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Abstract Let A be the mod p Steenrod algebra and S be the sphere spectrum localized
at an odd prime p. To determine the stable homotopy groups of spheres π∗S is one of
the central problems in homotopy theory. This paper constructs a new nontrivial family
of homotopy elements in the stable homotopy groups of spheres πpnq+2pq+q−3S which is

of order p and is represented by k0hn ∈ Ext3,pnq+2pq+q
A (Zp, Zp) in the Adams spectral

sequence, where p ≥ 5 is an odd prime, n ≥ 3 and q = 2(p − 1). In the course of the
proof, a new family of homotopy elements in πpnq+(p+1)q−1V (1) which is represented by

β∗i
′

∗i∗(hn) ∈ Ext
2,pnq+(p+1)q+1
A (H∗V (1), Zp) in the Adams sequence is detected.
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1 Introduction and the Main Results

Let A be the mod p Steenrod algebra and S be the sphere spectrum localized at an odd

prime p. To determine the stable homotopy groups of spheres π∗S is one of the central problems

in homotopy theory. One of the main tools to reach it is the Adams spectral sequence:

E
s,t
2 = Exts,tA (Zp, Zp) ⇒ πt−sS,

where the E
s,t
2 -term is the cohomology of A.

Throughout this paper, we fix q = 2(p − 1).

From [1], Ext1,∗A (Zp, Zp) has Zp-basis consisting of a0 ∈ Ext1,1A (Zp, Zp), hi ∈ Ext1,p
iq

A (Zp, Zp)

for all i ≥ 0 and Ext2,∗A (Zp, Zp) has Zp-basis consisting of α2, a2
0, a0hi (i > 0), gi (i ≥ 0),

ki (i ≥ 0), ei (i ≥ 0), and hihj (j ≥ i + 2, i ≥ 0) whose internal degrees are 2q + 1, 2,

piq + 1, pi+1q + 2piq, 2pi+1 + piq, pi+1q and piq + pjq respectively.

Let M be the Moore spectrum modulo a prime p ≥ 5 given by the cofibration

S
p

−→ S
i

−→ M
j

−→ ΣS. (1.1)
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Let α : ΣqM −→ M be the Adams map and K be its cofibre given by the cofibration

ΣqM
α

−→ M
i′

−→ K
j′

−→ Σq+1M, (1.2)

where q = 2(p− 1). This spectrum which we briefly write as K is known to be the Toda-Smith

spectrum V (1). Let V (2) be the cofibre of β : Σ(p+1)qK −→ K given by the cofibration

Σ(p+1)qK
β

−→ K
i

−→ V (2)
j

−→ Σ(p+1)q+1K. (1.3)

If a family of homotopy generators xi in E
s,∗
2 converges nontrivially in the Adams spectral

sequence, then we get a family of homotopy elements fi in π∗S and we say that fi is represented

by xi ∈ E
s,∗
2 and has filtration s in the Adams spectral sequence. So far, not so many families

of homotopy elements in π∗S have been detected.

In 1981, a family ςn−1 ∈ πpnq+q−3S for n ≥ 2 which has filtration 3 in the Adams spectral

sequence and is represented by

h0bn−1 ∈ Ext3,p
nq+q

A (Zp, Zp) (1.4)

was detected in [2].

Recently, Lin Jinkun got a series of results and detected some new families of lower filtration

in the stable homotopy groups of spheres π∗S.

In [3], Lin Jinkun and Zheng Qibing obtained the following theorem and detected a new

family of filtration 7 in the stable homotopy groups of spheres.

Theorem 1.1 (cf. [3]) Let p ≥ 7, n ≥ 4. Then the product

bn−1g0γ̃3 6= 0 ∈ Ext
7,pnq+3(p2+p+1)q
A (Zp, Zp)

is a permanent cycle in the Adams spectral sequence and it converges to a nontrivial element

of order p in πpnq+3(p2+p+1)q−7S..

Lin [4] detected a new family of filtration 6 in the stable homotopy groups of spheres and

proved the following theorem.

Theorem 1.2 (cf. [4]) Let p ≥ 7, n ≥ 4. Then the product

hng0γ̃3 6= 0 ∈ Ext
6,pnq+3(p2+p+1)q
A (Zp, Zp)

is a permanent cycle in the Adams spectral sequence and it converges to a nontrivial element

of order p in πpnq+3(p2+p+1)q−6S.

In [5], Lin detected a new family of filtration 3 in the stable homotopy groups of spheres.

Lin’s family was constructed by using the Cohen family ςn and he obtained the following

theorem.

Theorem 1.3 (cf. [5]) Let p ≥ 5, n ≥ 3. Then

(1)

i∗(h1hn) 6= 0 ∈ Ext2,p
nq+pq

A (H∗M, Zp)



Detection of Some Elements 293

is a permanent cycle in the Adams spectral sequence and it converges to a nontrivial element

ξn ∈ πpnq+pq−2M .

(2) For ξn ∈ πpnq+pq−2M obtained in (1),

jξn ∈ πpnq+pq−3S

is a nontrivial element of order p which is represented (up to nonzero scalar) by

(b0hn + h1bn−1) ∈ Ext3,p
nq+pq

A (Zp, Zp)

in the Adams spectral sequence.

With those known results, the author made use of the May spectral sequence and the

Adams spectral sequence to detect some new nontrivial families of higher filtration in the

stable homotopy groups of spheres π∗S (cf. [6–12]).

In this paper, we make a further research on the basis of [5] and also detect a family

of homotopy elements in πpnq+pq−3S which has filtration 3 and is represented by k0hn ∈

Ext3,p
nq+2pq+q

A (Zp, Zp) in the Adams spectral sequence. Our result is the following theorem.

Theorem 1.4 Let p ≥ 5, n ≥ 3. Then

k0hn 6= 0 ∈ Ext3,p
nq+2pq+q

A (Zp, Zp)

is a permanent cycle in the Adams spectral sequence and it converges to a nontrivial element

of order p in πpnq+2pq+q−3S.

The construction of the above k0hn-element is parallel to that of (b0hn + h1bn−1)-element

given in [5]. Theorem 1.4 will be proved on the basis of the following theorem.

Theorem 1.5 Let p ≥ 5, n ≥ 3. Then

β∗i
′
∗i∗(hn) 6= 0 ∈ Ext

2,pnq+(p+1)q+1
A (H∗K, Zp)

is a permanent cycle in the Adams spectral sequence and it converges to a nontrivial element

ζn ∈ πpnq+(p+1)q−1K.

Remark 1.1 The k0hn-element obtained in Theorem 1.4 is an indecomposable element in

π∗S, i.e., it is not a composition of elements of lower filtration in π∗S, because hn (n > 0) is

known to die in the Adams spectral sequence.

This paper is organized as follows. After giving some useful propositions in Section 2, the

proofs of the main theorems will be given in Section 3.

2 Some Preliminaries on Low-Dimensional Ext Groups

In this section, we will prove some results on Ext groups of low dimension which will be

used in the proofs of the main theorems.
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Proposition 2.1 Let p ≥ 5, n ≥ 3, a0 ∈ Ext1,1A (Zp, Zp), hn ∈ Ext1,p
nq

A (Zp, Zp), and

bn ∈ Ext2,p
n+1q

A (Zp, Zp) respectively. Then we have the following:

(1) Ext4,p
nq+pq+2

A (Zp, Zp) ∼= Zp{a0a0h1hn}.

(2) Ext
5,pnq+(p+2)q
A (Zp, Zp) = 0.

Proof (1) See [13, Theorem 4.1].

(2) The proof is similar to that given in the proof of [6, Proposition 1.2]. We can show that

in the May spectral sequence E
5,pnq+(p+2)q,∗
1 = 0. Then

Ext
5,pnq+(p+2)q
A (Zp, Zp) = 0.

Here the proof is omitted.

The following lemma is used in the proofs of many propositions in this section.

First recall spectra V (k) = {V (k)n} for n ≥ −1 which are so-called Toda-Smith spectra.

The spectrum V (n) is given in [14] such that the Zp-cohomology

H∗(V (n), Zp) ∼= E(n) = E(Q0,Q1, · · · ,Qn),

the exterior algebra generator by Milnor basis elements Q0, Q1, · · · , Qn in A. The spectra

V (n) for n ≥ −1 are defined inductively by V (−1) = S and the cofibration

Σ2(pn−1)V (n − 1)
α(n)

−→ V (n − 1)
in−→ V (n)

jn
−→ Σ2pn−1V (n − 1). (2.1)

When n = 0, 1, 2, the above cofibration sequences just are the cofibration sequences (1.1), (1.2)

and (1.3) respectively. α(n) stand for the maps p, α, β in (1.1), (1.2) and (1.3) respectively.

Here V (−1) = S, V (0) = M, V (1) = K, i0 = i, i1 = i′, i2 = ī, j0 = j, j1 = j′, j2 = j̄. The

existence of V (n) is assured (cf. [14, Theorem 1.1]) for n = 1, p ≥ 3 and for n = 2, p ≥ 5.

By the definition of Ext groups, from (2.1) we can easily have the following lemma.

Lemma 2.1 With notation as above, we have the following two long exact sequences:

(1) · · · −→ Ext
s−1,t−(2pn−1)
A (H∗V (n − 1), �)

α(n)
∗−→ Exts,tA (H∗V (n − 1), �)

(in)∗
−→ Exts,tA (H∗V (n), �)

(jn)∗
−→ Ext

s,t−(2pn−1)
A (H∗V (n), �) −→ · · · .

(2) · · · −→ Ext
s−1,t−(2pn−1)
A (�, H∗V (n − 1))

α(n)∗

−→ Exts,tA (�, H∗V (n − 1))

(jn)∗

−→ Exts,tA (�, H∗V (n))
(in)∗

−→ Exts,tA (�, H∗V (n)) −→ · · · .

Here � is an arbitrary A-comodule.

Proposition 2.2 Let p ≥ 5, n ≥ 3. Then Ext
3,pnq+(p+2)q+1
A (H∗M, H∗M) has a unique

generator

hng0 ,

where hng0 satisfies

i∗j∗hng0 = hng0,

the generator of Ext
3,pnq+(p+2)q
A (Zp, Zp) stated in [15, Table 8.1].
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Proof First consider the exact sequence

Ext
3,pnq+(p+2)q+1
A (Zp, Zp)

j∗

−→ Ext
3,pnq+(p+2)q
A (Zp, H

∗M)

i∗

−→ Ext
3,pnq+(p+2)q
A (Zp, Zp)

p∗

−→ Ext
4,pnq+(p+2)q+1
A (Zp, Zp)

induced by (1.1). Since we know that Ext
3,pnq+(p+2)q+1
A (Zp, Zp) is zero (cf. [15, Table 8.1])

and Ext
4,pnq+(p+2)q+1
A (Zp, Zp) is zero (cf. [5, Proposition 2.1]), the above i∗ is an isomorphism.

Then we see that Ext
3,pnq+(p+2)q
A (Zp, H

∗M) has a unique generator

hng0 ,

where hng0 satisfies

i∗hng0 = hng0,

the unique generator of Ext
3,pnq+(p+2)q
A (Zp, Zp) stated in [15, Table 8.1].

At last, look at the following exact sequence induced by (1.1)

Ext
3,pnq+(p+2)q+1
A (Zp, H

∗M)
i∗−→ Ext

3,pnq+(p+2)q+1
A (H∗M, H∗M)

j∗
−→ Ext

3,pnq+(p+2)q
A (Zp, H

∗M)
p∗
−→ Ext

4,pnq+(p+2)q+1
A (Zp, H

∗M).

Since the first group is zero by virtue of Ext
3,pnq+(p+2)q+r
A (Zp, Zp) = 0 for r = 1, 2 (cf. [15,

Table 8.1]) and the fourth group is zero by virtue of the fact that Ext
4,pnq+(p+2)q+t
A (Zp, Zp) = 0

for t = 1, 2 (cf. [5, Proposition 2.1]), the above j∗ is an isomorphism. Thus we can know that

Ext
3,pnq+(p+2)q+1
A (H∗M, H∗M) has a unique generator

hng0 ,

where hng0 satisfies

j∗hng0 = hng0 .

This finishes the proof of Proposition 2.2.

Proposition 2.3 Let p ≥ 5, n ≥ 3. Then

Ext
3,pnq+(p+2)q
A (H∗M, H∗M) ∼= Zp{i∗j∗hng0 , j∗i∗hng0}.

Proof Consider the exact sequence

Ext
2,pnq+(p+2)q−1
A (Zp, Zp)

p∗

−→ Ext
3,pnq+(p+2)q
A (Zp, Zp)

j∗

−→ Ext
3,pnq+(p+2)q−1
A (Zp, H

∗M)
i∗

−→ Ext
3,pnq+(p+2)q−1
A (Zp, Zp)

induced by (1.1). Since Ext
2,pnq+(p+2)q−1
A (Zp, Zp) = 0 = Ext

3,pnq+(p+2)q−1
A (Zp, Zp) (cf. [15,

Table 8.1]), the above j∗ is an isomorphism. Moreover, we also know Ext
3,pnq+(p+2)q
A (Zp, Zp) =

Zp{hng0} (cf. [15, Table 8.1]). Thus we can have

Ext
3,pnq+(p+2)q−1
A (Zp, H

∗M) = Zp{j
∗(hng0)}.
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Now observe the following exact sequence

Ext
2,pnq+(p+2)q−1
A (Zp, H

∗M)
p∗
−→ Ext

3,pnq+(p+2)q
A (Zp, H

∗M)

i∗−→ Ext
3,pnq+(p+2)q
A (H∗M, H∗M)

j∗
−→ Ext

3,pnq+(p+2)q−1
A (Zp, H

∗M)
p∗
−→

induced by (1.1). Since Ext
2,pnq+(p+2)q+r
A (Zp, Zp) = 0 for r = −1, 0 (cf. [1]), we can easily get

Ext
2,pnq+(p+2)q−1
A (Zp, H

∗M) = 0.

By virtue of the fact

Ext
3,pnq+(p+2)q−1
A (Zp, H

∗M) = Zp{j
∗(hng0)},

we have that the image of the second p∗ is zero since

p∗j
∗(hng0) = j∗p∗(hng0) = j∗p∗(g0hn) = 0.

From the fact that

Ext
3,pnq+(p+2)q
A (Zp, H

∗M) ∼= Zp{hng0 } ∼= Zp{j∗hng0 },

Ext
3,pnq+(p+2)q−1
A (Zp, H

∗M) ∼= Zp{j
∗(hng0)} ∼= Zp{j

∗i∗j∗hng0 } ∼= Zp{j∗j
∗i∗hng0 },

we can easily get

Ext
3,pnq+(p+2)q
A (H∗M, H∗M) ∼= Zp{i∗j∗hng0, j

∗i∗hng0 }.

This shows Proposition 2.3.

Proposition 2.4 Let p ≥ 5, n ≥ 3. Then we have

(1) i∗d2(i∗j∗(hng0 )) 6= 0;

(2) d2(j
∗i∗(hng0 )) 6= 0, where

d2 : Ext
3,pnq+(p+2)q
A (H∗M, H∗M) −→ Ext

5,pnq+(p+2)q+1
A (H∗M, H∗M)

is the differential of the Adams spectral sequence.

Proof (1) From [5, p. 488] we know that

d2(i∗(hng0)) 6= 0.

By Proposition 2.2,

d2(i∗(hng0)) = d2(i∗i
∗j∗(hng0 )) = d2(i

∗i∗j∗(hng0 )) = i∗d2(i∗j∗(hng0 )).

The desired result follows.

(2) Consider the exact sequence

Ext
4,pnq+(p+2)q
A (Zp, Zp)

p∗

−→ Ext
5,pnq+(p+2)q+1
A (Zp, Zp)

j∗

−→ Ext
5,pnq+(p+2)q
A (Zp, H

∗M)
i∗

−→ Ext
5,pnq+(p+2)q
A (Zp, Zp)
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induced by (1.1). We claim that the above j∗ is an isomorphism. By Proposition 2.1, we have

Ext
5,pnq+(p+2)q
A (Zp, Zp) = 0.

It follows that the above j∗ is an epimorphism. From [5, Proposition 2.1], we know that

Ext
4,pnq+(p+2)q
A (Zp, Zp) ∼= Zp{g0bn−1}.

Since

p∗(g0bn−1) = a0g0bn−1 = 0 (a0g0 = 0 by [15, Table 8.2]),

we have

kernel j∗ = image p∗ = 0.

It follows that the above j∗ also is a monomorphism. The proof of the claim is finished. From

[5, Proposition 2.1], we have

α2b0hn 6= 0 ∈ Ext
5,pnq+(p+2)q+1
A (Zp, Zp).

By the claim we can get

j∗(α2b0hn) 6= 0 ∈ Ext
5,pnq+(p+2)q
A (Zp, H

∗M).

At the same time, from [5, Lemma 3.2], we have that up to nonzero scalar

d2(hng0) = α2b0hn.

Note that

i∗j∗hng0 = hng0.

It follows that

j∗d2(j∗i
∗hng0 ) 6= 0.

By

j∗d2(j∗i
∗hng0 ) = j∗d2(j

∗i∗hng0 ),

we can have

d2(j
∗i∗(hng0 )) 6= 0.

This finishes the proof of the second part of Proposition 2.4.

Proposition 2.5 Let p ≥ 5, n ≥ 3. Then

Ext
3,pnq+(p+1)q+2
A (H∗K, H∗M) = 0.
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Proof Consider the exact sequence

Ext
3,pnq+(p+1)q+3
A (H∗M, Zp)

j∗

−→ Ext
3,pnq+(p+1)q+2
A (H∗M, H∗M)

i∗

−→ Ext
3,pnq+(p+1)q+2
A (H∗M, Zp).

Since the first group and the third group are zero by the fact that Ext
3,pnq+(p+1)q+r
A (Zp, Zp) = 0

for r = 1, 2, 3 (cf. [15, Table 8.1]), the second group is zero.

Look at the exact sequence

Ext3,p
nq+pq+2

A (Zp, Zp)
i∗−→ Ext3,p

nq+pq+2
A (H∗M, Zp)

j∗
−→ Ext3,p

nq+pq+1
A (Zp, Zp)

p∗
−→ Ext4,p

nq+pq+2
A (Zp, Zp)

induced by (1.1). Since we know that Ext3,p
nq+pq+1

A (Zp, Zp) ∼= Zp{a0h1hn} (cf. [15, Table 8.1])

and Ext4,p
nq+pq+2

A (Zp, Zp) ∼= Zp{a0a0h1hn} by Proposition 2.1, the above p∗ is an isomorphism.

image j∗ = 0 since p∗ is an isomorphism. image i∗ = 0 by the fact that Ext3,p
nq+pq+2

A (Zp, Zp) =

0 (cf. [15, Table 8.1]). Thus we can have

Ext3,p
nq+pq+2

A (H∗M, Zp) = 0.

Observe the following exact sequence induced by (1.1):

Ext2,p
nq+pq

A (Zp, Zp)
p∗
−→ Ext3,p

nq+pq+1
A (Zp, Zp)

i∗−→ Ext3,p
nq+pq+1

A (H∗M, Zp)

j∗
−→ Ext3,p

nq+pq
A (Zp, Zp)

p∗
−→ Ext4,p

nq+pq+1
A (Zp, Zp).

Since Ext2,p
nq+pq

A (Zp, Zp) ∼= Zp{h1hn} and Ext3,p
nq+pq+1

A (Zp, Zp) ∼= Zp{a0h1hn} (cf. [15, Ta-

ble 8.1]), we know that the first p∗ is an isomorphism. Similarly by virtue of the facts that

Ext3,p
nq+pq

A (Zp, Zp) ∼= Zp{b0hn, h1bn−1} (cf. [15, Table 8.1]) and Ext4,p
nq+pq+1

A (Zp, Zp) ∼=

Zp{a0b0hn, a0h1bn−1} (cf. [5, Proposition 2.1]), we get that the second p∗ is also an isomor-

phism. Thus it follows that

Ext3,p
nq+pq+1

A (H∗M, Zp) = 0.

Look at the exact sequence

0 = Ext3,p
nq+pq+2

A (H∗M, Zp)
j∗

−→ Ext3,p
nq+pq+1

A (H∗M, H∗M)

i∗

−→ Ext3,p
nq+pq+1

A (H∗M, Zp) = 0

induced by (1.1). It is easy to get that the second group is zero.

At last consider the following exact sequence

0 = Ext
3,pnq+(p+1)q+2
A (H∗M, H∗M)

i′
∗−→ Ext

3,pnq+(p+1)q+2
A (H∗K, H∗M)

j′
∗−→ Ext3,p

nq+pq+1
A (H∗M, H∗M) = 0

induced by (1.2). The desired result follows.
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Proposition 2.6 Let p ≥ 5, n ≥ 3. Then

Ext
2,pnq+(p+1)q+1
A (H∗K, Zp) ∼= Zp{β∗i

′
∗i∗(hn)},

where

β∗ : Ext1,p
nq

A (H∗K, Zp) −→ Ext
2,pnq+(p+1)q+1
A (H∗K, Zp)

is the connecting homomorphism induced by β : Σ(p+1)qK −→ K.

Proof Look at the exact sequence

Ext1,p
nq+pq−1

A (Zp, Zp)
p∗
−→ Ext2,p

nq+pq
A (Zp, Zp)

i∗−→ Ext2,p
nq+pq

A (H∗M, Zp)
j∗
−→ Ext2,p

nq+pq−1
A (Zp, Zp)

induced by (1.1). Since the first group and the fourth group are zero, the above i∗ is an

isomorphism. By the fact that

Ext2,p
nq+pq

A (Zp, Zp) ∼= Zp{h1hn},

we can have

Ext2,p
nq+pq

A (H∗M, Zp) ∼= Zp{i∗(h1hn)}.

At last observe the following exact sequence

Ext
2,pnq+(p+1)q+1
A (H∗M, Zp)

i′
∗−→ Ext

2,pnq+(p+1)q+1
A (H∗K, Zp)

j′
∗−→ Ext2,p

nq+pq
A (H∗M, Zp)

α∗−→ Ext
3,pnq+(p+1)q+1
A (H∗M, Zp)

induced by (1.2). Since the first group is zero by Ext
2,pnq+(p+1)q+r
A (Zp, Zp) = 0 for r = 0, 1 (cf.

[1]) and the fourth group is zero by Ext
3,pnq+(p+1)q+t
A (Zp, Zp) = 0 for t = 0, 1 (cf. [15, Table

8.1]), the above j′∗ is an isomorphism. Thus we can have

Ext
2,pnq+(p+1)q+1
A (H∗K, Zp) ∼= Zp{∆}.

Here ∆ is the unique generator of Ext
2,pnq+(p+1)q+1
A (H∗K, Zp) and satisfies

j′∗(∆) = i∗(h1hn).

From [14, (5.4)], we have

j′βi′i ∈
[∑pq−1

S, M
]

is represented by

i∗(h1) ∈ Ext1,pqA (H∗M, Zp)

in the Adams spectral sequence. It follows that

(j′βi′i)∗(hn) = i∗(h1hn) = j′∗(∆).
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Note the fact that j′∗ is an isomorphism. It is easy to get that

β∗i
′
∗i∗(hn) = ∆.

Therefore this completes the proof of the proposition.

Proposition 2.7 Let p ≥ 5, n ≥ 3. Then

Ext
2,pnq+(p+1)q+1
A (H∗K, H∗M) ∼= Zp{β∗i

′
∗(h̃n)},

where h̃n ∈ Ext1,p
nq

A (H∗M, H∗M) is the unique generator of Ext1,p
nq

A (H∗M, H∗M) and satis-

fies

i∗(h̃n) = i∗(hn).

Proof Consider the exact sequence induced by (1.1):

Ext2,p
nq+pq+1

A (Zp, Zp)
i∗−→ Ext2,p

nq+pq+1
A (H∗M, Zp)

j∗
−→ Ext2,p

nq+pq
A (Zp, Zp)

p∗
−→ Ext3,p

nq+pq+1
A (Zp, Zp).

Since Ext2,p
nq+pq+1

A (Zp, Zp) = 0, image i∗ = 0. Since Ext2,p
nq+pq

A (Zp, Zp) = Zp{h1hn} and

Ext3,p
nq+pq+1

A (Zp, Zp) = Zp{a0h1hn} (cf. [15, Table 8.1]), the above p∗ is an isomorphism, and

then image j∗ = 0. Thus it follows that

Ext2,p
nq+pq+1

A (H∗M, Zp) = 0.

Look at the exact sequence

Ext
2,pnq+(p+1)q+2
A (H∗M, Zp)

i′
∗−→ Ext

2,pnq+(p+1)q+2
A (H∗K, Zp)

j′
∗−→ Ext2,p

nq+pq+1
A (H∗M, Zp)=0

induced by (1.2). Since we know that Ext
2,pnq+(p+1)q+2
A (H∗M.Zp) = 0 by the facts that

Ext
2,pnq+(p+1)q+r
A (Zp, Zp) = 0 for r = 1, 2 and Ext2,p

nq+pq+1
A (H∗M, Zp) = 0, we can have

Ext
2,pnq+(p+1)q+2
A (H∗K, Zp) = 0.

Observe the following exact sequence

Ext
3,pnq+(p+1)q+2
A (H∗M, Zp)

i′
∗−→ Ext

3,pnq+(p+1)q+2
A (H∗K, Zp)

j′
∗−→ Ext3,p

nq+pq+1
A (H∗M, Zp)

induced by (1.2). From the proof of Proposition 2.5 we know that the first group and the third

group are zero. Thus the middle group

Ext
3,pnq+(p+1)q+2
A (H∗K, Zp) = 0.

At last, look at the following exact sequence

Ext
2,pnq+(p+1)q+2
A (H∗K, Zp)

j∗

−→ Ext
2,pnq+(p+1)q+1
A (H∗K, H∗M)

i∗

−→ Ext
2,pnq+(p+1)q+1
A (H∗K, Zp)

p∗

−→ Ext
3,pnq+(p+1)q+2
A (H∗K, Zp)
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induced by (1.1). Since the first group and the fourth group are zero, the above i∗ is an

isomorphism. From Proposition 2.6, we have

Ext
2,pnq+(p+1)q+1
A (H∗K, Zp) ∼= Zp{β∗i

′
∗i∗(hn)}.

Thus we can easily have that there exists an element

∆ ∈ Ext
2,pnq+(p+1)q+1
A (H∗K, H∗M)

such that

Ext
2,pnq+(p+1)q+1
A (H∗K, H∗M) ∼= Zp{∆}

and

i∗(∆) = β∗i
′
∗i∗(hn).

Since i∗(h̃n) = i∗(hn), we have

i∗(∆) = β∗i
′
∗i∗(hn) = β∗i

′
∗i

∗(h̃n) = i∗β∗i
′
∗(h̃n).

By the fact that i∗ is an isomorphism, it follows that

∆ = β∗i
′
∗(h̃n).

Thus this completes the proof of the proposition.

3 Proofs of Theorems 1.4 and 1.5

Let

· · ·
a2−→ Σ−2E2

a1−→ Σ−1E1
a0−→ S

↓ b2 ↓ b1 ↓ b0 (3.1)

Σ−2KG2 Σ−1KG1 KG0 = KZp

be the minimal Adams resolution of S satisfying the following.

(1) Es
bs−→ KGs

cs−→ Es+1
as−→ ΣEs are cofibrations for all s ≥ 0 which induce short exact

sequences in Zp-cohomology;

(2) KGs is a wedge sum of suspensions of Eilenberg-Maclane spectra of type KZp;

(3) πtKGs are the E
s,t
1 -terms,

(bscs−1)∗ : πtKGs−1 −→ πtKGs

are the d
s−1,t
1 -differentials of the Adams spectral sequence and

πtKGs
∼= Exts,tA (Zp, Zp) (cf. [16, p. 180]).
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Then

· · ·
a2∧1W−→ Σ−2E2 ∧ W

a1∧1W−→ Σ−1E1 ∧ W
a0∧1W−→ W

↓ b2 ∧ 1W ↓ b1 ∧ 1W ↓ b0 ∧ 1W (3.2)

Σ−2KG2 ∧ W Σ−1KG1 ∧ W KG0 ∧ W

is an Adams resolution of arbitrary finite spectrum W .

From [17, pp. 204–206], the Moore spectrum M is a commutative ring spectrum with

multiplication mM : M ∧ M −→ M and there is mM : ΣM −→ M ∧ M such that

mM (i ∧ 1M ) = 1M , (j ∧ 1M )mM = 1M ,

mMmM = 0, (i ∧ 1M )mM + mM (j ∧ 1M ) = 1M∧M ,

mMT = −mM , TmM = mM ,

mM (1M ∧ i) = −1M , (1M ∧ j)mM = 1M ,

where T : M ∧ M −→ M ∧ M is the switching map.

Definition 3.1 (cf. [17]) A spectrum X is called an M -module spectrum if p ∧ 1X = 0.

Consequently, the cofibration

X
p∧1X

−→ X
i∧1X−→ M ∧ X

j∧1X

−→ ΣX

split, i.e., there is a homotopy equivalence

M ∧ X = X ∨ ΣX

and there are maps

mX : M ∧ X −→ X, mX : ΣX −→ M ∧ X

satisfying

mX(i ∧ 1X) = 1X , (j ∧ 1X)mX = 1X , mXmX = 0,

mX(j ∧ 1X) + (i ∧ 1X)mX = 1M∧X .

Definition 3.2 (cf. [17]) The M -module actions mX , mX are called associative if

mX(1M ∧ mX) = −mX(mX ∧ 1X) and (1M ∧ mM )mX = (mM ∧ 1X)mX .

Let X and X ′ be M -module spectra. Then we define a homomorphism

d : [ΣsX ′, X ] −→ [Σs+1X ′, X ]

by

d(f) = mX(1M ∧ f)mX′

for f ∈ [ΣsX ′, X ]. This operation d is called a derivation (of maps between M -module spectra)

which has the following properties:



Detection of Some Elements 303

Lemma 3.1 (cf. [17, Theorem 2.2]) (1) d is a derivative and

d(fg) = fd(g) + (−1)|g|d(f)g

for f ∈ [ΣsX ′, X ], g ∈ [ΣtX ′′, X ′], where X, X ′, X ′′ are M -module spectra.

(2) Let W ′, W be arbitrary spectra and h ∈ [ΣrW ′, W ]. Then

d(h ∧ f) = (−1)|h|h ∧ d(f)

for f ∈ [ΣsX ′, X ].

(3) d2 = 0 : [ΣsX ′, X ] −→ [Σs+2X ′, X ] for associative spectra X ′, X.

From [17, (3.4)], K is an M -module spectrum, i.e., there are M -module actions mK :

K ∧ M −→ K, mK : ΣK −→ K ∧ M satisfying

mK(1K ∧ i) = 1K , (1K ∧ j)mK = 1K ,

mKmK = 0, (1K ∧ i)mK + (1K ∧ j)mK = 1K∧M .

Moreover, from [17, (2.6)] and [17, (3.7)] we have

d(ij) = −1M , d(α) = 0,

d(i′) = 0, d(j′) = 0,

d(β) = 0.

Remark 3.1 In this paper, all the notations are the same as those of [5].

Let L be the cofiber of α1 = jαi : Σq−1S −→ S and K ′ be the cofiber of αi : ΣqS −→ M

given by the following two cofibrations:

Σq−1S
α1−→ S

i′′

−→ L
j′′

−→ ΣqS (cf. [5, (2.3)]), (3.3)

ΣqS
αi
−→ M

υ
−→ K ′ y

−→ Σq+1S (cf. [5, (2.4)]). (3.4)

Let α′ = α1 ∧ 1K . Consider the following two commutative diagrams of 3 × 3-Lemma in the

stable homotopy category:

ΣM
υ

−→ ΣK ′ 1
K′∧p
−→ ΣK ′

ց (υ ∧ 1M )mM ր 1K′ ∧ j ց y ր z

K ′ ∧ M Σq+2S

ր 1K′ ∧ i ց π ր jj′ ց αi

K ′ x
−→ K

j′α′

−→ Σ2M

and

M
(i′′∧1K)i′

−→ L ∧ K
j′′∧1K

−→ ΣqK
ց i′ ր i′′ ∧ 1K ց r ր π

K ΣqK ′ ∧ M

ր α′ ց j′ ր (υ ∧ 1M )mM ց ε

Σq−1K
j′α′

−→ Σq+1M
α

−→ ΣM
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By the above two commutative diagrams of 3 × 3-Lemma in the stable homotopy category, we

easily have the following two lemmas.

Lemma 3.2 There exist three cofibrations

K ′ x
−→ K

jj′

−→ Σq+2S
z

−→ ΣK ′, (3.5)

Σ−1K
j′α′

−→ ΣM
(υ∧1M )mM

−→ K ′ ∧ M
π

−→ K, (3.6)

M
(i′′∧1K)i′

−→ L ∧ K
r

−→ ΣqK ′ ∧ M
ε

−→ ΣM. (3.7)

Lemma 3.3 There exist the following relations:

ε(υ ∧ 1M )mM = α, r(i′′ ∧ 1K) = (υ ∧ 1M )mMj′,

πr = j′′ ∧ 1K , ε(1K′ ∧ i)vj′ = −2j′α′.

From [18, p. 434], there are △ ∈ [Σ−1−1L ∧ K, K] and ∆̃ ∈ [Σ−1K, L ∧ K] satisfying

∆(i′′ ∧ 1K) = (j′′ ∧ 1K)∆̃ = i′j′ ∈ [Σ−q−1K, K], jj′∆ = 0.

From [15, p. 484], there is ∆K′ ∈ [Σ−q−1L ∧ K, K ′] satisfying

∆K′(i′′ ∧ 1K) = υj′ ∈ [Σ−q−1K, K ′], ∆(i′′ ∧ 1K) = (j′′ ∧ 1K)∆̃ = i′j′.

Lemma 3.4 ∆K′ = (1K′ ∧ j)r.

Proof From Lemma 3.3 we have

(1K′ ∧ j)r(i′′ ∧ 1K)=(1′K ∧ j)(υ ∧ 1M )mMj′=(υ ∧ 1S0)(1M ∧ j)mM j′=υj′=∆K′(i′′ ∧ 1K),

which shows that

(1K′ ∧ j)r = ∆K′ + g(j′′ ∧ 1K)

for some g ∈ [K, ΣK ′].

Consider the exact sequence induced by (3.4)

[K, Σq+1S]
(αi)∗
−→ [K, ΣM ]

υ∗−→ [K, ΣK ′]
y∗
−→ [K, Σq+2S]

(αi)∗
−→ [K, Σ2M ].

From the proof of [5, Proposition 2.18], we know that

[K, ΣM ] = 0.

It follows that image υ∗ = 0. By

[K, Σq+2S] ∼= Zp{jj
′},

we have

(αi)∗(jj
′) = αijj′ 6= 0.
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Thus we have image y∗ = 0. By image υ∗ = 0 and image y∗ = 0, we obtain

[K, ΣK ′] = 0.

Then we have

(1K′ ∧ j)r = ∆K′ .

Lemma 3.5 (cf. [5, Lemma 3.3 and (3.4)]) Let p ≥ 5, n ≥ 3. Then there exists an element

η′
n,2 ∈ [Σp

nq+qK, E2 ∧ K]

such that

(b2 ∧ 1K)η′
n,2 = h0hn ∧ 1K ∈ [Σp

nq+qK, KG2 ∧ K], (1E2 ∧ α′)η′
n,2 = 0,

where h0hn ∈ πpnq+qKG2
∼= Ext2,p

nq+q
A (Zp, Zp) and α′ = jαi ∧ 1K ∈ [Σq−1K, K]. There also

exists an element

f2 ∈ [Σp
nq+(p+2)q+3M, E5 ∧ L ∧ K]

such that

(1E2 ∧ (i′′ ∧ 1K)β)η′
n,2i

′ = (a2a3a4 ∧ 1L∧K)f2.

Corollary 3.1 For f2 ∈ [Σp
nq+(p+2)q+3M, E5 ∧ L ∧ K] which is given in Lemma 3.5, we

have

(1E4 ∧ ε(1K′ ∧ ij))(a4 ∧ 1K′∧M )(1E5 ∧ r)d(f2ij) = 0. (3.8)

Proof From [5], we have (cf. [5, (3.6)])

(a4 ∧ 1M )(1E5 ∧ ε(1K′ ∧ i)∆K′)d(f2ij) = 0.

Here f2 is given in [5, (3.4)].

By [17, (1.7)], we have

(a4 ∧ 1M )(1E5 ∧ ε(1K′ ∧ i))(1E5 ∧ ∆K′)d(f2ij) = 0.

By Lemma 3.4, we have

(a4 ∧ 1M )(1E5 ∧ ε(1K′ ∧ i))(1E5 ∧ (1K′ ∧ j)r)d(f2ij) = 0.

By [17, (1.7)], it follows that

(a4 ∧ 1M )(1E5 ∧ ε(1K′ ∧ i))(1E5 ∧ (1K′ ∧ j))(1E5 ∧ r)d(f2ij) = 0.

Thus

(a4 ∧ 1M )(1E5 ∧ ε(1K′ ∧ ij))(1E5 ∧ r)d(f2ij) = 0.

By [17, (1.7)], the corollary follows.

Let W be the cofibre of ε(1K′ ∧ ij) : Σq−2K ′ ∧ M −→ M given by the cofibration

Σq−2K ′ ∧ M
ε(1

K′∧ij)
−→ M

w4−→ W
u4−→ Σq−1K ′ ∧ M. (3.9)
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Lemma 3.6 There exists an element

f ′ ∈ [Σp
nq+(p+2)q+1M, E4 ∧ W ]

which satisfies

(a2a3 ∧ 1K)(1E4 ∧ πu4)f
′ = 0.

Proof By (3.8) and (3.9), we have

(a4 ∧ 1K′∧M )(1E5 ∧ r)d(f2ij) = (1E4 ∧ u4)f
′ (3.10)

with f ′ ∈ [Σp
nq+(p+2)q+1M, E4 ∧W ] and by composing (a2a3 ∧ 1K)(1E4 ∧ π) on (3.10) we have

(a2a3 ∧ 1K)(1E4 ∧ πu4)f
′ = (a2a3a4 ∧ 1K)(1E5 ∧ πr)d(f2ij). (3.11)

By composing ij on [5, (3.4)], we have

(1E2 ∧ (i′′ ∧ 1K)β)η′
n,2i

′ij = (a2a3a4 ∧ 1L∧K)f2ij (3.12)

with η′
n,2 ∈ [Σp

nq+qK, E2 ∧ K].

Note that d(1K) = 0 and d(β) = 0. Then by applying the derivation d on (3.12) we have

(1E2 ∧ (i′′ ∧ 1K)β)d(η′
n,2i

′ij) = (a2a3a4 ∧ 1L∧K)d(f2ij). (3.13)

Note that πr = j′′ ∧ 1K . By composing (1E2 ∧ πr) on (3.13) we have

(a2a3a4 ∧ 1K)(1E5 ∧ πr)d(f2ij) = 0 (3.14)

and by (3.11), (3.14) we get

(a2a3 ∧ 1K)(1E4 ∧ πu4)f
′ = 0. (3.15)

Thus the lemma is proved.

Let U be the cofibre of πu4 : W −→ Σq−1K given by the cofibration

W
πu4−→ Σq−1K

w5−→ U
u5−→ ΣW. (3.16)

Lemma 3.7 w5 induces zero homomorphism in Zp-cohomology.

Proof Consider the following homomorphism induced by w5:

w∗
5 : H∗U −→ H∗+q−1K.

From the cellar structures of U and K, we can have that

HtK =

{
Zp, t = 0, 1, q + 1, q + 2,

0, others,

and the top cell of U has degree 2q +1. It easily follows that w∗
5 must be a zero homomorphism

in Zp-cohomology.
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Lemma 3.8 There exist three homotopy elements

f ′
2 ∈ [Σp

nq+(p+2)qM, E2 ∧ U ],

f ′
3 ∈ [Σp

nq+(p+2)q+1M, E3 ∧ U ],

g2 ∈ [Σp
nq+(p+2)qM, KG2 ∧ W ]

such that

(a2a3 ∧ 1W )f ′ = (1E2 ∧ u5)f
′
2, f ′

2 = (a2 ∧ 1U )f ′
3,

(1E3 ∧ u4)(a3 ∧ 1W )f ′ = −(1E3 ∧ u4u5)f
′
3 + (1E3 ∧ u4)(c2 ∧ 1W )g2.

Proof From (3.15) and (3.16), we have

(a2a3 ∧ 1W )f ′ = (1E2 ∧ u5)f
′
2 (3.17)

with f ′
2 ∈ [Σp

nq+(p+2)qM, E2 ∧ U ].

By (3.17) and (3.2) we have

(b2 ∧ 1W )(1E2 ∧ u5)f
′
2 = (b2 ∧ 1W )(a2a3 ∧ 1W )f ′ = 0.

Thus it follows that

(1KG2 ∧ u5)(b2 ∧ 1U )f ′
2 = 0. (3.18)

By (3.18), (3.16) and the fact that w5 induces zero homomorphism in Zp-cohomology (cf.

Lemma 3.7), we have

(b2 ∧ 1U )f ′
2 = (1KG2 ∧ w5)g = 0 (3.19)

with g ∈ [Σp
nq+(p+1)q+1M, KG2 ∧ K], so by (3.2) we obtain

f ′
2 = (a2 ∧ 1U )f ′

3 (3.20)

with f ′
3 ∈ [Σp

nq+(p+2)q+1M, E3 ∧ U ]. By [17, (1.7)], from (3.20) and (3.17) we have

(a2a3 ∧ 1W )f ′ = −(a2 ∧ 1W )(1E3 ∧ u5)f
′
3.

Then we have

(a3 ∧ 1W )f ′ = −(1E3 ∧ u5)f
′
3 + (c2 ∧ 1W )g2 (3.21)

with g2 ∈ [Σp
nq+(p+2)qM, KG2 ∧ W ]. By composing (1E3 ∧ u4) on (3.21), we have

(1E3 ∧ u4)(a3 ∧ 1W )f ′ = −(1E3 ∧ u4u5)f
′
3 + (1E3 ∧ u4)(c2 ∧ 1W )g2. (3.22)

We finish the proof of the lemma.
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Lemma 3.9 The cofibre of ε(1K′ ∧ i)υ : ΣqM −→ ΣM is U given by the cofibration

ΣqM
ε(1

K′∧i)υ
−→ ΣM

w6−→ U
u6−→ Σq+1M. (3.23)

There exist two relations that

u4u5 = (υ ∧ 1M )mMu6, ε(1K′ ∧ ij)(υ ∧ 1M )mM = ε(1K′ ∧ i)υ.

Proof By the three cofibrations (3.6), (3.9), and (3.16), we can get the following commu-

tative diagram (3.24) of 3 × 3-Lemma in stable homotopy category (cf. [19, pp. 292–293]).

W
πu4−→ Σq−1K

j′α′

−→ Σq+1M

u4 ց π ր ց w5 ր u6 ց (υ ∧ 1M )mM

Σq−1K ′ ∧ M U ΣqK ′ ∧ M (3.24)

(υ ∧ 1M )mM ր ց ε(1K′ ∧ ij) ր w6 ց u5 ր u4

ΣqM
ε(1

K′∧i)υ
−→ ΣM

w4−→ ΣW

By the commutative diagram (3.24), Lemma 3.8 follows.

Lemma 3.10 With notations as above, we have

(a3a4 ∧ 1K′∧M )(1E5 ∧ r)d(f2ij) = (1E3 ∧ (υ ∧ 1M )mMu6)f
′
3 − (c2 ∧ 1K′∧M )(1KG2 ∧ u4)g2.

Proof By (3.22), [17, (1.7)] and the relation u4u5 = (υ ∧ 1M )mMu6 (cf. Lemma 3.9), we

have

(a3 ∧ 1K′∧M )(1E4 ∧ u4)f
′ = (1E3 ∧ (υ ∧ 1M )mMu6)f

′
3 − (c2 ∧ 1K′∧M )(1KG2 ∧ u4)g2. (3.25)

By composing (a3 ∧ 1K′∧M ) on (3.10), we have

(a3 ∧ 1K′∧M )(1E4 ∧ u4)f
′ = (a3a4 ∧ 1K′∧M )(1E5 ∧ r)d(f2ij). (3.26)

Combining (3.25) and (3.26) yields

(a3a4 ∧ 1K′∧M )(1E5 ∧ r)d(f2ij)

= (1E3 ∧ (υ ∧ 1M )mMu6)f
′
3 − (c2 ∧ 1K′∧M )(1KG2 ∧ u4)g2. (3.27)

Thus we complete the proof of this lemma.

Lemma 3.11 There exist two elements

f ′
4 ∈ [Σp

nq+(p+2)q+1M, E3 ∧ K], f ′
5 ∈ [Σp

nq+(p+2)q+1M, E3 ∧ K ′ ∧ M ]

such that

(1E3 ∧ u6)f
′
3 = (1E3 ∧ j′)f ′

4, f ′
4 = (1E3 ∧ π)f ′

5.



Detection of Some Elements 309

Proof By Lemma 3.3, we have

α = ε(υ ∧ 1M )mM .

Then

(1E3 ∧ αu6)f
′
3 = (1E3 ∧ ε(υ ∧ 1M )mMu6)f

′
3 (by u4u5 = (υ ∧ 1M )mMu6)

= (1E3 ∧ εu4u5)f
′
3

= (1E3 ∧ ε)(1E3 ∧ u4u5)f
′
3 (by (3.22))

= (1E3 ∧ ε)[(1E3 ∧ u4)(c2 ∧ 1W )g2 − (1E3 ∧ u4)(a3 ∧ 1W )f ′]

= (1E3 ∧ εu4)(c2 ∧ 1W )g2 − (1E3 ∧ εu4)(a3 ∧ 1W )f ′

= (c2 ∧ 1M )(1KG2 ∧ εu4)g2 − (1E3 ∧ εu4)(a3 ∧ 1W )f ′ (by 1KG2 ∧ ε ≃ 0)

= −(1E3 ∧ εu4)(a3 ∧ 1W )f ′

= (1E3 ∧ ε)(a3 ∧ 1K′∧M )(1E4 ∧ u4)f
′ (by (3.26))

= (1E3 ∧ ε)(a3 ∧ 1K′∧M )(a4 ∧ 1K′∧M )(1E5 ∧ r)d(f2ij)

= (a3a4 ∧ 1M )(1E5 ∧ εr)d(f2ij) (by (3.7))

= 0.

Hence, by (1.2) we have

(1E3 ∧ u6)f
′
3 = (1E3 ∧ j′)f ′

4 (3.28)

with f ′
4 ∈ [Σp

nq+(p+2)q+1M, E3 ∧ K].

Similarly, by Lemma 3.3 we have

ε(1K′ ∧ i)υj′ = −2j′α′.

Then we have

−2(1E3 ∧ j′α′)f ′
4 = (1E3 ∧ ε(1K′ ∧ i)υj′)f ′

4

= (1E3 ∧ ε(1K′ ∧ i)υ)(1E3 ∧ j′)f ′
4 (by (3.28))

= (1E3 ∧ ε(1K′ ∧ i)υ)(1E3 ∧ u6)f
′
3 (by (3.24))

= (1E3 ∧ ε(1K′ ∧ ij)(υ ∧ 1M )mM )(1E3 ∧ u6)f
′
3

= (1E3 ∧ ε(1K′ ∧ ij))(1E3 ∧ (υ ∧ 1M )mMu6)f
′
3 (by (3.24))

= (1E3 ∧ ε(1K′ ∧ ij))(1E3 ∧ u4u5)f
′
3 (by (3.9))

= (1E3 ∧ ε(1K′ ∧ ij)u4u5)f
′
3

= 0.

Thus, by (3.6) we have

f ′
4 = (1E3 ∧ π)f ′

5 (3.29)

with f ′
5 ∈ [Σp

nq+(p+2)q+1M, E3 ∧ K ′ ∧ M ]. This completes the proof of Lemma 3.11.
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Lemma 3.12 For the above f ′
5 ∈ [Σp

nq+(p+2)q+1M, E3 ∧ K ′ ∧ M ], we have

(b3 ∧ 1K′∧M )f ′
5 = 0.

Proof The proof will be given later.

Now we give the proof of Theorem 1.5.

Proof of Theorem 1.5 From Lemma 3.12, we have

(b3 ∧ 1K′∧M )f ′
5 = 0. (3.30)

By virtue of (3.2), we have

f ′
5 = (a3 ∧ 1K′∧M )f ′

6 (3.31)

with f ′
6 ∈ [Σp

nq+(p+2)q+2M, E4 ∧ K ′ ∧ M ]. By (3.27) and (3.2), we have

(a2a3a4 ∧ 1K′∧M )(1E5 ∧ r)d(f2ij)

= (a2 ∧ 1K′∧M )(1E3 ∧ (υ ∧ 1M )mMu6)f
′
3

= (a2 ∧ 1K′∧M )(1E3 ∧ (υ ∧ 1M )mM )(1E3 ∧ u6)f
′
3 (by (3.28))

= (a2 ∧ 1K′∧M )(1E3 ∧ (υ ∧ 1M )mM )(1E3 ∧ j′)f ′
4 (by (3.29))

= (a2 ∧ 1K′∧M )(1E3 ∧ (υ ∧ 1M )mM )(1E3 ∧ j′)(1E3 ∧ π)f ′
5 (by (3.31))

= (a2 ∧ 1K′∧M )(1E3 ∧ (υ ∧ 1M )mM )(1E3 ∧ j′)(1E3 ∧ π)(1E3 ∧ π)(a3 ∧ 1K′∧M )f ′
6

= (a2 a3 ∧ 1K′∧M )(1E4 ∧ (υ ∧ 1M )mM j′)(1E4 ∧ π)f ′
6.

That is,

(a2a3a4 ∧ 1K′∧M )(1E5 ∧ r)d(f2ij)

= (a2a3 ∧ 1K′∧M )(1E4 ∧ (υ ∧ 1M )mM j′)(1E4 ∧ π)f ′
6. (3.32)

From [5, Proposition 2.2], we have

[(b4 ∧ 1K)(1E4 ∧ π)f ′
6] ∈ Ext

4,pnq+(p+2)q+2
A (H∗K, H∗M) = 0.

By (3.1), we know that the d1-cycle (b4 ∧ 1K)(1E4 ∧ π)f ′
6 is a d1-boundary. It follows that

(b4 ∧ 1K)(1E4 ∧ π)f ′
6 = (b4 ∧ 1K)(c3 ∧ 1K)f ′

7

for some f ′
7 ∈ [Σp

nq+(p+2)q+2M, KG3 ∧ K]. Thus we have

(1E4 ∧ π)f ′
6 = (c3 ∧ 1K)f ′

7 + (a4 ∧ 1K)f ′
8 (3.33)

with f ′
8 ∈ [Σp

nq+(p+2)q+3M, E5 ∧ K]. Then by (3.32), (3.33) and (3.2), we have

(a2a3a4 ∧ 1K′∧M )(1E5 ∧ r)d(f2ij) = (a2a3a4 ∧ 1K′∧M )(1E5 ∧ (υ ∧ 1M )mM j′)f ′
8. (3.34)
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Moreover, by composing (1E2 ∧ r) on (3.13), it is easy to get that

(a2a3a4 ∧ 1K′∧M )(1E5 ∧ r)d(f2ij) = (1E2 ∧ r(i′′ ∧ 1K)β)d(η′
n,2i

′ij). (3.35)

Combining (3.34) and (3.35) yields

(1E2 ∧ r(i′′ ∧ 1K)β)d(η′
n,2i

′ij) = (a2a3a4 ∧ 1K′∧M )(1E5 ∧ (υ ∧ 1M )mMj′)f ′
8. (3.36)

From Lemma 3.3, we have

r(i′′ ∧ 1K) = (υ ∧ 1M )mM j′.

Then (3.36) can turn into

(1E2 ∧ (υ ∧ 1M )mMj′β)d(η′
n,2i

′ij) = (1E2 ∧ (υ ∧ 1M )mM j′)(a2a3a4 ∧ 1K)f ′
8. (3.37)

By (3.37) and (3.6), we have

(1E2 ∧ j′β)d(η′
n,2i

′ij) = (1E2 ∧ j′)(a2a3a4 ∧ 1K)f ′
8 + (1E2 ∧ j′α′)f ′

9 (3.38)

with f ′
9 ∈ [Σp

nq+(p+1)q+1M, E2∧K]. From [5, p. 489], we know that the left-hand side of (3.38)

has filtration 4. However, since the first term of the right-hand side of (3.38) has filtration ≥ 5,

the second term of (3.38) must be of filtration 4. So f ′
9 has filtration ≤ 3. Notice the facts that

Ext
3,pnq+(p+1)q+2
A (H∗K, H∗M) = 0 (cf. Proposition 2.5) and Ext

2,pnq+(p+1)q+1
A (H∗K, H∗M) ∼=

Zp{β∗i
′
∗(h̃n)} (cf. Proposition 2.7). Then we have

(b2 ∧ 1K)f ′
9 = (1KG2 ∧ β)(1KG2 ∧ i′)(h̃n).

Let

̺n = (a0a1 ∧ 1K)f ′
9.

Then ̺n is represented by

β∗i
′
∗(h̃n)

in the Adams spectral sequence. It follows that

ζn = ̺ni

is represented by

i∗β∗i
′
∗(h̃n) = β∗i

′
∗i

∗(h̃n) = β∗i
′
∗i∗(hn) 6= 0 ∈ Ext

2,pnq+(p+1)q+1
A (H∗K, Zp)

in the Adams spectral sequence (cf. Proposition 2.6). Thus Theorem 1.5 is proved.

Proof of Lemma 3.12 We first recall three cofibrations given in [5]:

Σ−1K
υj′

−→ ΣqK ′ ψ
−→ K ′

2
ρ

−→ K (cf. [5, (2.5)]), (3.39)

Σq−1K ′
1

ε(1
K′

1
∧i)

−→ M
w2−→ X

u2−→ ΣqK ′ (cf. [5, (3.7)]), (3.40)

X
ψu2
−→ K ′

2
w3−→ K ′ ∧ W

u3−→ ΣX (cf. [5, (3.10)]) (3.41)
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with the relation

u2u3 = −υj′π.

By composing (a2 ∧ 1K′∧M ) on (3.27), we have

(a2a3a4 ∧ 1K′∧M )(1E5 ∧ r)d(f2ij)

= (a2 ∧ 1K′∧M )(1E3 ∧ (υ ∧ 1M )mMu6)f
′
3 (by (3.28))

= (a2 ∧ 1K′∧M )(1E3 ∧ (υ ∧ 1M )mM )(1E3 ∧ j′)f ′
4 (by (3.29))

= (a2 ∧ 1K′∧M )(1E3 ∧ (υ ∧ 1M )mM )(1E3 ∧ j′)(1E3 ∧ π)f ′
5.

That is,

(a2a3a4 ∧ 1K′∧M )(1E5 ∧ r)d(f2ij)

= (a2 ∧ 1K′∧M )(1E3 ∧ (υ ∧ 1M )mM )(1E3 ∧ j′)(1E3 ∧ π)f ′
5. (3.42)

By composing (1E2 ∧ (1K′ ∧ j)) on (3.42), we have

(1E2 ∧ (1K′ ∧ j))(a2a3a4 ∧ 1K′∧M )(1E5 ∧ r)d(f2ij)

= (1E2 ∧ (1K′ ∧ j))(a2 ∧ 1K′∧M )(1E3 ∧ (υ ∧ 1M )mM )(1E3 ∧ j′)(1E3 ∧ π)f ′
5. (3.43)

On the one hand, for the left-hand side of (3.43), we have

(1E2 ∧ (1K′ ∧ j))(a2a3a4 ∧ 1K′∧M )(1E5 ∧ r)d(f2ij)

= −(a2a3a4 ∧ 1K′)(1E5 ∧ (1K′ ∧ j)r)d(f2ij) (by Lemma 3.4)

= −(a2a3a4 ∧ 1K′)(1E5 ∧ ∆K′)d(f2ij).

On the other hand, for the right-hand side of (3.43) we have

(1E2 ∧ (1K′ ∧ j))(a2 ∧ 1K′∧M )(1E3 ∧ (υ ∧ 1M )mM )(1E3 ∧ j′)(1E3 ∧ π)f ′
5.

= −(a2 ∧ 1K′)(1E3 ∧ (1K′ ∧ j)(υ ∧ 1M )mM j′π)f ′
5

= −(a2 ∧ 1K′)(1E3 ∧ (υ ∧ 1s0)(1M ∧ j)mM j′π)f ′
5 (by (1M ∧ j)mM = 1M )

= −(a2 ∧ 1K′)(1E3 ∧ υj′π)f ′
5 (by u2u3 = −υj′π)

= (a2 ∧ 1K′)(1E3 ∧ u2u3)f
′
5.

Thus we have

(a2a3a4 ∧ 1K′)(1E5 ∧ ∆K′)d(f2ij) = −(a2 ∧ 1K′)(1E3 ∧ u2u3)f
′
5. (3.44)

Let X be the cofibre of ε(1K′ ∧ i) : Σq−1K ′ −→ M given by the cofibration

Σq−1K ′ ε(1K′∧i)
−→ M

w2−→ X
u2−→ ΣqK ′ (cf. [5, (3.7)]).

It follows from [5, (3.7)] and [5, (3.6)] that

(a4 ∧ 1K′)(1E5 ∧ ∆K′)d(f2ij) = (1E4 ∧ u2)f3
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for some f3 ∈ [Σp
nq+(p+2)q+1M, E4 ∧ X ]. By composing (a2a3 ∧ 1K′) on [5, (3.8)], we have

(a2a3a4 ∧ 1K′)(1E5 ∧ ∆K′)d(f2ij) = (a2a3 ∧ 1K′)(1E4 ∧ u2)f3. (3.45)

Combining (3.44) and (3.45) yields

(a2 ∧ 1K′)(1E3 ∧ u2u3)f
′
5 = −(a2a3 ∧ 1K′)(1E4 ∧ u2)f3. (3.46)

By [17, (1.7)], (3.46) can turn into

(1E2 ∧ u2)(a2 ∧ 1X)(1E3 ∧ u3)f
′
5 = −(1E2 ∧ u2)(a2a3 ∧ 1X)f3. (3.47)

From (3.47) and (3.40) we have

(a2 ∧ 1X)(1E3 ∧ u3)f
′
5 = −(a2a3 ∧ 1X)f3 + (1E2 ∧ w2)f4 (3.48)

with f4 ∈ [Σp
nq+(p+2)q−1M, E2 ∧ M ]. Note that

(b2 ∧ 1M )f4 ∈ [Σp
nq+(p+2)q−1M, KG2 ∧ M ] = 0

by the exact sequence

[Σp
nq+(p+2)q−1M, KG2]

(1∧i)∗
−→ [Σp

nq+(p+2)q−1M, KG2 ∧ M ]
(1∧j)∗
−→ [Σp

nq+(p+2)q−2M, KG2]

induced by (1.1), where the first group and the last group are zero by the fact that

πpnq+(p+2)q+rKG2
∼= Ext

2,pnq+(p+2)q+r
A (Zp, Zp) = 0

for r = 0,−1,−2 (cf. [1]). Hence, we can have

f4 = (a2 ∧ 1M )f5

for some f5 ∈ [Σp
nq+(p+2)qM, E3 ∧ M ]. By (3.2) and (3.48), we have

(1E3 ∧ u3)f
′
5 = −(a3 ∧ 1X)f3 + (1E3 ∧ w2)f

′

5 + (c2 ∧ 1X)g6 (3.49)

with g6 ∈ [Σp
nq+(p+2)qM, KG2 ∧ X ]. So we have

(b3 ∧ 1X)(1E3 ∧ u3)f
′
5 = (b3 ∧ 1X)(1E3 ∧ w2)f5 + (b3c2 ∧ 1X)g6. (3.50)

From Proposition 2.3, we have

Ext
3,pnq+(p+2)q
A (H∗M, H∗M) ∼= Zp{i∗j∗hng0, j

∗i∗hng0 }.

Thus it follows that

(b3 ∧ 1M )f5 = λ1hng0ij + λ2(1KG3 ∧ ij)hng0

for some λ1, λ2 ∈ Zp, where hng0 ∈ [Σp
nq+(p+2)q+1M, KG3 ∧ M ]. And so

0 = λ1(c3 ∧ 1M )hng0ij + λ2(c3 ∧ 1M )(1KG3 ∧ ij)hng0 .



314 X. G. Liu

By composing i on the above equality, we get

λ2(c3 ∧ 1M )(1KG3 ∧ ij)hng0 i = 0.

From Proposition 2.4, we see that

d2(i
∗(ij)∗hng0 ) = i∗d2(i∗j∗hng0 ) 6= 0.

Then we get

(c3 ∧ 1M )(1KG3 ∧ ij)hng0 i 6= 0.

Thus, we have

λ2 = 0, λ1(c3 ∧ 1M )hng0 ij = 0.

Note that

d2(j
∗i∗hng0 ) 6= 0

by Proposition 2.4(2). It follows that

(c3 ∧ 1M )hng0 ij 6= 0.

Thus we have

λ1 = 0.

From the above discussion, we know that

(b3 ∧ 1M )f5 = 0.

Then (3.50) can turn into

(b3 ∧ 1X)(1E3 ∧ u3)f
′
5 = (b3c2 ∧ 1X)g6. (3.51)

The argument of the proof from [5, (3.16)] to [5, p. 491] shows that (b3 ∧ 1X)(1E3 ∧ u3)f6 =

−(b3c2 ∧ 1X)l̃0 in [5, (3.16)] implies (b3 ∧ 1K′∧M )f6 = 0. By a similar argument as in [5], we

can also show that (3.51) implies that (3.30) holds.

Proof of Theorem 1.4 By Theorem 1.5, we get that

β∗i
′
∗i∗(hn) 6= 0 ∈ Ext

2,pnq+(p+1)q+1
A (H∗K, Zp)

is a permanent cycle in the Adams spectral sequence and converges to a nontrivial element

ζn ∈ πpnq+(p+1)q−1K.

Consider the following composition of maps

f : Σp
nq+(p+1)q−1S

ζn

−→ K
jj′β
−→ Σ−pq+2S.
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Since ζn is represented up to nonzero scalar by β∗i
′
∗i∗(hn) ∈ Ext

2,pnq+(p+1)q+1
A (H∗K, Zp) in

the Adams spectral sequence, the above f is represented up to nonzero scalar by

c = (jj′β)∗β∗i
′
∗i∗(hn)

in the Adams spectral sequence.

Meanwhile, it is well-known that the β-element

β2 = jj′β2i′i

is represented by

k0 ∈ Ext2,2pq+qA (Zp, Zp)

in the Adams spectral sequence. By the knowledge of Yoneda products we can see that f is

represented (up to nonzero scalar) by

c = k0hn 6= 0 ∈ Ext
3,q(pn+2p+1)
A (Zp, Zp)

in the Adams spectral sequence (cf. [15, Table 8.1]).

Moreover, from [1] we know that

Ext
3−r,q(pn+2p+1)−r+1
A (Zp, Zp) = 0

for r ≥ 2. Then we see that k0hn cannot be hit by any differential in the Adams spectral

sequence, and so the corresponding homotopy element f ∈ π∗S is nontrivial and of order p.

This finishes the proof of Theorem 1.4.
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