Corollary 3.1, for sufficiently large β, there exists a ground state (us, vs) of
{

∆u − V1(s)u + µ1u
3 + βuv2 = 0,

∆v − V2(s)v + µ2v
3 + βu2v = 0,

(4.3)

i.e. E(s) = Is(us, vs), (us, vs) ∈ Ms and (us, vs) is strictly nontrivial.
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Proposition 4.1 There exists Λ0 = Λ0(λi, Λi, µi, w, Vi) > 0 such that, for β > Λ0, any

nontrivial least energy solution of (4.2) is strictly nontrivial.

Proof Let w, I0 be as in Lemma 2.2 and wi(x) =
√

Λi

µi
w(

√
Λi x), w̃i(x) =

√
λi

µi
w(

√
λi x)

for i = 1, 2. Then wi and w̃i are ground states of

∆wi − Λiwi + µiw
3
i = 0

and

∆w̃i − λiw̃i + µiw̃
3
i = 0,

with corresponding energies Ii = Λ
4−N

2

i µ−1
i I0 and Ĩi = λ

4−N
2

i µ−1
i I0.

Let u = aw1, v = bw2, where

a2 =
α1 − βΛ−1

1 Λ2µ
−1
2 δ1α2

1 − β2µ−1
1 µ−1

2 δ1δ2

, b2 =
α2 − βΛ1Λ

−1
2 µ−1

1 δ2α1

1 − β2µ−1
1 µ−1

2 δ1δ2

and
∫

|∇w|2 + Λ−1
i Vi

(√
Λ−1

i x
)
w2 = αi

∫
|∇w|2 + w2, i = 1, 2,

∫
w2

1(x)w2
2

(√
Λ2

Λ1
x
)

= δ1

∫
w4, w2

1

(√
Λ1

Λ2
x
)
w2

2(x) = δ2

∫
w4.

Then (u, v) ∈ Mh (similar computation as in Section 3) and 0 < a2 ≪ 1, 0 < b2 ≪ 1 when

β ≫ 1. Thus

Ih(u, v) =
1

4

∫
|∇u|2 + V1(hx)u2 + |∇v|2 + V2(hx)v2

≤ 1

4

∫
|∇u|2 + Λ1u

2 + |∇v|2 + Λ2v
2

= a2I1 + b2I2

< min{̃I1, Ĩ2}

for sufficiently large β. It is routine to prove that the least energy for solutions to

∆wi − Vi(x)wi + µiw
3
i = 0

is no less than Ĩi for i = 1, 2. Indeed, the corresponding least energy of the above equation

satisfies

IVi
= inf

w 6=0
max
t>0

∫
t

2
(|∇w|2 + Vi(x)w2) − t2µi

4
w4

≥ inf
w 6=0

max
t>0

∫
t

2
(|∇w|2 + λi(x)w2) − t2µi

4
w4

= Ĩi.

This finishes the proof.

The next lemma will be applied in the next section and is also of its own interests.

Lemma 4.1 E(s) is locally Lipschitz continuous in s ∈ R
N .
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Proof Let wt = (ut, vt) be a positive ground state of (4.3) with t = s. Then there exists

a unique θ = θ(s, t) > 0 such that θwt ∈ Ms, i.e.

∫
|∇ut|2 + V1(s)u

2
t + |∇vt|2 + V2(s)v

2
t = θ2

∫
µ1u

4
t + µ2v

4
t + 2βu2

t v
2
t .

By the bounds (V ) of Vi, we have Eλ1,λ2
≤ E(s) ≤ EΛ1,Λ2

, where Eλ1,λ2
and EΛ1,Λ2

are the

corresponding least energies with Vi = λi and Vi = Λi, respectively. This means that E(s) is

bounded from below and above. Since

E(t) =
1

4

∫
|∇ut|2 + V1(t)u

2
t + |∇vt|2 + V2(t)v

2
t

=
1

4

∫
µ1u

4
t + µ2v

4
t + 2βu2

t v
2
t ,

it follows that θ2 and |∇sθ
2| are locally bounded from below and above.

Since θwt ∈ Ms, we have

Is(θwt) =
θ2

4

∫
|∇ut|2 + V1(s)u

2
t + |∇vt|2 + V2(s)v

2
t

=
θ4

4

∫
µ1u

4
t + µ2v

4
t + 2βu2

tv
2
t

and hence ∇sIs(θwt) is locally bounded from below and above.

Thus, for s1, s2 in some finite domain,

E(s1) − E(s2) ≤ Is1
(θws2

) − Is2
(ws2

)

= (s1 − s2)∇sIs(θws2
)|s∈[s1,s2]

≤ M |s1 − s2|.

Similarly, we can show E(s1) − E(s2) ≥ M |s1 − s2|. Thus |E(s1) − E(s2)| ≤ M |s1 − s2| for

s1, s2 in a finite domain.

Lemma 4.2 lim sup
h→0

ch ≤ inf
s∈RN

E(s).

Proof Let ws0
= (us0

, vs0
) be a ground state of (4.3) with s = s0 and φR be a cut-off

function: φR ∈ C∞
c (RN ), 0 ≤ φR ≤ 1, φ(x) = 1 for |x| ≤ R, φR = 0 for |x| ≥ R + 1. Define

wR = ws0
φR = (us0

φR, vs0
φR) = (uR, vR) and w(x) = wR(x − s0

h
). Then (by the same proof

of Lemma 2.1) there exists θ > 0 such that θw ∈ Mh, i.e.

∫
|∇uR|2 + V1(hx + s0)u

2
R + |∇vR|2 + V2(hx + s0)v

2
R = θ2

∫
µ1u

4
R + µ2v

4
R + 2βu2

Rv2
R.

Since uR → us0
, vR → vs0

and (us0
, vs0

) is a solution of (4.3), we have lim
R→∞

lim
h→0

θ2 = 1.

Thus

ch = inf
(u,v)∈Mh

I(u, v) ≤ I(θw) =
θ4

4

∫
µ1u

4
R + µ2v

4
R + 2βu2

Rv2
R =: f(R, h)

and lim
R→∞

lim
h→0

f(R, h) = E(s0). Since s0 is arbitrary, this proves the lemma.
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Let V ∞
i = lim inf

x→∞
Vi(x), i = 1, 2 and define

E∞ = inf
(u,v)∈M∞

I∞(u, v),

where

I∞(u, v) =

∫
1

2
(|∇u|2 + V ∞

1 u2 + |∇v|2 + V ∞
2 v2) − µ1

4
u4 − µ2

4
v4 − β

2
u2v2,

M∞ =
{

(u, v) ∈ T
∣∣∣

∫
|∇u|2 + V ∞

1 u2 + |∇v|2 + V ∞
2 v2 =

∫
µ1u

4 + 2βu2v2 + µ2v
4
}
,

whose associated equations are

{
∆u − V ∞

1 u + µ1u
3 + βuv2 = 0,

∆v − V ∞
2 v + µ2v

3 + βu2v = 0.

Theorem 4.1 Assume

E∞ > inf
s∈RN

E(s).

Then for small h, problem (4.2) has a nontrivial ground state.

Proof From the definition of Ih,

Ih(u, v) =
1

2
‖(u, v)‖2

Eh
+ o(‖(u, v)‖2

Eh
).

Hence there exists a constant c > 0 such that ch ≥ c for any h.

By general minimax principle (see e.g. [46] or [38]) and since ch = c∗h, there exists wm =

(um, vm) ∈ Eh such that

Ih(wm) → ch, I ′h(wm) → 0, as m → ∞

and we can choose wm so that Ih(wm) = sup
θ>0

Ih(θwm). This implies that wm ∈ Mh and ‖wm‖Eh

is bounded. Hence there exists a subsequence, still denoted by wm, such that wm converges to

some w0 = (u0, v0) weakly in Eh, strongly in L
p
loc(R

N ) (2 ≤ p < 2∗), almost everywhere in R
N ,

classically in C2
loc (RN ), and (u0, v0) is a solution of (4.2).

By direct computation, we get

I ′h(wm), wm) =

∫
|∇um|2 + V1(hx)u2

m + |∇vm|2 + V2(hx)v2
m + µ1u

4
m + µ2v

4
m + 2βu2

mv2
m.

If (u0, v0) is nontrivial, then

ch ≤ Ih(u0, v0)

=
1

4

∫
|∇u0|2 + V1(hx)u2

0 + |∇v0|2 + V2(hx)v2
0

≤ lim inf
m→∞

1

4

∫
|∇um|2 + V1(hx)u2

m + |∇vm|2 + V2(hx)v2
m

= lim
m→∞

(
Ih(wm) − 1

4
(I ′h(wm), wm)

)

→ ch.
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This implies that (u0, v0) is a nontrivial ground state of (4.2) (nontrivial solution with the least

energy among all nontrivial solutions). In the following, what we need to show is that (u0, v0)

is nontrivial.

Otherwise, wm → 0 in L
p
loc(R

N ) (2 ≤ p < 2∗).

Claim 1 ‖wm‖L4 is bounded from below.

Assuming the contrary, we would have ‖um‖L4 → 0, ‖vm‖L4 → 0, and then

ch = lim
m→∞

[
Ih(wm) − 1

2
(I ′h(wm), wm)

]

= lim
m→∞

1

4

∫
µ1u

4
m + µ2v

4
m + 2βu2

mv2
m

→ 0.

This is in contradiction with ch ≥ c > 0.

By the definition of V ∞
i , ∀ε > 0, ∃ρ > 0 such that Vi(x) > V ∞

i −ε, i = 1, 2 for all x : |x| ≥ ρ.

Consider the system

{
∆u − (V ∞

1 − ε)u + µ1u
3 + βuv2 = 0,

∆v − (V ∞
2 − ε)v + µ2v

3 + βu2v = 0,
(4.4)

and let Iε, M ε be defined as above, namely

M ε=
{
(u, v) ∈ T

∣∣∣
∫

|∇u|2+(V ∞
1 − ε)u2+|∇v|2+(V ∞

2 − ε)v2=

∫
µ1u

4+2βu2v2+µ2v
4
}
,

Iε(u, v)=

∫
1

2
(|∇u|2 + (V ∞

1 − ε)u2 + |∇v|2 + (V ∞
2 − ε)v2) − µ1

4
u4 − µ2

4
v4 − β

2
u2v2.

Then there exists θm > 0 such that θmwm ∈ M ε.

Define

cε = inf
(u,v)∈Mε

Iε(u, v).

Claim 2 θm is bounded.

Indeed, by condition (V ),

C1‖wm‖2
Eh

≥
∫

|∇um|2 + (V ∞
1 − ε)u2

m + |∇vm|2 + (V ∞
2 − ε)v2

m

= θ2
m

∫
µ1u

4
m + 2βu2

mv2
m + µ2v

4
m

≥ C2θ
2
m‖wm‖4

L4 .

From Claim 1, θm is bounded.

Therefore,

ch = lim
m→∞

max
θ>0

Ih(θwm) ≥ lim sup
m→∞

Ih(θmwm)

= lim sup
m→∞

∫
1

2
(|∇(θmum)|2 + V1(hx)(θmum)2 + |∇(θmvm)|2 + V2(hx)(θmvm)2)

− µ1

4
(θmum)4 − µ2

4
(θmvm)4 − β

2
(θmum)2(θmvm)2
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= lim sup
m→∞

∫
1

2
(|∇(θmwm)|2 + (V ∞

1 − ε)(θmwm)2 + |∇(θmvm)|2 + (V ∞
2 − ε)(θmvm)2)

− µ1

4
(θmum)4 − µ2

4
(θmvm)4 − β

2
(θmum)2(θmvm)2

+
1

2

∫
(V1(hx) − (V ∞

1 − ε))(θmum)2 + (V2(hx) − (V ∞
2 − ε))(θmvm)2

≥: cε +
1

2
R,

where R =
∫
|x|< ρ

h

(V1(hx) − (V ∞
1 − ε))(θmum)2 + (V2(hx) − (V ∞

2 − ε))(θmvm)2.

Since ‖θmwm‖L2
loc

(RN ) → 0 as m → ∞, we have ch ≥ cε > inf
s∈RN

E(s). This is impossible for

small h. Therefore (u0, v0) is nontrivial and we are done.

Theorem 4.2 Under the assumption of Theorem 4.1, for sufficiently large β and small h,

problem (4.2) has a ground state.

Proof It is a consequence of Proposition 4.1 and Theorem 4.1.

5 Concentration

Suppose that (uh, vh) is a ground state of (4.2). Now we study the concentration of these

ground states as h → 0.

Theorem 5.1 Assume that E∞ > inf
s∈RN

E(s) and β is sufficiently large. Then there exists

a sequence {hk} → 0 such that uhk or vhk concentrates at the global minimum point x0 of E(s).

Define

µh(Ω) =
1

4

∫

Ω

|∇uh|2 + V1(hx)u2
h + |∇vh|2 + V2(hx)v2

h.

Then along a sequence if necessary, as h → 0, µh = ch → c̃ ≤ inf
s∈RN

E(s). By the concentration-

compactness principle of P. L. Lions in [27, Part 1], there are three possibilities:

(i) (Compactness) There exists a sequence {yhk
} that satisfies: ∀ ε > 0, ∃ ρ > 0 such that

∫

Bρ(yhk
)

dµhk
≥ c̃ − ε.

(ii) (Vanishing) There exists a sequence {hk} → 0 such that for all ρ > 0,

lim
hk→0

sup
y∈RN

∫

Bρ(y)

dµk = 0.

(iii) (Dichotomy) There exists a constant c̃ ′ with 0 < c̃ ′ < c̃, sequences {ρhk
} → ∞ and

{yhk
} ⊂ R

N , and two nonnegative measures µ1
hk

and µ2
hk

such that

0 ≤ µ1
hk

+ µ2
hk

≤ µhk
,

supp(µ1
hk

) ⊂ Bρhk
(yhk

), supp(µ2
hk

) ⊂ Bc
2ρhk

(yhk
),

µ1
hk

(RN ) → c̃ ′, µ2
hk

(RN ) → c̃ − c̃ ′.

For convenience, sometimes we write uhk
= uk, vhk

= vk, yhk
= yk, ρhk

= ρk and µhk
= µk.
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Lemma 5.1 Only compactness occurs.

Proof Claim 1 Vanishing does not occur.

Otherwise, from [27, Part 2], uk → 0, vk → 0 in Lp(RN ) for 2 < p < 2∗. Hence

0 = lim
hk→0

1

4

∫
µ1u

4
k + µ2v

4
k + 2βu2

kv2
k = lim

hk→0
µk(RN ) = c̃ > 0,

a contradiction.

Claim 2 Dichotomy does not occur.

Otherwise, take φh ∈ C1
0 (RN ) such that φh = 1 in Bρh

(yh), φh = 0 in Bc
2ρh

(yh) and

0 ≤ φh ≤ 1, |∇φh| ≤ 2
ρh

. Write

uh = φhuh + (1 − φh)uh := u1h + u2h, vh = φhvh + (1 − φh)vh := v1h + v2h.

Then as hk → 0,

Ihk
(u1hk

, v1hk
) ≥ µk(Bρk

(yk)) ≥ µ1
k(Bρk

(yk)) = µ1
k(RN ) → c̃ ′.

Similarly,

Ihk
(u2hk

, v2hk
) ≥ µk(Bc

2ρk
(yk)) ≥ µ2

k(Bc
2ρk

(yk)) = µ2
k(RN ) → c̃ − c̃ ′.

Let Ωh = B2ρh
(yh) \ Bρh

(yh). Then

1

4

∫

Ωhk

|∇uk|2 + V1(hkx)u2
k + |∇vk|2 + V2(hkx)v2

k

= µk(Ωhk
) = µk(RN ) − µk(Bρk

(yk)) − µk(Bc
2ρk

(yk))

≤ µk(RN ) − µ1
k(RN ) − µ2

k(RN )

→ 0.

On the other hand,

c̃ = lim
hk→0

Ihk
(uk, vk)

= lim
hk→0

1

4

∫
|∇uk|2 + V1(hkx)u2

k + |∇vk|2 + V2(hkx)v2
k

= lim
hk→0

Ihk
(u1hk

, v1hk
) + Ihk

(u2hk
, v2hk

) + Jhk

≥ c̃,

where Jhk
= o(1) as hk → 0. Hence

lim
hk→0

Ihk
(u1hk

, v1hk
) = c̃ ′, lim

hk→0
Ihk

(u2hk
, v2hk

) = c̃ − c̃ ′.

Set

J1
hk

=

∫
|∇u1hk

|2 + V1(hkx)u2
1hk

+ |∇v1hk
|2 + V2(hkx)v2

1hk
− µ1u

4
1hk

− µ2v
4
1hk

− 2βu2
1hk

v2
1hk

,

J2
hk

=

∫
|∇u2hk

|2 + V1(hkx)u2
2hk

+ |∇v2hk
|2 + V2(hkx)v2

2hk
− µ1u

4
2hk

− µ2v
4
2hk

− 2βu2
2hk

v2
2hk

.
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Since (uk, vk) ∈ Mhk
, J1

hk
+ J2

hk
= o(1).

Case 1 J1
hk

≤ 0.

Since (u1hk
, v1hk

) is nontrivial, there exists θ > 0 such that (θu1hk
, θv1hk

) ∈ Mhk
, i.e.

∫
|∇u1hk

|2 + V1(hkx)u2
1hk

+ |∇v1hk
|2 + V2(hkx)v2

1hk
= θ2

∫
µ1u

4
1hk

+ µ2v
4
1hk

+ 2βu2
1hk

v2
1hk

.

Hence θ ≤ 1 and

chk
≤ Ihk

(θu1hk
, θv1hk

) ≤ Ihk
(u1hk

, v1hk
) → c̃ ′ < c̃.

This is a contradiction.

Case 2 J2
hk

≤ 0.

Similar to Case 1, this also leads to a contradiction.

Case 3 J1
hk

> 0 and J2
hk

> 0.

This implies J1
hk

= o(1) and J2
hk

= o(1). If θ ≤ 1 + o(1), we are done by arguments similar

to those in the proof of case 1. Assume lim
hk→0

θ = θ0 > 1. Then

0 = lim
hk→0

J1
hk

= lim
hk→0

2(θ2 − 1)

2θ2 − 1
Ihk

(u1hk
, vhk

) =
2(θ2

0 − 1)

2θ2
0 − 1

c̃ ′ > 0,

a contradiction.

Let

wk(x) = uhk(hkx + hkyk) = uk(x + yk), zk(x) = vhk(hkx + hkyk) = vk(x + yk).

Then (wk, zk) is a ground state of

{
∆wk − V1(hkx + ykhk)wk + µ1w

3
k + βwkz2

k = 0,

∆zk − V2(hkx + ykhk)zk + µ2z
3
k + βw2

kzk = 0.
(5.1)

Lemma 5.2 {hkyk} is bounded and (wk, zk) → (w0, z0) in Lp(RN )×Lp(RN ) for 1 < p < 2∗.

Proof Assume hkyk → ∞. Since chk
is bounded, there exists a subsequence of (wk, zk), still

denoted by (wk, zk), such that (wk, zk) ⇀ (w0, z0) in H1(RN ) × H1(RN ). By the compactness

of µhk
, ∀ ε > 0, ∃ ρ > 0 such that

1

4

∫

Bc
ρ

|∇wk|2 + λ1w
2
k + |∇zk|2 + λ2z

2
k ≤ µhk

(Bc
ρ(yk)) < ε.

This implies that (wk, zk) → (w0, z0) in Lp(RN ) × Lp(RN ) for 1 < p < 2∗. Observe that

1

4

∫
µ1w

4
0 + µ2z

4
0 + 2βw2

0z
2
0 = lim

hk→0

1

4

∫
µ1w

4
k + µ2z

4
k + 2βw2

kz2
k ≥ lim sup

hk→0
chk

≥ c > 0.

Thus (w0, z0) is nontrivial.

Since hkyk → ∞, (w0, z0) satisfies the following equations





∆w0 −
(
V ∞

1 − ε

2

)
w0 + µ1w

3
0 + βw0z

2
0 ≥ 0,

∆z0 −
(
V ∞

2 − ε

2

)
z0 + µ2z

3
0 + βw2

0z0 ≥ 0.
(5.2)
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In particular,
∫

|∇w0|2 + (V ∞
1 − ε)w2

0 + |∇z0|2 + (V ∞
2 − ε)z2

0 <

∫
µ1w

4
0 + µ2z

4
0 + 2βw2

0z
2
0 .

Take θ > 0 such that (θw0, θz0) ∈ M ε. Then θ < 1 and

cε ≤ θ2

4

∫
|∇w0|2 + (V ∞

1 − ε)w2
0 + |∇z0|2 + (V ∞

2 − ε)z2
0

≤ lim inf
hk→0

1

4

∫
|∇wk|2 + V1(hkx + hkyk)w2

k + |∇zk|2 + V2(hkx + hkyk)z2
k

= lim inf
hk→0

chk

≤ inf
s∈RN

E(s).

By Lemma 4.1, cε → E∞ as ε → 0. This is in contradiction with E∞ > inf
s∈RN

E(s).

Assume xk = hkyk → x0. Then (w0, z0) satisfies




∆w0 − V1(x0)w0 + µ1w

3
0 + βw0z

2
0 = 0,

∆z0 − V2(x0)z0 + µ2z
3
0 + βw2

0z0 = 0.
(5.3)

Lemma 5.3 E(x0) = inf
s∈RN

E(s) and (wk, zk) → (w0, z0) in H1(RN ) × H1(RN ).

Proof

inf
s∈RN

E(s) ≤ E(x0) ≤
1

4

∫
|∇w0|2 + V1(x0)w

2
0 + |∇z0|2 + V2(x0)z

2
0

=
1

4

∫
µ1w

4
0 + µ2z

4
0 + 2βw2

0z
2
0

= lim
k→∞

1

4

∫
µ1w

4
k + µ2z

4
k + 2βw2

kz2
k

=
1

4
lim

k→∞

∫
|∇wk|2 + V1(hkx + xk)w2

k + |∇zk|2 + V2(hkx + xk)z2
k

= lim inf
hk→0

chk
≤ inf

s∈RN
E(s).

Thus E(x0) = inf
s∈RN

E(s) and there exists a subsequence (wk, zk) such that

∫
|∇wk|2 + V1(hkx + xk)w2

k + |∇zk|2 + V2(hkx + xk)z2
k

→
∫

|∇w0|2 + V1(x0)w
2
0 + |∇z0|2 + V2(x0)z

2
0 .

By integration on the complement of large balls and using Fatou’s lemma, we have
∫

|∇wk|2 + |∇zk|2 →
∫

|∇w0|2 + |∇z0|2.

Hence (wk, zk) → (w0, z0) in H1(RN ) × H1(RN ).

Proof of Theorem 5.1 Let x1k be a local maximum point of wk and x2k a local maximum

point of zk. Then ∆wk(x1k) ≤ 0 and ∆zk(x2k) ≤ 0. From (5.1),

µ1w
2
k(x1k) + βz2

k(x1k) ≥ V1(hkx1k + xk) ≥ λ1
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and

βw2
k(x2k) + µ2z

2
k(x2k) ≥ V2(hkx2k + xk) ≥ λ2.

Hence, along a subsequence if necessary, wk(x1k) > c1 or zk(x2k) > c2 for some positive constant

c1 and c2 .

Suppose wk(x1k) > c1. From Lemma 5.3, wk(x) → 0 as x → ∞ uniformly with respect to

k. Since uhk(x) = wk(x−xk

hk
) and xk → x0, we conclude that uhk concentrates at x0.
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