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Abstract In this paper, it is proved that any self-affine set satisfying the strong separation

condition is uniformly porous. The author constructs a self-affine set which is not porous,

although the open set condition holds. Besides, the author also gives a C
1 iterated function

system such that its invariant set is not porous.
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1 Introduction

Given a metric space X, denote by B(a, r) the open ball centered at a ∈ X with radius

r. Let M ⊂ X, x ∈ X and R > 0. Set p(x,R,M) = sup{r ≥ 0 | there exists z ∈ X with

B(z, r) ⊂ B(x,R)\M} and

p(M,x) := lim inf
R→0+

p(x,R,M)

R
(1.1)

Definition 1.1 A subset M (⊂ X) is said to be porous if p(M,x) > 0 for any x ∈ M.

Furthermore, M is said to be uniformly porous, if inf
x∈M

p(M,x) > 0.

Remark 1.1 A porous set is always nowhere dense. In particular, any porous subset of

Euclidean space has zero Lebesgue measure. Notice that the porosity and uniform perfectness

(see [9, 11]) are invariants under the bi-Lipschitz mapping.

Porosity in R was used (under another form) already by A. Enjoy [2] in 1915. Probably the

theory of σ-porous sets was started in 1967 by Solvendo [3] who applied σ-porous sets in the

theory of boundary behavior of functions and who used for the first time the term porous set.

In the differentiation theory σ-porous sets were used for the first time in 1978 (see [1]).

[7] proved that any C1+a (a > 0) self-conformal set satisfying the open set condition is

uniformly porous. As a result, the self-similar set satisfying the open set condition is uniformly

porous.

Remark 1.2 When the open set condition does not hold, the porosity of self-similar set

maybe fails. Let f1(x) = x
3 , f2(x) = x+1

3 , f3(x) = x+u
3 , where u =

+∞
∑

i=1

1
10i! . Suppose that

Su is the invariant set of {fi}3
i=1. Then dimH Su = 1 and H1(Su) = 0 (see [11]). By Schief’s

Theorem (see [10]), Su does not satisfy the open set condition since H1(Su) = 0. Notice that
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Su is not porous, because dimH Su = 1 and the Hausdorff dimension of a porous set in R is

strictly smaller than 1 (see [8]).

The motivation of this paper is to study the following questions:

(1) How is the porosity for self-affine sets?

(2) Can we get the uniform porosity for C1 IFS?

The family {Ai}mi=1 of affine mappings from Rn to Rn is said to be non-degenerate and

contractive, if there is a norm ‖ · ‖ of Rn such that

di‖x− y‖ ≤ ‖Ai(x) −Ai(y)‖ ≤ ci‖x− y‖ for all x, y ∈ Rn,

where 0 < di < ci < 1 for i = 1, · · · ,m.
Given contractive non-degenerate affine mappings {Ai}mi=1, let E =

m
⋃

i=1

Ai(E) be the corre-

sponding self-affine set. We say E satisfies the strong separation condition, if Ai(E)∩Aj(E) = ∅
for any i 6= j. We say E satisfies the open set condition, if there is a non-empty open set U such

that
m
⋃

i=1

Ai(U) ⊂ U and Ai(U) ∩Aj(U) = ∅ for any i 6= j.

Our main results can be stated as follows.

Theorem 1.1 Any self-affine set satisfying the strong separation condition is uniformly

porous.

The porosity of self-affine set maybe fail although the open set condition holds as in Theorem

1.2. Given integers a, b with a < b, let Ca,b = {a, a+ 1, · · · , b− 1, b}.
Theorem 1.2 Suppose that k1, k2 ∈ N with k2 > k1 ≥ 5, and Γ is a subset of Z × Z with

[C0,(k1−1) × C0,(k2−1)]\[C2,(k1−3) × C2,(k2−3)] ⊂ Γ $ [C0,(k1−1) × C0,(k2−1)]. Let

Ai

(

x

y

)

=

(

1
k1

0

0 1
k2

)

(

x

y

)

+

(

ai
k1

bi
k2

)

for any (ai, bi) ∈ Γ.

Then the self-affine set F =
#Γ
⋃

i=1

Ai(F ) is not porous.

For C1 IFS, we can not get the porosity as in Theorem 1.3.

Theorem 1.3 There are C1 injections g1, g2 : [0, 1] → [0, 1] in R with

g1([0, 1]) ∩ g2([0, 1]) = ∅ and

2
⋃

i=1

gi([0, 1]) ⊂ [0, 1],

such that the invariant set H = g1(H) ∪ g2(H) (⊂ R) has positive Lebesgue measure and thus

H is not porous.

We organize the paper as follows. Section 2 is on the porosity of self-affine set. In Section

3, an invariant set of C1 IFS is constructed to prove Theorem 1.3.

2 Self-affine Set

Proof of Theorem 1.1 Given a norm ‖ · ‖ of Rn, let {Ai : Rn → Rn}i be contractive

non-degenerate affine mappings satisfying ‖Ai(x) − Ai(y)‖ ≤ ci‖x − y‖, where ci ∈ (0, 1),
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i = 1, · · · ,m. Given i, let Ai(x) = Bi(x) + bi, where Bi is linear and bi ∈ Rn. Write Ai1···ik =

Ai1 ◦ · · · ◦Aik for any i1 · · · ik ∈
∞
⋃

t=1
{1, · · · ,m}t, and Bi1···ik = Bi1 ◦ · · · ◦Bik . Then

Ai1···ik(x) = Bi1···ik(x) + (bi1 +Bi1bi2 + · · · +Bi1···ik−1
bik).

Let | · | be the Euclidean metric on Rn. Then there is a constant c > 0 such that (
√
c)−1 |x| ≤

‖x‖ ≤ √
c|x| for all x. That means for all x, y ∈ Rn,

|Ai1···ik(x) −Ai1···ik(y)| ≤ c
(

k
∏

t=1

cit

)

|x− y|. (2.1)

Let E =
m
⋃

i=1

Ai(E) be the self-affine set with Ai(E)∩Aj(E) = ∅ for any i 6= j. Given subsets

C,D ⊂ Rn, let d(C,D) = inf{|x− y| : x ∈ C, y ∈ D}. Let λ = min
i6=j

d(Ai(E), Aj(E))c−1 > 0.

Lemma 2.1 There exists a constant η0 ∈ (0, 1
2 ] such that for any x ∈ E and v ∈ Rn with

|v| = 1,
{

t : |t| ≤ λ

2
and B(x+ tv, η0λ) ⊂ Rn\E

}

6= ∅.

Proof Since E is totally disconnected, the segment {x + tv : |t| ≤ λ
2 } has non-empty

intersection with the open set Rn\E. Let η(x, v) = sup{η ∈ (0, 1
2 ] : there exists t ∈ [−λ

2 ,
λ
2 ]

such that B(x + tv, ηλ) ⊂ Rn\E} > 0. Because Rn\E is open, the function η(x, v) is lower

continuous on the compact set E × [−λ
2 ,

λ
2 ]. Therefore we let η0 = min

(x,v)∈E×[−λ
2 ,
λ
2 ]
η(x, v). Then

η0 > 0.

For any linear mapping L : Rn → Rn, write

α(L) = inf
|x|=1

|L(x)| and β(L) = sup
|x|=1

|L(x)|.

Then we have the following lemma.

Lemma 2.2 Given a point x ∈ E, there is an infinite sequence i1 · · · ik · · · such that {x} =
∞
⋂

k=1

Ai1···ik(E). Let rk = α(Bi1···ik)λ. Then we have

B(x, rk) ∩ [E\Ai1···ik(E)] = ∅ and lim
k→∞

rk = 0, inf
k

rk+1

rk
≥ min

i
α(Bi).

Proof We conclude that for any t with t ≤ k,

α(Bi1···it−1 ) ≥ cα(Bi1···ik). (2.2)

In fact, it follows from (2.1) that {Bi}i are linear mappings with |Bit···ik(x)| ≤ c(cit · · · cik)|x| ≤
c|x|, i.e., |B−1

it···ik
(y)| ≥ c−1|y| for all y ∈ Rn. Take x0 ∈ Rn such that |x0| = 1 and |Bi1···it−1 (x0)|

= α(Ai1···it−1). Let y0 = B−1
it···ik

(x0), where |y0| ≥ c−1|x0| = c−1. Then

α(Ai1···ik) ≤
∣

∣

∣
Bi1···it−1Bit···ik

( y0

|y0|
)∣

∣

∣
=

|Bi1···it−1 (x0)|
|y0|

≤ c−1α(Bi1···it−1).

On the other hand, for any sequence i1 · · · it−1 and it 6= jt,

d(Ai1···it−1Ait(E), Ai1···it−1Ajt(E)) ≥ α(Bi1···it−1 )min
i6=j

d(Ai(E), Aj(E)). (2.3)
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Therefore, using (2.2), we have

d(Ai1···ik(E), E\Ai1···ik(E)) ≥
[

min
t≤k

α(Bi1···it−1)
]

min
i6=j

d(Ai(E), Aj(E))

≥ [c−1α(Bi1···ik)] min
i6=j

d(Ai(E), Aj(E))

≥ λα(Bi1···ik) = rk.

That means

B(x, rk) ∩ [E\Ai1···ik(E)] = ∅. (2.4)

It follows from (2.1) that α(Bi1···ik) ≤ c
( k
∏

t=1
cit

)

, which implies lim
k→∞

rk = 0. We also have

α(Bi1···ik+1
) = inf

|x|=1
|Bi1···ikBik+1

(x)|

≥ inf
|x|=1

∣

∣

∣
Bi1···ik

( Bik+1
x

|Bik+1
x|
)
∣

∣

∣
· inf
|x|=1

|Bik+1
x|

≥ α(Bi1···ik)α(Bik+1
),

which implies rk+1

rk
≥ min

i
α(Bi).

By Lemma 2.2, we need only to prove that for any x ∈ E,

lim inf
k→∞

p(x, rk, E)

rk
≥ η0.

Suppose E ⊂ B(0, R0). Let yk = A−1
i1···ik

(x) ∈ E. There are two orthogonal bases {u1, · · · , un},
{v1, · · · , vn} ⊂ Rn with |ui| = |vi| = 1 for all i, such that

B−1
i1···ik

(ui) = divi, (2.5)

where

d1 = α−1(Bi1···ik) ≥ d2 ≥ · · · ≥ dn = β−1(Bi1···ik). (2.6)

It follows from Lemma 2.1 that there exists a constant η0 ∈ (0, 1
2 ] such that an open ball

B(yk + tv1, η0λ) ⊂ Rn\E with |t| ≤ λ

2
.

Lemma 2.3 Let Ωk =
{

(yk + tv1) + (rkη0)
n
∑

i=1

tidivi :
n
∑

i=1

t2i ≤ 1
}

and Λk =
{

yk +

rk
n
∑

i=1

tidivi :
n
∑

i=1

t2i ≤ 1
}

. Then we have the following conclusions:

(1) Ωk ⊂ Rn\E;

(2) Λk = A−1
i1···ik

(B(x, rk));

(3) Ωk ⊂ Λk.

Proof To prove (1), we need only to verify Ωk ⊂ B(yk + tv1, η0λ), and this follows from

rkη0di ≤ (rkd1)η0 = η0λ immediately. By (2.5) and (2.6), we get (2).

To verify (3), we notice that

(yk + tv1) + (rkη0)

n
∑

i=1

tidivi = yk + rk

[ t

λ
+ η0t1

]

d1v1 + rk

n
∑

i=2

[η0ti]divi,
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where
∣

∣

t
λ

∣

∣ ≤ 1
2 , η0 ≤ 1

2 and |t1| ≤ 1, and thus

[ t

λ
+ η0t1

]2

+

n
∑

i=2

[η0ti]
2 ≤

( t

λ

)2

+ 2
∣

∣

∣

t

λ

∣

∣

∣
· |η0t1| +

n
∑

i=1

[η0ti]
2 ≤ 1

4
+ 2
(1

2

)2

+ η2
0 = 1,

which implies Ωk ⊂ Λk.

Notice

Ai1···ik(Ωk) =
{

Ai1···ik(yk + tv1) + (rkη0)

n
∑

i=1

tiui :

n
∑

i=1

t2i ≤ 1
}

= B(Ai1···ik(yk + tv1), η0rk). (2.7)

Since Ωk ⊂ Λk, we have

Ai1···ik(Ωk) ⊂ Ai1···ik(Λk) = B(x, rk), (2.8)

due to Lemma 2.3. On the other hand, Ωk ⊂ Rn\E and

Ai1···ik(Ωk) ∩ [Rn\Ai1···ik(E)] ⊂ B(x, rk) ∩ [Rn\Ai1···ik(E)] = ∅, (2.9)

due to Lemma 2.2 and rk = α(Bi1···ik)λ. Therefore,

Ai1···ik(Ωk) ∩ E ⊂ {Ai1···ik(Ωk) ∩ [Rn\Ai1···ik(E)]} ∪ {Ai1···ik(Ωk) ∩Ai1···ik(E)}
= Ai1···ik(Ωk) ∩Ai1···ik(E) ⊂ Ai1···ik(Ωk ∩ E) = ∅. (2.10)

And thus, by (2.7), (2.8) and (2.10), we have

B(Ai1···ik(yk + tv1), η0rk) ⊂ (Rn\E) ∩B(x, rk), (2.11)

which implies

lim inf
k→∞

p(x, rk, E)

rk
≥ η0.

This completes the proof of Theorem 1.1.

Proof of Theorem 1.2 We will prove that the self-affine set F =
#Γ
⋃

i=1

Ai(F ) is not porous.

Here k2 > k1 ≥ 5 and

[C0,k1−1 × C0,k2−1]\[C2,k1−3 × C2,k2−3] ⊂ Γ,

which implies the point
( 1

k1
,

1

k2

)

∈ F (2.12)

and the boundary ∂([0, 1]2) of [0, 1]2 is contained in the self-affine set F, where ∂([0, 1]2) =

([0, 1] × {0, 1})∪ ({0, 1} × [0, 1]). Furthermore, the boundary of any rectangle Ai1···it([0, 1]2) is

also contained in F, i.e.,

∂Ai1···it([0, 1]2) ⊂ F. (2.13)

For any t ≥ 1, let ρt = k−t2 and

It =
[ 1

k1
− ρt,

1

k1
+ ρt

]

×
[ 1

k2
− ρt,

1

k2
+ ρt

]

,

the square of side 2ρt centered at ( 1
k1
, 1
k2

).
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Figure 1

Suppose on the contrary that F is porous. Then at the point ( 1
k1
, 1
k2

) ∈ F, there exists a

constant ς > 0 such that for each t, there is a square of side ςρt which is contained in It\F.
Given t ≥ 1, let ψ(t) be a positive integer satisfying

k
−ψ(t)−1
1 < k−t2 ≤ k

−ψ(t)
1 . (2.14)

In fact, since k2 > k1 and ψ(t∗)
t

→ log k2
log k1

> 1 as t → ∞, there exists an integer t∗ such that

ςρt∗ = ςk−t
∗

2 > k
−ψ(t∗)
2 .

Let T ∗ = k
ψ(t∗)−t∗

2 − 1, and Θt∗ =
T∗

⋃

i=0

[0, k
−ψ(t∗)
1 ] × [i · k−ψ(t∗)

2 , (i + 1)k
−ψ(t∗)
2 ] which is a

collection of rectangles as in Figure 1. Let

π1(x, y) ≡ (x, y), π2(x, y) ≡ (−x, y), π3(x, y) ≡ (−x,−y), π4(x, y) ≡ (x,−y),

and Πi = ( 1
k1
, 1
k2

) + πiΘt∗ (i = 1, 2, 3, 4). Then as in Figure 1,

It∗ ⊂ Π1 ∪ Π2 ∪ Π3 ∪ Π4. (2.15)

Notice that each rectangle of width k
−ψ(t∗)
1 and height k

−ψ(t∗)
2 appearing in Πi (i = 1, 2, 3, 4)

can be written in form of Ai1···iψ(t∗)
([0, 1]2), and thus its boundary is contained in F.

Suppose that St∗ is an open square of side ςρt∗ such that St∗ ⊂ It∗\F. Since ςρt∗ > k
−ψ(t∗)
2 ,

where k
−ψ(t∗)
2 is the height of the small rectangle mentioned above, by (2.15), there exists such

a rectangle R with its boundary ∂R satisfying ∂R ∩ St∗ 6= ∅. Here ∂R ∩ St∗ ⊂ ∂R ⊂ F and

∂R ∩ St∗ ⊂ St∗ ⊂ R2\F. This is a contradiction.

3 An Example of C
1 IFS

In this section, we will obtain an invariant set H of C1 IFS in R such that H1(H) > 0. Thus

H is not porous, since the porous set in R has zero Lebesgue measure (see [8]).

Let an = 1
2 + 1

n+3 < 1 and δn+1 = an − an+1 = 1
(n+3)(n+4) for n ≥ 1. Then

lim
n→∞

an

an+1
= lim

n→∞

δn

δn+1
= 1. (3.1)

For two intervals J1, J2, we denote J1 < J2 if sup
x∈J1

x ≤ inf
y∈J2

y.
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Divide the unit interval [0, 1] into three intervals: [0, 1] = I1∪G∪I2, where Ir is closed with

length a1

2 for each r = 1, 2, G is open and I1 < G < I2.

By induction, for i1 · · · ik ∈ {1, 2}k, we can divide the closed interval Ii1···ik of length

|Ii1···ik | = ak
2k

into

Ii1···ik = Ii1···ik1 ∪Gi1···ik ∪ Ii1···ik2, (3.2)

where Ii1···ik1 < Gi1···ik < Ii1···ik2 with

|Ii1···ik1| = |Ii1···ik2| =
ak+1

2k+1
and |Gi1···ik | =

δk+1

2k
.

Let H =
⋂

k≥1

⋃

i1···ik

Ii1···ik . For Lebesgue measure H1, we have

H1(H) = lim
k→∞

∑

i1···ik

H1(Ii1···ik) = lim
k→∞

2k
ak

2k
=

1

2
> 0. (3.3)

That means H is not porous.

We will show that H is the invariant set of certain C1 IFS {g1, g2}. On H the functions g1,

g2 can be defined by

{gi0(x)} =
⋂

k≥1

Ii0i1···ik for {x} =
⋂

k≥1

Ii1···ik . (3.4)

For the definitions of {g1, g2} on the gaps, we need the following lemma.

Lemma 3.1 Given sequence i0i1 · · · ik (k ≥ 1), let Gi1···ik = (ci1···ik , di1···ik) and Gi0i1···ik =

(ci0i1···ik , di0i1···ik). Then there is a C1 increasing and contractive injection fi0i1···ik : Gi1···ik →
Gi0i1···ik defined on Gi1···ik such that

(1) fi0i1···ik(Gi1···ik) = Gi0i1···ik ,

(2) f ′
i0i1···ik

(ci1···ik) = f ′
i0i1···ik

(di1···ik) = 1
2 ,

(3) |f ′
i0i1···ik

(x) − 1
2 | ≤ 2

k+5 for any x ∈ Gi1···ik .

Proof Let

Φ(ζ) =



















0, if ζ ≤ 0 or ζ ≥ 1,

4ζ, if 0 ≤ ζ ≤ 1

2
,

4 − 4ζ, if
1

2
≤ ζ ≤ 1,

and ϕ(x) =
∫ x

−∞ Φ(ζ)dζ. Then ϕ ∈ C1(R,R) satisfies

ϕ(0) = ϕ′(0) = ϕ′(1) = 0, ϕ(1) = 1 and 0 ≤ ϕ′(y) ≤ 2 for y ∈ R.

For any x ∈ Gi1···ik , let

f(x) = ci0i1···ik +
x− ci1···ik

2
+
( δk+2

2δk+1
− 1

2

)δk+1

2k
· ϕ
(x− ci1···ik

δk+1

2k

)

.

Then f(ci1···ik) = ci0i1···ik , f
′(ci1···ik) = f ′(di1···ik) = 1

2 , where

di1···ik − ci1···ik
δk+1

2k

=
|Gi1···ik |
δk+1

2k

= 1. (3.5)
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Therefore

f(di1···ik) − f(ci1···ik) =
δk+1

2k
δk+2

2δk+1
ϕ(1) =

δk+2

2k+1
= |Gi0i1···ik |.

For each x ∈ Gi1···ik ,

f ′(x) =
1

2
+

1

2

(δk+2

δk+1
− 1
)

ϕ′
(x− ci1···ik

δk+1

2k

)

. (3.6)

As 0 ≤ ϕ′(y) ≤ 2 and
δk+2

δk+1
= k+3

k+5 , we have

∣

∣

∣
f ′(x) − 1

2

∣

∣

∣
≤ 2

k + 5
. (3.7)

Here 0 < 2
k+5 ≤ 2

5 <
1
2 for k ≥ 0. Then |f ′(x)| ∈

[

1
10 ,

9
10

]

⊂ (0, 1) for each x ∈ Gi1···ik , and thus

f is an increasing contraction satisfying f(Gi1i2···ik) = Gi0i1···ik .

Let fi0i1···ik = f and this lemma follows.

Remark 3.1 In the above lemma, we only need k ≥ 0. In particular, for k = 0, on G we

also get two C1 mappings f1 : G→ G1 and f2 : G→ G2 satisfying Lemma 3.1(1)–(3).

Then by (3.1), for any x ∈ H,

|g′1(x)| = |g′2(x)| = lim
k→∞

|Ii0i1···ik |
|Ii1···ik |

= lim
k→∞

ak+1

2k+1

ak
2k

=
1

2
. (3.8)

For any sequence i1 · · · ik with k ≥ 0, on the open interval Gi1···ik , let

gi0 |Gi1···ik
= fi0i1···ik : Gi1···ik → Gi0i1···ik

as in Lemma 3.1. Then it follows from Lemma 3.1 that g1, g2 are C1 injective contractions

with g1([0, 1]) ∩ g2([0, 1]) = I1 ∩ I2 = ∅, and H is their invariant set with H1(E) > 0.
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