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Abstract Let A be the mod p Steenrod algebra and S be the sphere spectrum localized
at an odd prime p. To determine the stable homotopy groups of spheres .S is one of
the central problems in homotopy theory. This paper constructs a new nontrivial family
of homotopy elements in the stable homotopy groups of spheres mpng42pq+q—3S5 which is
of order p and is represented by koh, € Extip”q"'qu'*'q(Zp,Zp) in the Adams spectral
sequence, where p > 5 is an odd prime, n > 3 and ¢ = 2(p — 1). In the course of the
proof, a new family of homotopy elements in myn g4 (pt1)q—1V (1) which is represented by

But' win (hn) € Exti’panerl)qH(H*V(l),Zp) in the Adams sequence is detected.
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1 Introduction and the Main Results

Let A be the mod p Steenrod algebra and S be the sphere spectrum localized at an odd
prime p. To determine the stable homotopy groups of spheres 7,5 is one of the central problems

in homotopy theory. One of the main tools to reach it is the Adams spectral sequence:
Ey' = Ext'(Zy, Zp) = mi—sS,

where the Ej”'-term is the cohomology of A.

Throughout this paper, we fix ¢ = 2(p — 1).

From [1], Ext}*(Z,, Z,) has Z,-basis consisting of ag € ExtY'(Z,,Z,), h; € Extzpiq(Zp, Zy)
for all @ > 0 and Exti’*(Zp,Zp) has Z,-basis consisting of as, a3, agh; (i > 0), g; (i > 0),
ki (i > 0), e; (¢ > 0), and h;h; (j > ¢+ 2,9 > 0) whose internal degrees are 2¢ + 1, 2,
piq + 1,piTlq + 2piq, 2p™*! + piq, p'tlq and plq + p’q respectively.

Let M be the Moore spectrum modulo a prime p > 5 given by the cofibration

(SRR SING Y QEIN 3]°) (1.1)
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Let a: X9M — M be the Adams map and K be its cofibre given by the cofibration
SOM - M KL sty (1.2)

where ¢ = 2(p — 1). This spectrum which we briefly write as K is known to be the Toda-Smith
spectrum V(1). Let V(2) be the cofibre of §: XPTDIK — K given by the cofibration

seivag 2 g T y(9) Ly nerlat g (1.3)

If a family of homotopy generators z; in E5™ converges nontrivially in the Adams spectral
sequence, then we get a family of homotopy elements f; in 7S and we say that f; is represented
by x; € Ey" and has filtration s in the Adams spectral sequence. So far, not so many families
of homotopy elements in 7S have been detected.

In 1981, a family ¢,—1 € Tpngtq—3S for n > 2 which has filtration 3 in the Adams spectral

sequence and is represented by
hobn_1 € Ext3P 1497, 7.,) (1.4)

was detected in [2].

Recently, Lin Jinkun got a series of results and detected some new families of lower filtration
in the stable homotopy groups of spheres m,S.

In [3], Lin Jinkun and Zheng Qibing obtained the following theorem and detected a new
family of filtration 7 in the stable homotopy groups of spheres.

Theorem 1.1 (cf. [3]) Let p > 7, n>4. Then the product
n 2
bn—lgO%B 7& 0 c Ethp Q+3(P +P+1)Q(ZP, Zp)
s a permanent cycle in the Adams spectral sequence and it converges to a nontrivial element
of order p in Tyn g1 3(p24p+1)q—75--

Lin [4] detected a new family of filtration 6 in the stable homotopy groups of spheres and

proved the following theorem.
Theorem 1.2 (cf. [4]) Let p > 7, n > 4. Then the product
_ 6,p" q+3(p?
thO’YB # 0 c EXtAp q+ (P +p+1)q(Zp;Zp)
s a permanent cycle in the Adams spectral sequence and it converges to a nontrivial element
of order p in Tyng13(p24p+1)q—65-

In [5], Lin detected a new family of filtration 3 in the stable homotopy groups of spheres.
Lin’s family was constructed by using the Cohen family ¢, and he obtained the following

theorem.

Theorem 1.3 (cf. [5]) Letp >5,n>3. Then
(1)

iv(hihy) # 0 € Ext3? TP (H* M, 7,,)
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18 a permanent cycle in the Adams spectral sequence and it converges to a montrivial element
gn c 7Tp'nq+pq,2M,
(2) For &, € Tpng+pg—2M obtained in (1),

J&n € Mprqtpg—35
is a nontrivial element of order p which is represented (up to nonzero scalar) by
(bohn + hib,_1) € Ext3? 9Pz, 7,)

in the Adams spectral sequence.

With those known results, the author made use of the May spectral sequence and the
Adams spectral sequence to detect some new nontrivial families of higher filtration in the
stable homotopy groups of spheres 7S (cf. [6-12]).

In this paper, we make a further research on the basis of [5] and also detect a family
of homotopy elements in mpnq4pg—3S5 which has filtration 3 and is represented by koh, €

Exti’p "at2pata (Zy,Z,) in the Adams spectral sequence. Our result is the following theorem.
Theorem 1.4 Let p > 5, n>3. Then
kohn # 0 € ExtyP at2rata(z, 7.
s a permanent cycle in the Adams spectral sequence and it converges to a nontrivial element
of order p in Tpngt2pg+q—39-

The construction of the above koh,-element is parallel to that of (bph,, + h1b,—1)-element

given in [5]. Theorem 1.4 will be proved on the basis of the following theorem.
Theorem 1.5 Let p > 5,n > 3. Then
Bui vin(hn) # 0 € ExtP 9Tt (e pe 7.
18 a permanent cycle in the Adams spectral sequence and it converges to a montrivial element

Cn € Tprgt(p+1)g—115

Remark 1.1 The kgh,-element obtained in Theorem 1.4 is an indecomposable element in
TS, 1.e., it is not a composition of elements of lower filtration in .S, because h,, (n > 0) is

known to die in the Adams spectral sequence.

This paper is organized as follows. After giving some useful propositions in Section 2, the

proofs of the main theorems will be given in Section 3.

2 Some Preliminaries on Low-Dimensional Ext Groups

In this section, we will prove some results on Ext groups of low dimension which will be

used in the proofs of the main theorems.



294 X. G. Liu

Proposition 2.1 Let p > 5, n > 3, ap € Exti’l(Zp,Zp), hn € Extzpnq(Zp,Zp), and
by € Extipn+lq(Zp,Zp) respectively. Then we have the following:

(1) Ext%? %27, 7.) =~ 7, {apaohihn}.

(2) Extip”q+(p+2)(1(zp’ Z,) = 0.

Proof (1) See [13, Theorem 4.1].

(2) The proof is similar to that given in the proof of [6, Proposition 1.2]. We can show that

in the May spectral sequence E15’pnq+(p+2)q’* = 0. Then

Exti’panr(erQ)q(Zp, Z,) = 0.
Here the proof is omitted.

The following lemma is used in the proofs of many propositions in this section.
First recall spectra V(k) = {V(k),} for n > —1 which are so-called Toda-Smith spectra.
The spectrum V' (n) is given in [14] such that the Z,-cohomology

H*(V(n)) ZP) = E(n) = E(Q07 Q17 Ty Qn);
the exterior algebra generator by Milnor basis elements Qg, Q1, -+, Q, in A. The spectra
V(n) for n > —1 are defined inductively by V(—1) = S and the cofibration
n a(”) i ‘n no__
PPy (- 1) TS Viin— 1) 25 Vin) 25 22"y (n — 1), (2.1)

When n =0, 1, 2, the above cofibration sequences just are the cofibration sequences (1.1), (1.2)
and (1.3) respectively. a(™ stand for the maps p, , 3 in (1.1), (1.2) and (1.3) respectively.
Here V(=1)= S, V(0) = M, V(1) = K, ig =i, i1 =4, 4o =1, jo =4, j1 =j's j» =j. The
existence of V(n) is assured (cf. [14, Theorem 1.1]) for n =1, p > 3 and for n = 2, p > 5.

By the definition of Ext groups, from (2.1) we can easily have the following lemma.

Lemma 2.1 With notation as above, we have the following two long exact sequences:
n alm

(1) e Bxt T D (Y (0 - 1),0) S5 BxtSHHV (n - 1),0)

Uy Bty (HV (n),0) 25 Exty =" =D (HV (n),0) — -

n am* R .
() o Bxt®T (@ BV (n - 1)) Y Ext$H(0, H*V (n — 1))
U By (0, HV (n) 2 Bxt (O, HV () — -
Here O is an arbitrary A-comodule.

Proposition 2.2 Let p > 5, n > 3. Then Exti"panPH)QH(H*M,H*M) has a unique

generator

>

ngo »

where hygo satisfies

Z*]*hngo = hngOa

the generator of Extipnﬁ(pw)q(zp, Zy,) stated in [15, Table 8.1].
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Proof First consider the exact sequence
3,p" g+ (p+2)g+1 7 3,p" q+(p+2
EXtAp a+(p+2)q (ZpaZp) AN EXtAp a+(p )q(Zp,H*M)

- Bxty? (g, 7,) B Bt 7, 7,)

induced by (1.1). Since we know that Extipnq+(p+2)q+1(Zp,Zp) is zero (cf. [15, Table 8.1])

and Exti’pnq“pw)q“(Zp, Z,) is zero (cf. [5, Proposition 2.1]), the above i* is an isomorphism.

Then we see that Exti{pnﬁ(pw)q(Zp, H*M) has a unique generator

hng() )

where h,,go satisfies
Z‘*hngO = thOv

the unique generator of Exti{pnﬁ(pw)q(zp, Z,) stated in [15, Table 8.1].
At last, look at the following exact sequence induced by (1.1)

Extip"qu(er?)qul(Zp’ H*M) N EXti{panr(erz)qul(H*M, H*M)
2o Bty Uz, 1) 2 Exe Oz, M),
Since the first group is zero by virtue of Exti{pnqﬂpﬁ)qH(ZP,Zp) =0 for r = 1,2 (cf. [15,
Table 8.1]) and the fourth group is zero by virtue of the fact that Exti’p q+(p+2)q+t(Zp, Zy,) =0

for t = 1,2 (cf. [5, Proposition 2.1]), the above j,. is an isomorphism. Thus we can know that
Exti{pn(H'(]D"FQ)(I'|r1 (H*M, H*M) has a unique generator

hng() )

where h,,go satisfies

Jxhngo = hngo .
This finishes the proof of Proposition 2.2.

Proposition 2.3 Let p > 5,n > 3. Then

Ext®? TN B M) 2 7, (i hingo s 571 B go }-
Proof Consider the exact sequence
Extip”q+(p+2)q—1(zp, Z,) N Extip"q+(p+2)q(zp’ Z,)
A Lt (/- 0 V) B s s Ll /M

induced by (1.1). Since Extipnq+(p+2)q_l(Zp,Zp) =0= Extipnq"r(p”)q_l(Zp,Zp) (cf. [15,
Table 8.1]), the above j* is an isomorphism. Moreover, we also know Exti’p q+(p+2)q(Zp, ZLyp) =

Zp{hngo} (cf. [15, Table 8.1]). Thus we can have

Ext’? PNz, B M) = Z,{57 (hago) }-



296 X. G. Liu

Now observe the following exact sequence

Exti,p"q+(p+2)q—1 (Zy, H*M) RN Exti’pnﬁ(pw)q(zp, H*M)

IKEIN Exti{panr(erz)q(H*M, H*M) LN Extip"qu(er?)qfl(Zp’ H*M) P
induced by (1.1). Since Extipnq+(p+2)q+T(ZP,Zp) =0 for r = —1,0 (cf. [1]), we can easily get
Extip”q+(p+2)q—1(zp’ H*M) = 0.
By virtue of the fact
Bty (@, HOM) = 245" (hngo)
we have that the image of the second p, is zero since
psJ"(hngo) = j*ps(hngo) = j*p* (gohn) = 0.
From the fact that

EXt?XPnQ+(P+2)Q(Zp7 H*M) ~ Zp{hng() } o~ Zp{j*hng() },
Ext’? 0N 7, B M) = {57 (hago)} 2 Zp {5 " juhngo } = Zp{ei i hngo },

we can easily get

Ext’y” DM, H* M) 2= Z{isjihago, 57 Tengo }-
This shows Proposition 2.3.

Proposition 2.4 Let p > 5,n > 3. Then we have

(1) i*d2(ixjs (hngo)) # 0;

(2) d2(j*i*(hngo ) # 0, where

dy + Ext3P Y09 (e e vy — Bxt SO (e )

1s the differential of the Adams spectral sequence.

Proof (1) From [5, p. 488] we know that

da(ix(hngo)) # 0.

By Proposition 2.2,

The desired result follows.

(2) Consider the exact sequence

Ext? 0Dz, 7y BN ExtP Pt g 7y

g, Extip"q*(p”)"(zp, H*M) N Exti{pnq"'(p“)q(zp, Z,)
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induced by (1.1). We claim that the above j* is an isomorphism. By Proposition 2.1, we have
EXt5A,p"q+(p+2)q(Zp7 Z,) = 0.
It follows that the above j* is an epimorphism. From [5, Proposition 2.1], we know that
Ext)y? 0z, 7,) = 7, {gobn 1}
Since
2" (gobn-1) = aogobn—1 =0 (apgo = 0 by [15, Table 8.2]),
we have
kernel j* = image p* = 0.

It follows that the above j* also is a monomorphism. The proof of the claim is finished. From

[5, Proposition 2.1], we have
agbohy # 0 € Extr 1t wt2atl 77
By the claim we can get
5% (abohy) # 0 € Ext®P 17097, Frer),
At the same time, from [5, Lemma 3.2], we have that up to nonzero scalar
d2(hngo) = azbohn,.

Note that

Z*]*hngo - hngO-

It follows that

7 d2(j«i"hngo ) # 0.

By

J d2(jxi"hngo ) = jxd2(3" 1" hngo ),

we can have

d2 ("¢ (hngo ) # 0.
This finishes the proof of the second part of Proposition 2.4.

Proposition 2.5 Let p > 5,n > 3. Then

EXtZISL{p"q+(p+1)q+2 (H*K, H*M) = 0.
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Proof Consider the exact sequence
EXti{anJr(PJrl)qu?) (H*M, Zp) L Extipanr(;DJrl)quQ (H*M, H*M)
L Extipn(I‘i'(p"l‘l)(I"l‘Q (H*M, Zp)
Since the first group and the third group are zero by the fact that Exti’p tat (et (Zp,Zp) =0
for r =1,2,3 (cf. [15, Table 8.1]), the second group is zero.

Look at the exact sequence
Ext3P P2z, 7)) L Extd P P (HE M, 7,)
AN Exti{pnq”q“(zp,Zp) P, Extjp"q+pq+2(zp, Zp)

induced by (1.1). Since we know that Ext% 4P (7, 7,)) = 7, {aghih,} (cf. [15, Table 8.1])
and Exti’pnﬁpqw(Zp, Zyp) = Zyp{apaohihy,} by Proposition 2.1, the above p, is an isomorphism.
image j, = 0 since p, is an isomorphism. image i, = 0 by the fact that Ex‘ci’pn(H']‘”I‘|r2 (Zyp, ) =
0 (cf. [15, Table 8.1]). Thus we can have

EXtiPnQ+Pq+2 (H*M, Zp) =0.
Observe the following exact sequence induced by (1.1):

Ext3?" 0Pz, 7,) L5 Ext3P 0tz 7, ) 2 Bxtd PP (ML 7,)
L Bt (7, 7,) B Bxt P ety (7, 7,).
Since Ext%P"777(7,, 7,) = Zp{h1h,} and Ext3? P17, 7,) = Z,{aohihn} (cf. [15, Ta-
ble 8.1]), we know that the first p, is an isomorphism. Similarly by virtue of the facts that
Ext’? "PY(7,, 7,,) = Zp{bohn,h1bn_1} (cf. [15, Table 8.1]) and Ext%?"4"Ptl(z, 7)) ~

Zp{aobohn, aoh1b,—1} (cf. [5, Proposition 2.1]), we get that the second p. is also an isomor-
phism. Thus it follows that

Ext%?" PN (H* M, Z,) = 0.
Look at the exact sequence

0 = Ext}P P2 (g0, 7,) 2 Bt P (M B M)

L Bt P (0 7,) = 0

induced by (1.1). It is easy to get that the second group is zero.

At last consider the following exact sequence
0— Extipanr(erl)quZ (H* M, H* M) R Exti’panr(erl)quQ (H*K, H* M)
ey ExtbP P (M M) = 0

induced by (1.2). The desired result follows.
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Proposition 2.6 Let p > 5,n > 3. Then
xt5”" " > 7,{Builis (hn
Exty” U K, Z,) = 2,4 Bl (),
where
B, : Ext\ I(H*K, Z,) — Ext3?" H et (e 7
is the connecting homomorphism induced by 3 : XPtVIK — K.
Proof Look at the exact sequence
EXtIIL{p"ququl (Zp, Zp) P, EXti{p"qupq(Zm Z,)
N EXtiP"Hm (H* M, Zp) LN Extip”ﬁpq—l(zp, Zp)

induced by (1.1). Since the first group and the fourth group are zero, the above i, is an

isomorphism. By the fact that
Bty " Ly, ) = Zp{hihn},
we can have
Ext%?" TP H* M, Z,) = Z,{ix(hihy)}.
At last observe the following exact sequence
EXti{p”qu(erl)qul (H*M,Z,) i) Exti,p”qu(erl)qul (H*K,Z,)
L BP0 7)) 2 Exth? T (e 7))

induced by (1.2). Since the first group is Z€10 by Extipnq+(p+1)q+r(2p, Zy) =0for r=0,1 (cf.
[1]) and the fourth group is zero by Exti’p q+(p+1)q+t(Zp,Zp) =0 for t = 0,1 (cf. [15, Table

8.1]), the above j. is an isomorphism. Thus we can have
E)Xti{p"11+(19+1)q+1(H*K7 7,) = Z,{A}.

Here A is the unique generator of Extipnq+(p+1)q+l(H*K, Z,) and satisfies

Ji(A) = i (hah).
From [14, (5.4)], we have

jpiie 3" 5 M|
is represented by
iv(h1) € ExtyPI(H* M, Z,)

in the Adams spectral sequence. It follows that

(4'B1'1)+ (hn) = i(hahn) = GL(A).
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Note the fact that j. is an isomorphism. It is easy to get that
Builis(hyp) = A.

Therefore this completes the proof of the proposition.

Proposition 2.7 Let p > 5,n > 3. Then
ExtiPnQ+(P+1)(1+1(H*K’ H*M) o Zp{ﬁ*lfk ('ﬁn)}7

where hy, € Extz’pnq(H*M, H*M) is the unique generator of Extzpnq(H*M, H*M) and satis-
fies

i*(hn) = i (hn).
Proof Consider the exact sequence induced by (1.1):

Ext3? Ptz 7)) L Ext3P e (H 0 7,)

Lo Bty 2y, Z,) L Bt P (2, 2,).

Since thi’pn“pqﬂ(Zp,Zp) = 0, image i, = 0. Since Exti’pnﬁpq(ZP,ZP) = Zp{hihy,} and
Ext%?" Pt Y7, 7,) = Z,{aohihn} (cf. [15, Table 8.1]), the above p, is an isomorphism, and
then image j, = 0. Thus it follows that

Ext3? PN (H* M, 7,) = 0.
Look at the exact sequence
Ext%?" MO (g 7y S P D2 (g 7,y D R 2 (0 7,) =0

induced by (1.2). Since we know that Exti’pnﬁ(pﬂ)qw(H*M.Zp) = 0 by the facts that
Exti’pnq“pH)qM(ZP,ZP) =0forr=1,2 and Extipanrqu(H*M, Zp) = 0, we can have

Extipnq+(p+l)q+2(H*K, Z,) = 0.
Observe the following exact sequence
Extip"qu(erl)quZ (H*M,Z,) e EXtiP"q+(p+1)q+2 (H*K,Z,) AN Exti{panrqurl(H*M, Z,)

induced by (1.2). From the proof of Proposition 2.5 we know that the first group and the third

group are zero. Thus the middle group
Ext? TP (e 7,) = 0.
At last, look at the following exact sequence

Exti”’n“(”“)q”(H*K, Z,) AR Exti”’n“(”“)q“(H*K, H* M)

L EXtiJ)"q-lr(m—l)(H—l(H>~<K7 Z,) P_*, EXtiP"q+(p+1)q+2(H*K’ Z,)
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induced by (1.1). Since the first group and the fourth group are zero, the above i* is an

isomorphism. From Proposition 2.6, we have
Ext%? TP (e 70y 2 7, (Bl i (ha) )
Thus we can easily have that there exists an element
~ 2,p" * *
A € Bxt%? q+(p+1)q+1(H K, H*M)
such that
EXtianJr(PJrl)qul (H*K, H*M) o ZP{K}
and
(D) = Builis (hn).
Since i*(hy) = is(hy), we have
i*(B) = Budlis(ha) = B (hn) = 7" Bud (ha).

By the fact that * is an isomorphism, it follows that

Thus this completes the proof of the proposition.

3 Proofs of Theorems 1.4 and 1.5

Let
B w7 B ozp ™ s
1 by 1 by | bo (3.1)
Y2 KG, Y IKG, KGo = KZ,

be the minimal Adams resolution of S satisfying the following.

(1) E, LI KG, L, FEqsiq L, Y. E, are cofibrations for all s > 0 which induce short exact
sequences in Zj,-cohomology;

(2) KG; is a wedge sum of suspensions of Eilenberg-Maclane spectra of type KZy;

(3) m K G, are the E}"*-terms,

(555571)* : WtKG571 — WtKGs
are the d‘i_l’t—differentials of the Adams spectral sequence and

K Gy = BExty (Zy, Z,)  (cf. [16, p. 180]).



302 X. G. Liu

Then
LMy oy g AW Y sTlp AW A W
| Do A1y 101 A 1w LboAlw  (3.2)
Y 2KGo AW YIIKGIAW KGo AW

is an Adams resolution of arbitrary finite spectrum W.
From [17, pp. 204-206], the Moore spectrum M is a commutative ring spectrum with
multiplication mp; : M A M — M and there is mas : XM — M A M such that

ma (i A 1pr) = 1ag, (J A Lp)mar = 1,

mayTma =0, (A L) mar +mar (G A L) = Laveans,
myT = —my, Tmy =My,

my(Iar Ad) = =1, (L A gy = 1o,

where T': M N M — M A M is the switching map.

Definition 3.1 (cf. [17]) A spectrum X is called an M-module spectrum if p Alx = 0.

Consequently, the cofibration

X A x A A x A wx
split, i.e., there is a homotopy equivalence
MAX=XVEX
and there are maps
mx :MANX — X, mx:2X — MAX

satisfying

mx(i/\lx):].x, (j/\lx)mlex, mxmx =0,

mx(j Alx)+ (i AIx)mx = 1uax.
Definition 3.2 (cf. [17]) The M-module actions mx, Mx are called associative if

mx(].M /\mx) = —mx(mx A 1_)() and (]-M /\mM)mX = (mM A 1x)mx.

Let X and X’ be M-module spectra. Then we define a homomorphism
d: X', X] — 2T X, X
by
d(f) =mx 1y A fimx

for f € [¥5X’, X]. This operation d is called a derivation (of maps between M-module spectra)

which has the following properties:
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Lemma 3.1 (cf. [17, Theorem 2.2]) (1) d is a derivative and
d(fg) = fd(g) + (=1)"d(f)g

for fe 28X, X], g € [ X", X'], where X, X', X" are M-module spectra.
(2) Let W', W be arbitrary spectra and h € [S"W' , W]. Then

d(h A f) = ()" Ad(f)
for f € [Z° X', X].
(3) d>=0:[2°X', X] — [2°T2X', X] for associative spectra X', X.
From [17, (3.4)], K is an M-module spectrum, i.e., there are M-module actions my :
KANM — K, mg : XK — K A M satisfying
mK(lK/\i)le, (1K/\j)mK=1K,
mrgmg =0, (Ig Niymg + (Lg AN j)mr = lgam-
Moreover, from [17, (2.6)] and [17, (3.7)] we have
d(ij) = —1nm, d(a) =0,
d(i") =0, d(j') =0
d(8) = 0.
Remark 3.1 In this paper, all the notations are the same as those of [5].

Let L be the cofiber of oy = jai : ¥971S — S and K’ be the cofiber of ai : £15 — M

given by the following two cofibrations:

wo-tg o g U I vag (of. [, (2.3)]), (3.3)
46 25 M KL nitls (o [5, (2.4)]). (3.4)

Let o/ = a1 A 1g. Consider the following two commutative diagrams of 3 x 3-Lemma in the

stable homotopy category:

SM v, SK AP SK'
N (VA L) T Sl Nj N Y Sz
K'ANM nat2g
S g N N Y N\ i
K =, K 7o $2M
and
M (AL LAK e NIK
% " T S
K SOK A M
o N g S (vA L) N\ €

N1 re et pg =, SM
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By the above two commutative diagrams of 3 x 3-Lemma in the stable homotopy category, we

easily have the following two lemmas.

Lemma 3.2 There exist three cofibrations

JNy LN 3 (3.5)
Ity (R 3) V=T (PN VAN (3.6)
M AT LA TSR A M -5 SM. (3.7)

Lemma 3.3 There exist the following relations:

E(U/\lM)mM = q, F(i”/\l;{) = (U/\lM)mMjl,

a7 = 35" ANk, e(lg Nivj' = —25'a.
From [18, p. 434], there are A € [S 'L A K, K] and A € [B'K, L A K] satisfying
A" ANMg)=(G"ANg)A=ij e [2 'K K], jji'/A=0.
From [15, p. 484], there is Ax € [S~97 1L A K, K'] satisfying
A (i" NMg) =vj' €[S K, K'), AW Alg) = (" ANg)A =1d'j".
Lemma 3.4 Agr = (1x/ A j)T.
Proof From Lemma 3.3 we have
(1gr AT A )= (1 A ) (0 A Lp) Mg’ =0 Algo)(dar A )G =vi' =Ax (i AN,
which shows that
(1rer A )T = Ak +9(5" N k)
for some g € [K,XK'].
Consider the exact sequence induced by (3.4)
(K, 2018 s [k wM) U (K, S 2 K, 228 Y [k w2 M.
From the proof of [5, Proposition 2.18], we know that
(K, 2M] = 0.
It follows that image v, = 0. By
[k, £428] = 7, (5],

we have
(ai)«(j5") = aijj’ # 0.
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Thus we have image y. = 0. By image v, = 0 and image y. = 0, we obtain
[K,2~K'] = 0.
Then we have
(1x: A J)T = Agr.
Lemma 3.5 (cf. [5, Lemma 3.3 and (3.4)]) Let p > 5,n > 3. Then there exists an element
Mo € X7 1TK, By A K]
such that
(b2 A 1g )1, 0 = hohn Al € [SP"TTIK, KGy AN K], (1p, Ad )l 5 =0,

where hohy € TpngiqKGa = BExti? 1797, 7,)) and o/ = joi A € [STLK, K]. There also

exists an element
fo € [BP" TN B A LA K]
such that
(1g, A (" AN1g)B)Y 91" = (@2a3T4 A 1LAK) f2.

Corollary 3.1 For fy € [RP"a+(p+2at3 01 Bo A L A K| which is given in Lemma 3.5, we

have
(Ig, Ne(lgr Nig))(@a A Lgoan)(1p, AT)d(f2i5) = 0. (3.8)
Proof From [5], we have (cf. [5, (3.6)])
(54 A\ 1M)(]-E5 A\ E(].K/ A\ Z)ZK’)d(fQZ]) =0.

Here f5 is given in [5, (3.4)].
By [17, (1.7)], we have

(@ Aar)(1es Ae(lir Ai))(1p, A Dgr)d(f2if) = 0.
By Lemma 3.4, we have
(@ A1) (Les Ne(lrr Ai)) (e A (Lkr A G)T)d(f2i5) = 0.
By [17, (1.7)], it follows that
(@ A1) (Aes ANe(lier A1) (A, A(Lgr A J))(LE, AT)d(f2i5) = 0.
Thus
(@s AN 1ar)(Les Ae(lier ANig))(1e, AT)d(f2i5) = 0.
By [17, (1.7)], the corollary follows.

Let W be the cofibre of e(1x: Aij) : X972K' A M — M given by the cofibration

$a=2 ¢/ 0 AT N sy e s g (3.9)
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Lemma 3.6 There exists an element
fle [mpt et AL By A
which satisfies
(@xas A 1x)(1g, Amug)f =0.
Proof By (3.8) and (3.9), we have
(@4 AN granr)(1e, AT)A(f2i)) = (1p, Aug) [’ (3.10)
with f/ € [Zp"ate+2)at1 Ny By A W] and by composing (@e@s A 1x)(1g, A7) on (3.10) we have
(@2a3 AN 1)1, Amug) f = (@2asas A 1x)(1p, A 7T)d(f2i5). (3.11)
By composing ij on [5, (3.4)], we have
(Lg, A (" N1g)B)N, 01 = (G2tsaa A 1Lk ) f2i] (3.12)

with 7}, , € [SP MK, Ey A K.
Note that d(1x) = 0 and d() = 0. Then by applying the derivation d on (3.12) we have

(L, A (0" N 1K)B)A(ny 21"15) = (G2a3as A Liax)d(f2i5)- (3.13)
Note that 77 = j” A 1. By composing (1, A 77) on (3.13) we have
(@asas A 1g)(1p, A7T)d(f2i5) =0 (3.14)
and by (3.11), (3.14) we get
(@aaz A 1g)(1g, Aug)f = 0. (3.15)
Thus the lemma is proved.
Let U be the cofibre of muy : W — X971 K given by the cofibration
w I sl g 25 U 2w (3.16)
Lemma 3.7 ws induces zero homomorphism in Z,-cohomology.
Proof Consider the following homomorphism induced by ws:
wi: H*'U — H*T71K.
From the cellar structures of U and K, we can have that

HK - Lp, t=0,1,q+1,q+2,
0, others,

and the top cell of U has degree 2¢g+ 1. It easily follows that w; must be a zero homomorphism

in Z,-cohomology.
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Lemma 3.8 There exist three homotopy elements

fé c [Zp”q+(p+2)qM, Ey A U],
f?/) c [Ep"qu(er?)qulM’ Es A U]7
go € [Ep'”q+(p+2)q]\47 KGy A W]

such that

(@az ANw)f' = (1g, Aus)fa,  fo= (G2 A lu)fs,
(].E3 A\ U4)(53 A\ lw)f/ = —(].E3 A\ U4U5)fé + (].E3 A\ 'LL4)(EQ A\ lw)gg.

Proof From (3.15) and (3.16), we have
(@as A 1w)f = (1g, Aus)f5 (3.17)

with f5 € [P ate+2apr By AU
By (3.17) and (3.2) we have

(52 A lw)(].E2 A U5)fé = (52 A 1w)(5253 A 1w)fl =0.
Thus it follows that
(]-KGz A\ U5)(52 A\ ]-U)fé =0. (318)

By (3.18), (3.16) and the fact that ws induces zero homomorphism in Z,-cohomology (cf.

Lemma 3.7), we have
(b2 A 1u)fs = (1e, Aws)g =0 (3.19)
with g € [ZP"atP+Datl N K Gy A K], so by (3.2) we obtain
fy =@ AN1y) f3 (3.20)
with f} € [P at+2at1 N Ba AU By [17, (1.7)], from (3.20) and (3.17) we have
(@as A lw) f' = —(a2 Alw)(1e, Aus)fs.
Then we have
(@ Alw)f' = —(1g, Aus)fs+ (G2 Alw)ga (3.21)
with gy € [BP 9+ P+2a0 | KGy A W]. By composing (15, Aus) on (3.21), we have
(1, Aug) (@3 Alw)f' = —(1g, Augus) fs + (1e, Aug) (@ A 1w )ga. (3.22)

We finish the proof of the lemma.
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Lemma 3.9 The cofibre of (1 Ni)v : 2IM — XM is U given by the cofibration
sapg “UEADY spp e, g Yo, ety (3.23)
There exist two relations that

UgUs = (U A ].M)mMUG, 6(1[{/ A Zj)(U A ].M)mM = E(].K/ A i)v.

Proof By the three cofibrations (3.6), (3.9), and (3.16), we can get the following commu-
tative diagram (3.24) of 3 x 3-Lemma in stable homotopy category (cf. [19, pp. 292-293]).

o

W T Ity e re, ARV
(ZIN T/ N\ ws /" ug N (VA L)
YIUKI A M U SIK'AM  (3.24)
(VA Lly)my N e(lgr Nij) / wg \\ U5 Uy
sapg o SUADY SM s, SW

By the commutative diagram (3.24), Lemma 3.8 follows.

Lemma 3.10 With notations as above, we have
(5354 A 1K’/\M)(1E5 /\F)d(fgij) = (1E3 A (’U A 1M)mMu6)f§ — (EQ A 1K’/\M)(1KG2 A U,4)g2.

Proof By (3.22), [17, (1.7)] and the relation uqus = (v A 1p)Masug (cf. Lemma 3.9), we

have
(@3 Algran) (e, Aug) f' = (1gy A (v A Ly)Tnrue) f3 — (G2 Algian)(Lka, Aua)ge.  (3.25)
By composing (@3 A 1x/anr) on (3.10), we have
(@s A lgian)(Le, Awa) f' = (@sas A lgoan)(Lps AT)d(f2i7). (3.26)
Combining (3.25) and (3.26) yields

(@34 A ko anr) (L AT)d(f215)
=(1g, A(vA 1M)mMu6)fé — (@ A lgam) Ik, Aug)gs. (3.27)

Thus we complete the proof of this lemma.

Lemma 3.11 There exist two elements
fi c [Ep"tfr(zﬂﬂ)tfrl1\47 Es ANK], fé c [Ep”'q+(p+2)q+1M, Es ANK'A M)]
such that

(]‘ES A uﬁ)f?/; = (1E3 /\jl)fziv fzi = (]‘ES A W)fé
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Proof By Lemma 3.3, we have
a=¢c(vAly)ma.

Then

(1ps Aowe) fz = (1p, Ae(v A ly)Mnsue) fz  (by ugus = (v A Ly )Marue)

1, Acugus) fh

1p, ANe)(1g, Augus)fy  (by (3.22))

1p, Ae)[(1ry Aua)(@a Alw)ga — (1e, Aug)(@s A lw)f]

1, Aeug) (@ Alw)gs — (1, Acug)(@s A lw)f’

o ANMa) (Mg, ANeua)ge — (g, Acug)(@s Alw)f (by 1kg, Ae ~0)
—(1gs Neug)(as A lw)f

= (lg, Ne)(@s Algan)(1g, Aug)f' (by (3.26))
= (1g, Ne)(@s A 1gan)(@s A 1xoan)(Les AT)A(f2i])

ay Aar)(1g, Aer)d(f2ij)  (by (3.7))

(
= (
= (
= (
= (
= (c

/

= (a3
=0.
Hence, by (1.2) we have

(L Aug)fs = (Ley A ') f (3.28)

with fj € [P ate+2ati N B A K.

Similarly, by Lemma 3.3 we have
e(lg Ni)vj = =25«
Then we have

—2(1g, N ') fr = (g, Ne(lxr Ai)vg') fy
— (g el Ai)o) (g, A G5 (by (3.28))
= (1g, Ne(lgr Ni)v)(1g, Aug)fy  (by (3.24))
= (1g, Ne(lr ANig)(v A Lpr)ming) (L, A ug) fh
= (1gy ANe(1r Nig))(1es A (v A Lar)mnsue) fy (by (3.24))
( 1E‘3 Auqus) fs  (by (3.9))
(

= (1gy A e(lgr Nij)ugus)fh

)
))(
= (1g, Ne(1rr ANig))(
)
= 0.
Thus, by (3.6) we have
fi= g, AT)f3 (3.29)

with ff € [RP"atP+2)a+I N By A K' A M. This completes the proof of Lemma 3.11.
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Lemma 3.12 For the above fi € [SP"at+2)at1 01 B A K’ A M], we have

(1_)3 A 1Kl/\M)fé =0.

Proof The proof will be given later.

Now we give the proof of Theorem 1.5.

Proof of Theorem 1.5 From Lemma 3.12, we have

(1_)3 A\ 1Kl/\M)fé =0.

By virtue of (3.2), we have

with f§ €

That is,

f5 = (@ AN goan) fo

[prtatet2at2 pr gy A KA M. By (3.27) and (3.2), we have

Aoa3a4 N\ ]-K’/\M)(]-Eg, A F)d(fgl])
o AN lgan) (e A (0 A L) Marue) f5

as N Lgianm ]-E3 v A1y mM)(].ES A\ 'LLG)fé (by (328))
ma)(1e, Aj')fy o (by (3.29))
m

)
( )
(g, A (v A 1y)
(1e, )

EQ/\]_K//\M U/\].M

)
)
)
)

A
A
A
A

(
(
(
(@2 AN gram
(
(@2 A liran)(1e,
(

Gy a3 A lgian)(1e, A (0 A 1n)mag")(1e, A ) fe

(525354 N ]-K’/\M)(]-Eg, A F)d(fglj)

= (5253 A 1K’/\M)(1E4 A (U A 1M)mMj/)(1E4 A\ W)fé

From [5, Proposition 2.2], we have

[(bs A Li)(Lp, A ) fh] € Exth? T2 (e i Frnr) = 0.

M)(1es A" )1y Am)fs  (by (3.31))
v A L)) (L A ') (Les AT)(1ey Am)(@3 A lkianm)fo

X. G. Liu

(3.30)

(3.31)

(3.32)

By (3.1), we know that the di-cycle (by A 1x)(1g, AT)f} is a di-boundary. It follows that

(ba A1) (L, A)fg = (ba A1k )(e3 A Lk f

for some fi € [RP"at(P+2)at2 0 K G A K. Thus we have

with f} € (2P at(+2)a+3 N1 Es A K. Then by (3.32), (3.33) and (3.2), we have

(@2a@sas A 1goanr)(Ley AT)A(f2i) = (@2asas A lgianr)(1es A (0 A 1n)marg’) f.

(e, A7) fe = (€3 AN 1k)f7 + (@a A 1K) fy

(3.33)

(3.34)
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Moreover, by composing (1g, AT) on (3.13), it is easy to get that
(@aasay N1 gans)(1e, AT)A(f2i) = (1p, AT(" A L1k)B)d(ny, 21'i7).

Combining (3.34) and (3.35) yields

(1g, ANT(" A 1g)B)d(n;, 21"i5) = (@2asas A Loans)(1es A (0 A Lag)Tiarg’) f-
From Lemma 3.3, we have

T(i" ANMg) = (v A ly)mag'

Then (3.36) can turn into

(Lg, A (v A La)Targ B)d(nn, 21"15) = (L, A (v A L)) (@254 A ) fs-
By (3.37) and (3.6), we have

(1e, AJ'B)d(n), 21"15) = (1, A §')(@283T4 A 1k) fg 4 (1m, Aj'a") fo

311

(3.35)

(3.36)

(3.37)

(3.38)

with f§ € [RP ettt By A K. From [5, p. 489], we know that the left-hand side of (3.38)
has filtration 4. However, since the first term of the right-hand side of (3.38) has filtration > 5,
the second term of (3.38) must be of filtration 4. So f§ has filtration < 3. Notice the facts that
Ext5P T PTOI (Frge Be0) = 0 (of. Proposition 2.5) and Ext%? TPV (e i M) =

Zp{B+il,(h)} (cf. Proposition 2.7). Then we have

(b2 Ak)fo = (Lkas, A B)(1kay Ai')(hn).
Let
on = (@a1 A 1k) fo-
Then g, is represented by
B ()
in the Adams spectral sequence. It follows that
Cn = Oni
is represented by
i Buil, (hn) = Buili* (hn) = Builin(hn) # 0 € ExtP 9T @D (e pe 7,
in the Adams spectral sequence (cf. Proposition 2.6). Thus Theorem 1.5 is proved.
Proof of Lemma 3.12 We first recall three cofibrations given in [5]:
soig Yyt PRy P K (cf. [5, (2.5)]),

6(1 //\i)
Sl SN X M IR (of. [5, (3.7)]),

X PR A (cf. 5, (3.10)])

(3.39)

(3.40)

(3.41)
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with the relation
Uz = —vj'm.
By composing (@2 A 1x/anr) on (3.27), we have

(@oasas A Lgran) (e, AT)d(f2i7)
= (52 A\ ]-K'/\M)(]-E3 A\ (U A\ ].M)mMUG)fé (by (328))
= (@ A lram)(Les A (v A )W) (Le, A J') fr (by (3.29))
= (52 A 1K’/\M)(1E3 A (’U A 1M)mM)(1E3 /\j/)(1E3 A 7T)f5/
That is,
(525354 A ]-K’AM)(]-E5 A F)d(fgl])
= (52 A 1K’/\M)(1E3 A (U A 1M)mM)(1E3 /\j/)(lE3 A W)fé

By composing (1g, A (1x- A j)) on (3.42), we have

(1, A (Lgr A §))(@2asas A g ang)(1e, AT)d(f2i5)

= (1, A1k AG)) (@2 ALgian)(Leg A (0 A La)Tn ) (LEs AJ')(1E, A7) f3.

On the one hand, for the left-hand side of (3.43), we have

(1m, A (ke A §))(@2a3a4 A 1k anr)(1m, AT)d(f21])
= —(525354 A ]-K')(]-E5 A (]-K’ /\])F)d(fgl]) (by Lemma 34)
= —(525354 A ]-K’)(]-Eg, A ZK’)d(fQZ])

On the other hand, for the right-hand side of (3.43) we have

(I, A (Lrr Ag)) (@2 Agrans)(Aes A (0 A Ln)Tiar)(Ley A ') (1e, AT fs.

= —(52 A\ ]-K’)(]-Eg A\ (]-K’ /\j)(v A\ ].M)mM]/’lT)fé

= —(@ A lg )1, A(vAL0)(An Ag)mag' ™) fs  (by (Ia AJ)iar = 1)

= —(@2 Agr)(1g, Avj'm)fs  (by uguz = —vj'm)
= (52 A 1K’)(1E3 A UQU,;g)fé.

Thus we have

(@gazas A g )(1p, A A )d(faif) = — (a2 A1) (1, A ugug) fi.

Let X be the cofibre of e(1x/ Ai) : X9 LK’ — M given by the cofibration
sa-tper ) yp vy e sagt (of. [5, (3.7))).
It follows from [5, (3.7)] and [5, (3.6)] that

(@ AN k) (1g, AAg)d(fa2ig) = (1p, Aug)fs

X. G. Liu

(3.42)

(3.43)

(3.44)
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for some f3 € [XP"e+(PH2)ati N By A X]. By composing (@2az A 1x+) on [5, (3.8)], we have
(@234 A 1) (1m, A Ax)d(f2if) = (@oaz A 1 )(1g, Aug)fs. (3.45)
Combining (3.44) and (3.45) yields
(@2 A g )(1gy Ausus) fi = —(azas A lg:)(1g, Aus)fs. (3.46)
By [17, (1.7)], (3.46) can turn into
(1, Au2)(@2 Alx)(1g, Aus)fs = —(1g, Aus)(@as A lx)fs. (3.47)
From (3.47) and (3.40) we have
(@ A 1x)(1p, Aus)fi = —(@as Alx)fs+ (1g, Awa)f (3.48)

with f, € [BP"at(+2a=1 01 By A M]. Note that

(by A1pg)fy € [BP IHPHDI N K Gy A M) =0

by the exact sequence

DR Vi (e (1AD).

—

[Ep"q-ir(m—2)q—1]\47 KGoy A M] (1/\_”)* [210”(14-(1:>-|r2)(1—2]\47 KGy)
induced by (1.1), where the first group and the last group are zero by the fact that

~ 2,p" 2 r
Tprgt(pt2)g+r K G = Exty” e (Zp, Zp) =0

for r =0,—1,—2 (cf. [1]). Hence, we can have

T4 = (52 A 1M)T5

for some f5 € [ZP et PT2)a)f By A M]. By (3.2) and (3.48), we have

(Lm, Aug)fy = —(@ A Lx)fs + (L, Awa)Fy + (G2 ALx)gs (3.49)
with gg € [RP"9tP+2)90 KGy A X]. So we have
(bs A 1x)(1ps Aug)fs = (b3 A1x)(Lps Aws) fs+ (bsTa A lx)ge

From Proposition 2.3, we have

(3.50)

Ext5? O E N H M) % 2, {i, G Bngo, 571 ngo }-
Thus it follows that

(b3 AN 1ag) fs = Mhngoid + A2(1ka, Aij)hngo

for some A1, Ay € Z,, where h,go € [XP"9HE+2at1 0 KGy A M]. And so

0=\ (53 A\ ].M)hng()ij + )\2(63 A\ ]-M)(]-KG3 A\ Zj)hng()
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By composing ¢ on the above equality, we get

Xo(C3 A 1ar)(Tkgs Aij)hngot = 0.

From Proposition 2.4, we see that

do (i (i)« hngo ) = i d2(ixjihngo ) # 0.

Then we get

(53 A\ 1M)(1KG3 A\ ij)hngoi #0.

Thus, we have

Note that

da (5" hngo) # 0

by Proposition 2.4(2). It follows that

(€3 A 1p)hngoij # 0.
Thus we have
A =0.
From the above discussion, we know that
(b3 Aag)fs = 0.
Then (3.50) can turn into
(b3 A 1x)(1g, Aus)ft = (b3Ca A 1x)gs. (3.51)

The argument of the proof from [5, (3.16)] to [5, p. 491] shows that (b3 A 1x) (1, A us)fe =
— (b3 A 1x)lo in [5, (3.16)] implies (b3 A 1xanr)fe = 0. By a similar argument as in [5], we
can also show that (3.51) implies that (3.30) holds.

Proof of Theorem 1.4 By Theorem 1.5, we get that
Bui viv(hn) # 0 € ExtP 1Tt (e pe 7,

is a permanent cycle in the Adams spectral sequence and converges to a nontrivial element

Cn S 7Tp'nq+(p+1)q,1K.
Consider the following composition of maps

7 : Epanr(PJrl)qfls i} K ]]Jz EquJrQS.
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Since (, is represented up to nonzero scalar by B.i'.i.(h,) € Exti{pnq“pﬂ)q“(H*K, Zp) in

the Adams spectral sequence, the above f is represented up to nonzero scalar by

C= (47" B)wBut wisx(hn)

in the Adams spectral sequence.

Meanwhile, it is well-known that the (-element

B2 = jj' B

is represented by

ko € Ext3*P1(7,,,7,)

in the Adams spectral sequence. By the knowledge of Yoneda products we can see that f is

represented (up to nonzero scalar) by

¢ = kohy # 0 € Ext51®" P20t 7, 7.)

in the Adams spectral sequence (cf. [15, Table 8.1]).

Moreover, from [1] we know that

Extifr,q(p"+2p+1)fr+1(Zp’ Z,) =0

for r > 2. Then we see that kgh, cannot be hit by any differential in the Adams spectral

sequence, and so the corresponding homotopy element f € .S is nontrivial and of order p.
This finishes the proof of Theorem 1.4.
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