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considers further regularities of the mild solutions to Navier-Stokes equation with initial
data u0 ∈ Ld(Rd). In particular, it is proved that if u ∈ C([0, T ∗); Ld(Rd)) is a mild solution

of (NSν), then u(t, x) − eνt∆u0 ∈ eL∞((0, T ); Ḃ1
d
2

,∞
) ∩ eL1((0, T ); Ḃ3

d
2

,∞
) for any T < T ∗.
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1 Introduction

In this article, we consider Navier-Stokes system for incompressible fluids in the whole space:

(NSν)






∂tu + u · ∇u − ν∆u = −∇p, (t, x) ∈ (0,∞) × R
d,

div u = 0,

u|t=0 = u0,

where u(t, x) denotes the fluid velocity and p(t, x) the pressure.

In 1964, Fujita and Kato proved the local well-posedness of (NSν) with initial data in

Ḣ
1
2 (R3), which is the space of distributions u with Fourier transform satisfying

‖u‖2

Ḣ
1
2

def
=

∫

R3

|ξ||û(ξ)|2dξ < ∞.

The reason why they consider (NSν) with initial data in Ḣ
1
2 (R3) is motivated by the following

observation: let u(t, x) be a solution to (NSν) on a time interval [0, T ] with initial data u0(x),

then the vector field uλ defined by

uλ(t, x)
def
= λu(λ2t, λx)

is also a solution of (NSν) on the time interval [0, λ−2T ] with initial data λu0(λx). It is easy to

check that the norm ‖u0‖
Ḣ

1
2

is scaling invariant under the transformation: u0(x) → λu0(λx)

Manuscript received March 5, 2007. Revised November 8, 2007. Published online April 23, 2008.
∗Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China.
E-mail: zp@mass.ac.cn

∗∗Project supported by the National Natural Science Foundation of China (Nos. 10525101, 10421101), the
973 Project of the Ministry of Science and Technology of China and the innovation grant from Chinese
Academy of Sciences.



266 P. Zhang

for all λ > 0. The other typical examples are given by the Lebesgue space L3(R3) in [9, 3], the

homogeneous Besov space Ḃ
−1+ 3

p
p,∞ (R3) for p > 3 in [2].

The standard procedure used in the study of the well-posedness to (NSν) is: one first

transforms (NSν) to the integral form

u(t) = S(t)u0 + B(u, u)(t), (1.1)

where

B(v, u)(t)
def
= −

∫ t

0

PS(t − s)∇ · (v ⊗ u)(s)ds,

P = I −∇∆−1 div is the projection operator onto divergence free vector fields and S(t)
def
= eνt∆

is the heat semigroup; then one uses fixed point theorem for (1.1) in an appropriate Banach

space.

However, as noticed by Oru in [10], the operator B(v, u) is not continuous on C([0, T ∗);

Ld(Rd)). Therefore, given initial data u0 ∈ Ld(Rd), one can not use fixed point theorem for

(1.1) in C([0, T ∗); Ld(Rd)). Instead, one has to search for an appropriate smaller subspace of

C([0, T ∗); Ld(Rd)), on which one can use fixed theorem to prove both the existence as well as

the uniqueness of solutions to (1.1) in this subspace.

It was not until 1998 that Furioli, Lemarié-Rieusset and Terraneo [8] proved the uniqueness

of solution to (NSν) in the class of C([0, T ∗); Ld(Rd)). One key observation in [8] is that: when

u ∈ C([0, T ∗); Ld(Rd)), B(u, u) ∈ L∞((0, T ∗); B
d
p
−1

p,∞ ) for every p ∈ [d
2 ,∞). In this text, we are

going to use the function space introduced by Chemin in [6] to improve the regularity of B(u, u)

for Kato’s solution u ∈ C([0, T ∗); Ld(Rd)) of (NSν) (see [9]).

Before we present the main result of this article, let us start with the space we are going

to work. As it requires the dyadic decomposition of the Fourier space, let us first recall the

following operators of localization in Fourier space:

∆ja = F−1(ϕ(2−j |ξ|)â) and Sja =
∑

j′≤j−1

∆j′a, (1.2)

where Fa and â denote the Fourier transform of the distribution a, ϕ(τ) is a smooth function

with suppϕ ⊂ {τ : 3
4 ≤ τ ≤ 8

3}, and
∑

j∈Z

ϕ(2−jτ) = 1, ∀ τ > 0.

Motivated by [6, 8], to study further regularities of the mild solution u ∈ C([0, T ∗); Ld(Rd))

to (NSν), we recall the following time dependent space, E d
2
(T ), from [6].

Definition 1.1 Let T > 0. E d
2
(T ) is the space of tempered distributions u ∈ L∞

(
[0, T ];

Ḃ1
d
2

,∞

)
such that

‖u‖Ed
2

(T )
def
= ‖u‖eL∞

T

(
Ḃ1

d
2

,∞

) + ν‖u‖eL1
T

(
Ḃ3

d
2

,∞

) < ∞,

with

‖u‖eL∞

T

(
Ḃ1

d
2

,∞

) def
= sup

j∈Z

2j‖∆ju‖
L∞

T
(L

d
2 )

and ‖u‖eL1
T

(
Ḃ3

d
2

,∞

) def
= sup

j∈Z

23j‖∆ju‖
L1

T
(L

d
2 )

.
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Now, we present the main result of this article.

Theorem 1.1 Let u ∈ C([0, T ∗); Ld(Rd)) be the unique mild solution of (NSν) with initial

data u0 ∈ Ld(Rd). Then

u − eνt∆u0 ∈ E d
2
(T ) for any T < T ∗.

We conclude this section by recalling the para-differential decomposition from [1]: let a, b ∈
S′(R3),

ab = Tab + R(a, b), (1.3)

where

Tab =
∑

j∈Z

Sj−1a∆jb and R(a, b) =
∑

j∈Z

∆jaSj+2b.

Notations By a . b, we mean that there is a uniform constant C, which may be different

on different lines, such that a ≤ Cb; and we denote by Lr
T (Lp) the space Lr([0, T ]; Lp(Rd)).

2 Proof of Theorem 1.1

As we will constantly use the Littlewood-Paley theory in the subsequence, for convenience

of the reader, we recite it in the following, and one may refer to [4] or [5] for further details.

Lemma 2.1 Let B be a ball of R
d, and C a ring of R

d; let 1 ≤ p2 ≤ p1 ≤ ∞. Then there

holds:

If the support of â is included in 2kB, then

‖∂αa‖Lp1(Rd)) . 2
k(|α|+d( 1

p2
− 1

p1
))‖a‖Lp2(Rd).

If the support of â is included in 2kC, then

‖a‖Lp1(Rd) . 2−kN sup
|α|=N

‖∂αa‖Lp1(Rd).

Lemma 2.2 Let C be a ring of R
d. Then there exist two positive constants c and C such

that, for any r > 1 and any couple (t, λ) of positive real numbers, there holds

Supp û ⊂ λC =⇒ ‖et∆u‖Lr ≤ Ce−ctλ2‖u‖Lr .

The proof of Theorem 1.1 is essentially based on the following three Lemmas.

Lemma 2.3 Let w1, w2 ∈ L∞((0, T ); Ld(Rd)) ∩ E d
2
(T ). Then there holds

‖B(w1, w2)‖E d
2

(T ) .
1

ν
(‖w1‖L∞

T
(Ld)‖w2‖E d

2

(T ) + ‖w2‖L∞

T
(Ld)‖w1‖E d

2

(T )).

Proof Thanks to Bony’s decomposition (1.3), we write

w1w2 = Tw1
w2 + R(w1, w2).
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Considering the support to the Fourier transform to terms above, we have

∆j(Tw1
w2) =

∑

|j′−j|≤4

∆j(Sj′−1w1∆j′w2),

∆j(R(w1, w2)) =
∑

j′≥j−N0

∆j(∆j′w1Sj′+2w2)
(2.1)

for some positive integer N0.

Then we get by applying Hölder inequality

‖∆j(R(w1, w2))‖
L1

T
(L

d
2 )

.
∑

j′≥j−N0

‖∆j′w1‖
L1

T
(L

d
2 )
‖Sj′+2w2‖L∞

T
(L∞). (2.2)

However, thanks to Lemma 2.1, we have

‖Sj′+2w2‖L∞

T
(L∞) . 2j′‖Sj′+2w2‖L∞

T
(Ld) . 2j′‖w2‖L∞

T
(Ld).

As a consequence, we obtain

‖∆j(R(w1, w2))‖
L1

T
(L

d
2 )

.
1

ν
‖w1‖E d

2

(T )‖w2‖L∞

T
(Ld)

∑

j′≥j−N0

2−2j′

.
2−2j

ν
‖w1‖E d

2

(T )‖w2‖L∞

T
(Ld).

A similar but easier proof gives

‖∆j(Tw1
w2)‖

L1
T

(L
d
2 )

.
2−2j

ν
‖w1‖L∞

T
(Ld)‖w2‖E d

2

(T ).

Therefore,

‖∆j(w1w2)‖
L1

T
(L

d
2 )

.
2−2j

ν
(‖w1‖L∞

T
(Ld)‖w2‖E d

2

(T ) + ‖w1‖E d
2

(T )‖w2‖L∞

T
(Ld)),

from which, and thanks to Lemma 2.2, we get by applying Young’s inequality

‖∆j(B(w1, w2))‖
L∞

T
(L

d
2 )

. 2j
∥∥∥

∫ t

0

e−cν(t−s)22j‖∆j(w1w2)(s)‖
L

d
2

ds
∥∥∥

L∞

T

. 2j‖∆j(w1w2)‖
L1

T
(L

d
2 )

.
2−j

ν
(‖w1‖L∞

T
(Ld)‖w2‖E d

2

(T ) + ‖w1‖E d
2

(T )‖w2‖L∞

T
(Ld)). (2.3)

Similarly, we get by applying Young’s inequality once again

ν22j‖∆j(B(w1, w2))‖
L1

T
(L

d
2 )

. 2j‖∆j(w1w2)‖
L1

T
(L

d
2 )

.
2−j

ν
(‖w1‖L∞

T
(Ld)‖w2‖E d

2

(T ) + ‖w1‖E d
2

(T )‖w2‖L∞

T
(Ld)). (2.4)

This together with (2.3) completes the proof of this lemma.

Lemma 2.4 Let u0 ∈ Ld(Rd), uL
def
= eνt∆u0 and w ∈ L∞((0, T ); Ld(Rd)) ∩ E d

2
(T ). Then

for every ε > 0, there exists Cε > 0 such that

‖B(w, uL)‖E d
2

(T ) .
1

ν
(‖u0‖Ld‖w‖L∞

T
(Ld) + min(‖u0‖Ld , ε + Cε(νT )

1
2 )‖w‖E d

2

(T )).
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Proof Again thanks to Bony’s decomposition (1.3), we write

wuL = TwuL + R(w, uL),

with ∆j(TwuL) and ∆j(R(w, uL)) having the similar expressions as the correspondences in

(2.1). Then we get by applying Hölder inequality

‖∆j(TwuL)‖
L1

T
(L

d
2 )

.
∑

|j′−j|≤4

‖Sj′−1w‖L∞

T
(Ld)‖∆j′(uL)‖L1

T
(Ld).

But thanks to (1.2),

‖Sj′−1w‖L∞

T
(Ld) . ‖w‖L∞

T
(Ld),

and thanks to Lemma 2.2, we have

‖∆j(uL)‖L1
T

(Ld) . ‖e−cνt22j

∆j(u0)‖L1
T

(Ld) .
2−2j

ν
‖∆j(u0)‖Ld .

2−2j

ν
‖u0‖Ld . (2.5)

Hence

‖∆j(TwuL)‖
L1

T
(L

d
2 )

.
2−2j

ν
‖u0‖Ld‖w‖L∞

T
(Ld), (2.6)

whereas we get by applying Hölder inequality to ∆j(R(w, uL))

‖∆j(R(w, uL))‖
L1

T
(L

d
2 )

.
∑

j′≥j−N0

‖∆j′w‖L1
T

(Ld)‖Sj′+2(uL)‖L∞

T
(Ld).

Thanks to Lemma 2.1, we have

‖∆j′w‖L1
T

(Ld) . 2j′‖∆j′w‖
L1

T
(L

d
2 )

.
2−2j′

ν
‖w‖E d

2

(T ),

and trivially

‖Sj′+2(uL)‖L∞

T
(Ld) . ‖uL‖L∞

T
(Ld) ≤ ‖u0‖Ld ,

from which we deduce

‖∆j(R(w, uL))‖
L1

T
(L

d
2 )

.
2−2j′

ν
‖u0‖Ld‖w‖E d

2

(T ). (2.7)

When ‖u0‖Ld is large, for every ε > 0, we can find some u1 ∈ C∞
c (Rd) such that ‖u0−u1‖Ld ≤ ε.

We denote u2
def
= u0 − u1. Then similar proof of (2.7) gives

‖∆j(R(w, eνt∆u2))‖
L1

T
(L

d
2 )

.
ε

ν
2−2j′‖w‖E d

2

(T ). (2.8)

While thanks to (2.1), we get by applying Hölder inequality

‖∆j(R(w, eνt∆u1))‖
L1

T
(L

d
2 )

.
∑

j′≥j−N0

‖∆j′w‖
L2

T
(L

d
2 )
‖Sj′+2(e

νt∆u1)‖L2
T

(L∞).

However, using Hölder inequality once again, we have

‖∆j′w‖
L2

T
(L

d
2 )

. ‖∆j′w‖
1
2

L1
T

(L
d
2 )
‖∆j′w‖

1
2

L∞

T
(L

d
2 )

.
2−2j

ν
1
2

‖w‖E d
2

(T ),

‖Sj′+2(e
νt∆u1)‖L2

T
(L∞) . T

1
2 ‖Sj′+2(e

νt∆u1)‖L∞

T
(L∞) . T

1
2 ‖u1‖L∞ ≤ CεT

1
2 .
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This reaches the conclusion that

‖∆j(R(w, eνt∆u1))‖
L1

T
(L

d
2 )

.
Cε√

ν
2−2jT

1
2 ‖w‖E d

2

(T ). (2.9)

By summing up (2.6)–(2.9), we complete the proof of Lemma 2.4 by repeating the argument in

(2.3) and (2.4).

Lemma 2.5 Let u0 ∈ Ld(Rd), uL
def
= eνt∆u0. Then, there holds

‖B(uL, uL)‖E d
2

(T ) .
1

ν
‖u0‖2

Ld .

Proof We use Bony’s decomposition (1.3) to write

∆j(uL ⊗ uL) = ∆j(TuL
⊗ uL) + ∆j(R(uL, uL)).

Then thanks to (2.1), we get by applying Hölder inequality

‖∆j(R(uL, uL))‖
L1

T
(L

d
2 )

.
∑

j′≥j−N0

‖∆j′(uL)‖L1
T

(Ld)‖Sj′+2(uL)‖L∞

T
(Ld),

which together with (2.5) gives

‖∆j(R(uL, uL))‖
L1

T
(L

d
2 )

.
2−2j

ν
‖u0‖2

Ld .

Similar inequality holds for ‖∆j(TuL
⊗ uL)‖

L1
T

(L
d
2 )

. Then a proof similar to (2.3) and (2.4)

concludes the proof of this lemma.

Now we are in a position to complete the proof of Theorem 1.1.

Proof of Theorem 1.1 Thanks to the uniqueness result in [8] that: given u0 ∈ Ld(Rd),

(NSν) has a unique solution u ∈ C([0, T ∗); Ld(Rd)). To get further regularities of this unique

solution, we only need to do the a priori estimate for the approximate solutions, like what

constructed by Kato in [9]. For simplicity, we just present the a priori estimate for the exact

solution of (NSν).

We denote uL
def
= eνt∆u0 and w

def
= u− uL. Then by substituting u = uL + w in (1.1) we get

w = B(w, w) + B(w, uL) + B(uL, w) + B(uL, uL), (2.10)

from which we get by applying Lemma 2.3 to Lemma 2.5

‖w‖E d
2

(T ) ≤
C

ν
[(‖w‖L∞

T
(Ld) + ε + Cε(νT )

1
2 )‖w‖E d

2

(T ) + ‖u0‖Ld(‖u0‖Ld + ‖w‖L∞

T
(Ld))]. (2.11)

Note from the assumption that u ∈ C([0, T ∗); Ld(Rd)) and eνt∆ is a continuous semi-group on

Ld(Rd). Therefore, from its definition we get

lim
t→0+

‖w‖L∞([0,t];Ld) = 0,

from which we deduce that there is a positive constant τ1 such that

‖w‖L∞

τ1
(Ld) ≤

ν

4C
.



Regularities of Kato’s Solutions 271

And then we choose ε sufficiently small so that

ε ≤ ν

8C
and τ2 =

ν

(8CCε)2
.

We denote

T1
def
= min(τ1, τ2).

Then thanks to (2.11), we obtain

‖w‖E d
2

(T1) ≤
2C

ν
‖u0‖Ld(2‖u0‖Ld + ‖u‖L∞

T1
(Ld)). (2.12)

If T1 < T ∗, as u ∈ C([0, T ∗); Ld(Rd)), we write

u(t) = S(t − T1)u(T1) −
∫ t

T1

PS(t − s)∇ · (u ⊗ u)(s)ds, t > T1, (2.13)

and set

w̃
def
= u(t) − eν(t−T1)∆u(T1),

from which we repeat the argument used in the proof of (2.12) to find some T2 > T1 such that

‖w̃‖E d
2

(T1,T2)
def
= sup

j∈Z

2j‖∆jw̃‖
L∞((T1,T2);L

d
2 )

+ ν sup
j∈Z

23j‖∆jw̃‖
L1((T1,T2);L

d
2 )

≤ 2C

ν
‖u(T1)‖Ld(2‖u(T1)‖Ld + ‖u‖L∞((T1,T2);Ld)). (2.14)

On the other hand, as w ∈ E d
2
(T1), w(T1) ∈ Ḃ1

d
2

,∞
. Then we get by using Lemma 2.2

‖eν(t−T1)∆w(T1)‖E d
2

(T1,T2) ≤ C‖w(T1)‖Ḃ1
d
2

,∞

,

which together with (2.14) ensures

‖w‖E d
2

(T1,T2) ≤ ‖w̃‖E d
2

(T1,T2) + ‖eν(t−T1)∆w(T1)‖E d
2

(T1,T2) ≤ C(‖u‖L∞

T2
(Ld)), (2.15)

where we have used the fact that u(T1) = eνT1∆u0 + w(T1). Thanks to (2.12) and (2.15), we

obtain

‖w‖E d
2

(T2) ≤ C(‖u‖L∞

T2
(Ld)). (2.16)

If T2 < T ∗, we can repeat the argument from (2.13) to (2.14) so that we can find some T3 > T2

such that (2.14) holds with T1, T2 there being replaced by T2 and T3 respectively. In this way,

if T ∗ < ∞, we can find a maximal time τ∗ such that (2.16) holds for any T < τ∗. We claim

that τ∗ = T ∗. Otherwise, if τ∗ < T ∗, as u ∈ C([0, T ∗); Ld(Rd)), we can replace T1 in (2.13) by

τ∗. Then repeating the argument from (2.13) to (2.16), we can find a τ∗ < T ′ < T ∗ such that

(2.16) holds with T2 there being replaced by T ′, which contradicts the definition of τ∗. When

T ∗ = ∞, a similar argument deduces that for any T < ∞, (2.16) holds with T2 there being

replaced by T. This completes the proof of Theorem 1.1.
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