Chinese Annals of Mathematics, Series B © The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2008

Porosity of Self-affine Sets**

Lifeng XI*

Abstract In this paper, it is proved that any self-affine set satisfying the strong separation condition is uniformly porous. The author constructs a self-affine set which is not porous, although the open set condition holds. Besides, the author also gives a C^1 iterated function system such that its invariant set is not porous.

Keywords Porosity, Self-affine set, Open set condition 2000 MR Subject Classification 28A80

1 Introduction

Given a metric space X, denote by B(a, r) the open ball centered at $a \in X$ with radius r. Let $M \subset X$, $x \in X$ and R > 0. Set $p(x, R, M) = \sup\{r \ge 0 \mid \text{there exists } z \in X \text{ with } B(z, r) \subset B(x, R) \setminus M\}$ and

$$\underline{p}(M,x) := \liminf_{R \to 0+} \frac{p(x,R,M)}{R}$$
(1.1)

Definition 1.1 A subset $M (\subset X)$ is said to be porous if $\underline{p}(M, x) > 0$ for any $x \in M$. Furthermore, M is said to be uniformly porous, if $\inf_{x \in M} \underline{p}(M, x) > 0$.

Remark 1.1 A porous set is always nowhere dense. In particular, any porous subset of Euclidean space has zero Lebesgue measure. Notice that the porosity and uniform perfectness (see [9, 11]) are invariants under the bi-Lipschitz mapping.

Porosity in \mathbb{R} was used (under another form) already by A. Enjoy [2] in 1915. Probably the theory of σ -porous sets was started in 1967 by Solvendo [3] who applied σ -porous sets in the theory of boundary behavior of functions and who used for the first time the term porous set. In the differentiation theory σ -porous sets were used for the first time in 1978 (see [1]).

[7] proved that any C^{1+a} (a > 0) self-conformal set satisfying the open set condition is uniformly porous. As a result, the self-similar set satisfying the open set condition is uniformly porous.

Remark 1.2 When the open set condition does not hold, the porosity of self-similar set maybe fails. Let $f_1(x) = \frac{x}{3}$, $f_2(x) = \frac{x+1}{3}$, $f_3(x) = \frac{x+u}{3}$, where $u = \sum_{i=1}^{+\infty} \frac{1}{10^{i!}}$. Suppose that S_u is the invariant set of $\{f_i\}_{i=1}^3$. Then dim_H $S_u = 1$ and $\mathcal{H}^1(S_u) = 0$ (see [11]). By Schief's Theorem (see [10]), S_u does not satisfy the open set condition since $\mathcal{H}^1(S_u) = 0$. Notice that

Manuscript received October 10, 2006. Published online April 23, 2008.

^{*}Institute of Mathematics, Zhejiang Wanli University, Ningbo 315100, Zhejiang, China.

E-mail: xilf@zwu.edu.cn

^{**}Project supported by the National Natural Science Foundation of China (Nos. 10671180, 10301029, 10241003).

 S_u is not porous, because $\dim_H S_u = 1$ and the Hausdorff dimension of a porous set in \mathbb{R} is strictly smaller than 1 (see [8]).

The motivation of this paper is to study the following questions:

- (1) How is the porosity for self-affine sets?
- (2) Can we get the uniform porosity for C^1 IFS?

The family $\{A_i\}_{i=1}^m$ of affine mappings from \mathbb{R}^n to \mathbb{R}^n is said to be non-degenerate and contractive, if there is a norm $\|\cdot\|$ of \mathbb{R}^n such that

$$d_i ||x - y|| \le ||A_i(x) - A_i(y)|| \le c_i ||x - y||$$
 for all $x, y \in \mathbb{R}^n$,

where $0 < d_i < c_i < 1$ for $i = 1, \dots, m$.

Given contractive non-degenerate affine mappings $\{A_i\}_{i=1}^m$, let $E = \bigcup_{i=1}^m A_i(E)$ be the corresponding self-affine set. We say E satisfies the strong separation condition, if $A_i(E) \cap A_j(E) = \emptyset$ for any $i \neq j$. We say E satisfies the open set condition, if there is a non-empty open set U such that $\bigcup_{i=1}^m A_i(U) \subset U$ and $A_i(U) \cap A_j(U) = \emptyset$ for any $i \neq j$.

Our main results can be stated as follows.

Theorem 1.1 Any self-affine set satisfying the strong separation condition is uniformly porous.

The porosity of self-affine set maybe fail although the open set condition holds as in Theorem 1.2. Given integers a, b with a < b, let $C_{a,b} = \{a, a + 1, \dots, b - 1, b\}$.

Theorem 1.2 Suppose that $k_1, k_2 \in \mathbb{N}$ with $k_2 > k_1 \ge 5$, and Γ is a subset of $\mathbb{Z} \times \mathbb{Z}$ with $[C_{0,(k_1-1)} \times C_{0,(k_2-1)}] \setminus [C_{2,(k_1-3)} \times C_{2,(k_2-3)}] \subset \Gamma \subsetneqq [C_{0,(k_1-1)} \times C_{0,(k_2-1)}]$. Let

$$A_{i}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}\frac{1}{k_{1}} & 0\\0 & \frac{1}{k_{2}}\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix} + \begin{pmatrix}\frac{a_{i}}{k_{1}}\\\frac{b_{i}}{k_{2}}\end{pmatrix} \quad for any \ (a_{i}, b_{i}) \in \Gamma.$$

Then the self-affine set $F = \bigcup_{i=1}^{\#\Gamma} A_i(F)$ is not porous.

For C^1 IFS, we can not get the porosity as in Theorem 1.3.

Theorem 1.3 There are C^1 injections $g_1, g_2 : [0,1] \rightarrow [0,1]$ in \mathbb{R} with

$$g_1([0,1]) \cap g_2([0,1]) = \emptyset$$
 and $\bigcup_{i=1}^2 g_i([0,1]) \subset [0,1],$

such that the invariant set $H = g_1(H) \cup g_2(H) \ (\subset \mathbb{R})$ has positive Lebesgue measure and thus H is not porous.

We organize the paper as follows. Section 2 is on the porosity of self-affine set. In Section 3, an invariant set of C^1 IFS is constructed to prove Theorem 1.3.

2 Self-affine Set

Proof of Theorem 1.1 Given a norm $\|\cdot\|$ of \mathbb{R}^n , let $\{A_i : \mathbb{R}^n \to \mathbb{R}^n\}_i$ be contractive non-degenerate affine mappings satisfying $\|A_i(x) - A_i(y)\| \leq c_i \|x - y\|$, where $c_i \in (0, 1)$, $i = 1, \dots, m$. Given i, let $A_i(x) = B_i(x) + b_i$, where B_i is linear and $b_i \in \mathbb{R}^n$. Write $A_{i_1 \dots i_k} = A_{i_1} \circ \dots \circ A_{i_k}$ for any $i_1 \dots i_k \in \bigcup_{t=1}^{\infty} \{1, \dots, m\}^t$, and $B_{i_1 \dots i_k} = B_{i_1} \circ \dots \circ B_{i_k}$. Then

$$A_{i_1\cdots i_k}(x) = B_{i_1\cdots i_k}(x) + (b_{i_1} + B_{i_1}b_{i_2} + \cdots + B_{i_1\cdots i_{k-1}}b_{i_k}).$$

Let $|\cdot|$ be the Euclidean metric on \mathbb{R}^n . Then there is a constant c > 0 such that $(\sqrt{c})^{-1} |x| \le ||x|| \le \sqrt{c}|x|$ for all x. That means for all $x, y \in \mathbb{R}^n$,

$$|A_{i_1\cdots i_k}(x) - A_{i_1\cdots i_k}(y)| \le c \Big(\prod_{t=1}^k c_{i_t}\Big)|x-y|.$$
(2.1)

Let $E = \bigcup_{i=1}^{m} A_i(E)$ be the self-affine set with $A_i(E) \cap A_j(E) = \emptyset$ for any $i \neq j$. Given subsets $C, D \subset \mathbb{R}^n$, let $d(C, D) = \inf\{|x - y| : x \in C, y \in D\}$. Let $\lambda = \min_{i \neq j} d(A_i(E), A_j(E))c^{-1} > 0$.

Lemma 2.1 There exists a constant $\eta_0 \in (0, \frac{1}{2}]$ such that for any $x \in E$ and $v \in \mathbb{R}^n$ with |v| = 1,

$$\left\{t: |t| \leq \frac{\lambda}{2} \text{ and } B(x+tv,\eta_0\lambda) \subset \mathbb{R}^n \setminus E\right\} \neq \emptyset.$$

Proof Since *E* is totally disconnected, the segment $\{x + tv : |t| \leq \frac{\lambda}{2}\}$ has non-empty intersection with the open set $\mathbb{R}^n \setminus E$. Let $\eta(x, v) = \sup\{\eta \in (0, \frac{1}{2}] : \text{there exists } t \in [-\frac{\lambda}{2}, \frac{\lambda}{2}]$ such that $B(x + tv, \eta\lambda) \subset \mathbb{R}^n \setminus E\} > 0$. Because $\mathbb{R}^n \setminus E$ is open, the function $\eta(x, v)$ is lower continuous on the compact set $E \times [-\frac{\lambda}{2}, \frac{\lambda}{2}]$. Therefore we let $\eta_0 = \min_{(x,v) \in E \times [-\frac{\lambda}{2}, \frac{\lambda}{2}]} \eta(x, v)$. Then $\eta_0 > 0$.

10 > 01

For any linear mapping $L: \mathbb{R}^n \to \mathbb{R}^n$, write

$$\alpha(L) = \inf_{|x|=1} |L(x)|$$
 and $\beta(L) = \sup_{|x|=1} |L(x)|$.

Then we have the following lemma.

Lemma 2.2 Given a point $x \in E$, there is an infinite sequence $i_1 \cdots i_k \cdots$ such that $\{x\} = \bigcap_{k=1}^{\infty} A_{i_1 \cdots i_k}(E)$. Let $r_k = \alpha(B_{i_1 \cdots i_k})\lambda$. Then we have

$$B(x, r_k) \cap [E \setminus A_{i_1 \cdots i_k}(E)] = \emptyset \quad and \quad \lim_{k \to \infty} r_k = 0, \quad \inf_k \frac{r_{k+1}}{r_k} \ge \min_i \alpha(B_i).$$

Proof We conclude that for any t with $t \leq k$,

$$\alpha(B_{i_1\cdots i_{t-1}}) \ge c\alpha(B_{i_1\cdots i_k}). \tag{2.2}$$

In fact, it follows from (2.1) that $\{B_i\}_i$ are linear mappings with $|B_{i_t\cdots i_k}(x)| \le c(c_{i_t}\cdots c_{i_k})|x| \le c|x|$, i.e., $|B_{i_t\cdots i_k}^{-1}(y)| \ge c^{-1}|y|$ for all $y \in \mathbb{R}^n$. Take $x_0 \in \mathbb{R}^n$ such that $|x_0| = 1$ and $|B_{i_1\cdots i_{t-1}}(x_0)| = \alpha(A_{i_1\cdots i_{t-1}})$. Let $y_0 = B_{i_t\cdots i_k}^{-1}(x_0)$, where $|y_0| \ge c^{-1}|x_0| = c^{-1}$. Then

$$\alpha(A_{i_1\cdots i_k}) \le \left| B_{i_1\cdots i_{t-1}} B_{i_t\cdots i_k} \left(\frac{y_0}{|y_0|} \right) \right| = \frac{|B_{i_1\cdots i_{t-1}}(x_0)|}{|y_0|} \le c^{-1} \alpha(B_{i_1\cdots i_{t-1}}).$$

On the other hand, for any sequence $i_1 \cdots i_{t-1}$ and $i_t \neq j_t$,

$$d(A_{i_1\cdots i_{t-1}}A_{i_t}(E), A_{i_1\cdots i_{t-1}}A_{j_t}(E)) \ge \alpha(B_{i_1\cdots i_{t-1}})\min_{i\neq j} d(A_i(E), A_j(E)).$$
(2.3)

Therefore, using (2.2), we have

$$d(A_{i_1\cdots i_k}(E), E \setminus A_{i_1\cdots i_k}(E)) \ge \left[\min_{\substack{t \le k}} \alpha(B_{i_1\cdots i_{t-1}})\right] \min_{\substack{i \ne j}} d(A_i(E), A_j(E))$$
$$\ge \left[c^{-1}\alpha(B_{i_1\cdots i_k})\right] \min_{\substack{i \ne j}} d(A_i(E), A_j(E))$$
$$\ge \lambda \alpha(B_{i_1\cdots i_k}) = r_k.$$

That means

$$B(x, r_k) \cap [E \setminus A_{i_1 \cdots i_k}(E)] = \emptyset.$$
(2.4)

It follows from (2.1) that $\alpha(B_{i_1\cdots i_k}) \leq c \left(\prod_{t=1}^k c_{i_t}\right)$, which implies $\lim_{k\to\infty} r_k = 0$. We also have

$$\begin{aligned} \alpha(B_{i_1\cdots i_{k+1}}) &= \inf_{|x|=1} |B_{i_1\cdots i_k} B_{i_{k+1}}(x)| \\ &\geq \inf_{|x|=1} \left| B_{i_1\cdots i_k} \left(\frac{B_{i_{k+1}} x}{|B_{i_{k+1}} x|} \right) \right| \cdot \inf_{|x|=1} |B_{i_{k+1}} x| \\ &\geq \alpha(B_{i_1\cdots i_k}) \alpha(B_{i_{k+1}}), \end{aligned}$$

which implies $\frac{r_{k+1}}{r_k} \ge \min_i \alpha(B_i)$.

By Lemma 2.2, we need only to prove that for any $x \in E$,

$$\liminf_{k \to \infty} \frac{p(x, r_k, E)}{r_k} \ge \eta_0.$$

Suppose $E \subset B(0, R_0)$. Let $y_k = A_{i_1 \cdots i_k}^{-1}(x) \in E$. There are two orthogonal bases $\{u_1, \cdots, u_n\}$, $\{v_1, \cdots, v_n\} \subset \mathbb{R}^n$ with $|u_i| = |v_i| = 1$ for all i, such that

$$B_{i_1\cdots i_k}^{-1}(u_i) = d_i v_i, (2.5)$$

where

$$d_1 = \alpha^{-1}(B_{i_1 \cdots i_k}) \ge d_2 \ge \cdots \ge d_n = \beta^{-1}(B_{i_1 \cdots i_k}).$$
(2.6)

It follows from Lemma 2.1 that there exists a constant $\eta_0 \in (0, \frac{1}{2}]$ such that an open ball

$$B(y_k + tv_1, \eta_0 \lambda) \subset \mathbb{R}^n \setminus E \quad \text{with } |t| \leq \frac{\lambda}{2}.$$
Lemma 2.3 Let $\Omega_k = \left\{ (y_k + tv_1) + (r_k \eta_0) \sum_{i=1}^n t_i d_i v_i : \sum_{i=1}^n t_i^2 \leq 1 \right\}$ and $\Lambda_k = \left\{ y_k + r_k \sum_{i=1}^n t_i d_i v_i : \sum_{i=1}^n t_i^2 \leq 1 \right\}.$ Then we have the following conclusions:
(1) $\Omega_k \subset \mathbb{R}^n \setminus E;$
(2) $\Lambda_k = A_{i_1 \cdots i_k}^{-1} (B(x, r_k));$
(3) $\Omega_k \subset \Lambda_k.$

Proof To prove (1), we need only to verify $\Omega_k \subset B(y_k + tv_1, \eta_0 \lambda)$, and this follows from $r_k \eta_0 d_i \leq (r_k d_1) \eta_0 = \eta_0 \lambda$ immediately. By (2.5) and (2.6), we get (2).

To verify (3), we notice that

$$(y_k + tv_1) + (r_k\eta_0)\sum_{i=1}^n t_i d_i v_i = y_k + r_k \left[\frac{t}{\lambda} + \eta_0 t_1\right] d_1 v_1 + r_k \sum_{i=2}^n [\eta_0 t_i] d_i v_i,$$

336

where $\left|\frac{t}{\lambda}\right| \leq \frac{1}{2}, \eta_0 \leq \frac{1}{2}$ and $|t_1| \leq 1$, and thus

$$\left[\frac{t}{\lambda} + \eta_0 t_1\right]^2 + \sum_{i=2}^n [\eta_0 t_i]^2 \le \left(\frac{t}{\lambda}\right)^2 + 2\left|\frac{t}{\lambda}\right| \cdot |\eta_0 t_1| + \sum_{i=1}^n [\eta_0 t_i]^2 \le \frac{1}{4} + 2\left(\frac{1}{2}\right)^2 + \eta_0^2 = 1,$$

which implies $\Omega_k \subset \Lambda_k$.

Notice

$$A_{i_1\cdots i_k}(\Omega_k) = \left\{ A_{i_1\cdots i_k}(y_k + tv_1) + (r_k\eta_0) \sum_{i=1}^n t_i u_i : \sum_{i=1}^n t_i^2 \le 1 \right\}$$
$$= B(A_{i_1\cdots i_k}(y_k + tv_1), \eta_0 r_k).$$
(2.7)

Since $\Omega_k \subset \Lambda_k$, we have

$$A_{i_1\cdots i_k}(\Omega_k) \subset A_{i_1\cdots i_k}(\Lambda_k) = B(x, r_k), \qquad (2.8)$$

due to Lemma 2.3. On the other hand, $\Omega_k \subset \mathbb{R}^n \setminus E$ and

$$A_{i_1\cdots i_k}(\Omega_k) \cap [\mathbb{R}^n \setminus A_{i_1\cdots i_k}(E)] \subset B(x, r_k) \cap [\mathbb{R}^n \setminus A_{i_1\cdots i_k}(E)] = \emptyset,$$
(2.9)

due to Lemma 2.2 and $r_k = \alpha(B_{i_1\cdots i_k})\lambda$. Therefore,

$$A_{i_1\cdots i_k}(\Omega_k) \cap E \subset \{A_{i_1\cdots i_k}(\Omega_k) \cap [\mathbb{R}^n \setminus A_{i_1\cdots i_k}(E)]\} \cup \{A_{i_1\cdots i_k}(\Omega_k) \cap A_{i_1\cdots i_k}(E)\}$$
$$= A_{i_1\cdots i_k}(\Omega_k) \cap A_{i_1\cdots i_k}(E) \subset A_{i_1\cdots i_k}(\Omega_k \cap E) = \emptyset.$$
(2.10)

And thus, by (2.7), (2.8) and (2.10), we have

$$B(A_{i_1\cdots i_k}(y_k+tv_1),\eta_0r_k) \subset (\mathbb{R}^n \setminus E) \cap B(x,r_k),$$
(2.11)

which implies

$$\liminf_{k \to \infty} \frac{p(x, r_k, E)}{r_k} \ge \eta_0.$$

This completes the proof of Theorem 1.1.

Proof of Theorem 1.2 We will prove that the self-affine set $F = \bigcup_{i=1}^{\#\Gamma} A_i(F)$ is not porous. Here $k_2 > k_1 \ge 5$ and

$$[C_{0,k_1-1} \times C_{0,k_2-1}] \setminus [C_{2,k_1-3} \times C_{2,k_2-3}] \subset \Gamma,$$

which implies the point

$$\left(\frac{1}{k_1}, \frac{1}{k_2}\right) \in F \tag{2.12}$$

and the boundary $\partial([0,1]^2)$ of $[0,1]^2$ is contained in the self-affine set F, where $\partial([0,1]^2) = ([0,1] \times \{0,1\}) \cup (\{0,1\} \times [0,1])$. Furthermore, the boundary of any rectangle $A_{i_1\cdots i_t}([0,1]^2)$ is also contained in F, i.e.,

$$\partial A_{i_1\cdots i_t}([0,1]^2) \subset F. \tag{2.13}$$

For any $t \ge 1$, let $\rho_t = k_2^{-t}$ and

$$I_{t} = \left[\frac{1}{k_{1}} - \rho_{t}, \frac{1}{k_{1}} + \rho_{t}\right] \times \left[\frac{1}{k_{2}} - \rho_{t}, \frac{1}{k_{2}} + \rho_{t}\right],$$

the square of side $2\rho_t$ centered at $(\frac{1}{k_1}, \frac{1}{k_2})$.

Figure 1

Suppose on the contrary that F is porous. Then at the point $(\frac{1}{k_1}, \frac{1}{k_2}) \in F$, there exists a constant $\varsigma > 0$ such that for each t, there is a square of side $\varsigma \rho_t$ which is contained in $I_t \setminus F$.

Given $t \ge 1$, let $\psi(t)$ be a positive integer satisfying

$$k_1^{-\psi(t)-1} < k_2^{-t} \le k_1^{-\psi(t)}.$$
(2.14)

In fact, since $k_2 > k_1$ and $\frac{\psi(t^*)}{t} \to \frac{\log k_2}{\log k_1} > 1$ as $t \to \infty$, there exists an integer t^* such that $\varsigma \rho_{t^*} = \varsigma k_2^{-t^*} > k_2^{-\psi(t^*)}$.

Let $T^* = k_2^{\psi(t^*)-t^*} - 1$, and $\Theta_{t^*} = \bigcup_{i=0}^{T^*} [0, k_1^{-\psi(t^*)}] \times [i \cdot k_2^{-\psi(t^*)}, (i+1)k_2^{-\psi(t^*)}]$ which is a collection of rectangles as in Figure 1. Let

$$\pi_1(x,y) \equiv (x,y), \quad \pi_2(x,y) \equiv (-x,y), \quad \pi_3(x,y) \equiv (-x,-y), \quad \pi_4(x,y) \equiv (x,-y),$$

and $\Pi_i = (\frac{1}{k_1}, \frac{1}{k_2}) + \pi_i \Theta_{t^*}$ (i = 1, 2, 3, 4). Then as in Figure 1,

$$I_{t^*} \subset \Pi_1 \cup \Pi_2 \cup \Pi_3 \cup \Pi_4. \tag{2.15}$$

Notice that each rectangle of width $k_1^{-\psi(t^*)}$ and height $k_2^{-\psi(t^*)}$ appearing in Π_i (i = 1, 2, 3, 4) can be written in form of $A_{i_1\cdots i_{\psi(t^*)}}([0, 1]^2)$, and thus its boundary is contained in F.

Suppose that S_{t^*} is an open square of side $\varsigma \rho_{t^*}$ such that $S_{t^*} \subset I_{t^*} \setminus F$. Since $\varsigma \rho_{t^*} > k_2^{-\psi(t^*)}$, where $k_2^{-\psi(t^*)}$ is the height of the small rectangle mentioned above, by (2.15), there exists such a rectangle R with its boundary ∂R satisfying $\partial R \cap S_{t^*} \neq \emptyset$. Here $\partial R \cap S_{t^*} \subset \partial R \subset F$ and $\partial R \cap S_{t^*} \subset S_{t^*} \subset \mathbb{R}^2 \setminus F$. This is a contradiction.

3 An Example of C^1 IFS

In this section, we will obtain an invariant set H of C^1 IFS in \mathbb{R} such that $\mathcal{H}^1(H) > 0$. Thus H is not porous, since the porous set in \mathbb{R} has zero Lebesgue measure (see [8]).

Let
$$a_n = \frac{1}{2} + \frac{1}{n+3} < 1$$
 and $\delta_{n+1} = a_n - a_{n+1} = \frac{1}{(n+3)(n+4)}$ for $n \ge 1$. Then

$$\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \lim_{n \to \infty} \frac{\delta_n}{\delta_{n+1}} = 1.$$
(3.1)

For two intervals J_1, J_2 , we denote $J_1 < J_2$ if $\sup_{x \in J_1} x \le \inf_{y \in J_2} y$.

Divide the unit interval [0, 1] into three intervals: $[0, 1] = I_1 \cup G \cup I_2$, where I_r is closed with length $\frac{a_1}{2}$ for each r = 1, 2, G is open and $I_1 < G < I_2$.

By induction, for $i_1 \cdots i_k \in \{1,2\}^k$, we can divide the closed interval $I_{i_1 \cdots i_k}$ of length $|I_{i_1 \cdots i_k}| = \frac{a_k}{2^k}$ into

$$I_{i_1 \cdots i_k} = I_{i_1 \cdots i_k 1} \cup G_{i_1 \cdots i_k} \cup I_{i_1 \cdots i_k 2}, \tag{3.2}$$

where $I_{i_1 \cdots i_k 1} < G_{i_1 \cdots i_k} < I_{i_1 \cdots i_k 2}$ with

$$|I_{i_1\cdots i_k 1}| = |I_{i_1\cdots i_k 2}| = \frac{a_{k+1}}{2^{k+1}}$$
 and $|G_{i_1\cdots i_k}| = \frac{\delta_{k+1}}{2^k}$

Let $H = \bigcap_{k \ge 1} \bigcup_{i_1 \cdots i_k} I_{i_1 \cdots i_k}$. For Lebesgue measure \mathcal{H}^1 , we have

$$\mathcal{H}^{1}(H) = \lim_{k \to \infty} \sum_{i_{1} \cdots i_{k}} \mathcal{H}^{1}(I_{i_{1} \cdots i_{k}}) = \lim_{k \to \infty} 2^{k} \frac{a_{k}}{2^{k}} = \frac{1}{2} > 0.$$
(3.3)

That means H is not porous.

We will show that H is the invariant set of certain C^1 IFS $\{g_1, g_2\}$. On H the functions g_1 , g_2 can be defined by

$$\{g_{i_0}(x)\} = \bigcap_{k \ge 1} I_{i_0 i_1 \cdots i_k} \quad \text{for } \{x\} = \bigcap_{k \ge 1} I_{i_1 \cdots i_k}.$$
(3.4)

For the definitions of $\{g_1, g_2\}$ on the gaps, we need the following lemma.

Lemma 3.1 Given sequence $i_0i_1 \cdots i_k$ $(k \ge 1)$, let $G_{i_1 \cdots i_k} = (c_{i_1 \cdots i_k}, d_{i_1 \cdots i_k})$ and $G_{i_0i_1 \cdots i_k} = (c_{i_0i_1 \cdots i_k}, d_{i_0i_1 \cdots i_k})$. Then there is a C^1 increasing and contractive injection $f_{i_0i_1 \cdots i_k} : G_{i_1 \cdots i_k} \to G_{i_0i_1 \cdots i_k}$ defined on $G_{i_1 \cdots i_k}$ such that

(1) $f_{i_0i_1\cdots i_k}(G_{i_1\cdots i_k}) = G_{i_0i_1\cdots i_k},$ (2) $f'_{i_0i_1\cdots i_k}(c_{i_1\cdots i_k}) = f'_{i_0i_1\cdots i_k}(d_{i_1\cdots i_k}) = \frac{1}{2},$ (3) $|f'_{i_0i_1\cdots i_k}(x) - \frac{1}{2}| \le \frac{2}{k+5}$ for any $x \in G_{i_1\cdots i_k}.$

 $\mathbf{Proof} \ \mathrm{Let}$

$$\Phi(\zeta) = \begin{cases} 0, & \text{if } \zeta \le 0 \text{ or } \zeta \ge 1\\ 4\zeta, & \text{if } 0 \le \zeta \le \frac{1}{2},\\ 4 - 4\zeta, & \text{if } \frac{1}{2} \le \zeta \le 1, \end{cases}$$

and $\varphi(x) = \int_{-\infty}^x \Phi(\zeta) \mathrm{d}\zeta$. Then $\varphi \in C^1(\mathbb{R}, \mathbb{R})$ satisfies

$$\varphi(0) = \varphi'(0) = \varphi'(1) = 0, \quad \varphi(1) = 1 \quad \text{and} \quad 0 \le \varphi'(y) \le 2 \quad \text{for } y \in \mathbb{R}.$$

For any $x \in G_{i_1 \cdots i_k}$, let

$$f(x) = c_{i_0 i_1 \cdots i_k} + \frac{x - c_{i_1 \cdots i_k}}{2} + \left(\frac{\delta_{k+2}}{2\delta_{k+1}} - \frac{1}{2}\right) \frac{\delta_{k+1}}{2^k} \cdot \varphi\left(\frac{x - c_{i_1 \cdots i_k}}{\frac{\delta_{k+1}}{2^k}}\right).$$

Then $f(c_{i_1\cdots i_k}) = c_{i_0i_1\cdots i_k}, f'(c_{i_1\cdots i_k}) = f'(d_{i_1\cdots i_k}) = \frac{1}{2}$, where

$$\frac{d_{i_1\cdots i_k} - c_{i_1\cdots i_k}}{\frac{\delta_{k+1}}{2^k}} = \frac{|G_{i_1\cdots i_k}|}{\frac{\delta_{k+1}}{2^k}} = 1.$$
(3.5)

Therefore

$$f(d_{i_1\cdots i_k}) - f(c_{i_1\cdots i_k}) = \frac{\delta_{k+1}}{2^k} \frac{\delta_{k+2}}{2\delta_{k+1}} \varphi(1) = \frac{\delta_{k+2}}{2^{k+1}} = |G_{i_0i_1\cdots i_k}|.$$

For each $x \in G_{i_1 \cdots i_k}$,

$$f'(x) = \frac{1}{2} + \frac{1}{2} \left(\frac{\delta_{k+2}}{\delta_{k+1}} - 1 \right) \varphi' \left(\frac{x - c_{i_1 \cdots i_k}}{\frac{\delta_{k+1}}{2^k}} \right).$$
(3.6)

As $0 \le \varphi'(y) \le 2$ and $\frac{\delta_{k+2}}{\delta_{k+1}} = \frac{k+3}{k+5}$, we have

$$\left|f'(x) - \frac{1}{2}\right| \le \frac{2}{k+5}.$$
(3.7)

Here $0 < \frac{2}{k+5} \le \frac{2}{5} < \frac{1}{2}$ for $k \ge 0$. Then $|f'(x)| \in \left[\frac{1}{10}, \frac{9}{10}\right] \subset (0,1)$ for each $x \in G_{i_1 \cdots i_k}$, and thus f is an increasing contraction satisfying $f(G_{i_1i_2 \cdots i_k}) = G_{i_0i_1 \cdots i_k}$.

Let $f_{i_0i_1\cdots i_k} = f$ and this lemma follows.

Remark 3.1 In the above lemma, we only need $k \ge 0$. In particular, for k = 0, on G we also get two C^1 mappings $f_1: G \to G_1$ and $f_2: G \to G_2$ satisfying Lemma 3.1(1)–(3).

Then by (3.1), for any $x \in H$,

$$|g_1'(x)| = |g_2'(x)| = \lim_{k \to \infty} \frac{|I_{i_0 i_1 \cdots i_k}|}{|I_{i_1 \cdots i_k}|} = \lim_{k \to \infty} \frac{\frac{a_{k+1}}{2^{k+1}}}{\frac{a_k}{2^k}} = \frac{1}{2}.$$
(3.8)

For any sequence $i_1 \cdots i_k$ with $k \ge 0$, on the open interval $G_{i_1 \cdots i_k}$, let

$$g_{i_0}|_{G_{i_1\cdots i_k}} = f_{i_0i_1\cdots i_k}: G_{i_1\cdots i_k} \to G_{i_0i_1\cdots i_k}$$

as in Lemma 3.1. Then it follows from Lemma 3.1 that g_1 , g_2 are C^1 injective contractions with $g_1([0,1]) \cap g_2([0,1]) = I_1 \cap I_2 = \emptyset$, and H is their invariant set with $\mathcal{H}^1(E) > 0$.

Acknowledgement The author thanks Dr. Haiyi Jiang for his helpful comments.

References

- Belna, C. L., Evans, M. J. and Humke, P. D., Symmetric and ordinary differentiation, Proc. Amer. Math. Soc., 72, 1978, 261–267.
- [2] Denjoy, A., Sur les fonctions dérivées sommables, Bull. de la S. M. F., 43, 1915, 161–248.
- [3] Dolzhenko, E. P., Boundary properties of arbitrary functions, Izv. Akad. Nauk SSSR Ser. Mat., 31, 1967, 3–14.
- [4] Falconer, K. J., Fractal Geometry, Mathematical Foundations and Applications, John Wiley & Sons, Ltd., Chichester, 1990.
- [5] Falconer, K. J., Techniques in Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1997.
- [6] Hutchinson, J. E., Fractals and self-similarity, Indiana Univ. Math. J., 30, 1981, 714–747.
- [7] Järvenpää, E., Järvenpää, M. and Mauldin, R. D., Deterministic and random aspects of porosities, Disc. Cont. Dyn. Syst., 8, 2002, 121–136.
- [8] Koskela, P. and Rohde, S., Hausdorff dimension and mean porosity, Ann. of Math., 309, 1997, 593-609.
- [9] Ruan, H. J., Sun, Y. S. and Yin, Y. C., Uniform perfectness of the attractor of bi-Lipschitz IFS, Sci. in China Ser. A, 49(4), 2006, 433–438.
- [10] Schief, A., Separation properties for self-similar sets, Proc. Amer. Math. Soc., 122, 1994, 111–115.
- [11] Yin, Y. C., Jiang, H. Y. and Sun, Y. S., Geometry and dimension of self-similar set, Chin. Ann. Math., 24B(1), 2003, 57–64.