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Porosity of Self-affine Sets**

Lifeng XI*

Abstract In this paper, it is proved that any self-affine set satisfying the strong separation
condition is uniformly porous. The author constructs a self-affine set which is not porous,
although the open set condition holds. Besides, the author also gives a C iterated function
system such that its invariant set is not porous.
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1 Introduction

Given a metric space X, denote by B(a,r) the open ball centered at ¢ € X with radius
r.Let M C X, x € X and R > 0. Set p(z, R, M) = sup{r > 0 | there exists z € X with
B(z,r) C B(z, R)\M} and

, R, M)

p(M,x) := liminf p@

im in (1.1)

Definition 1.1 A subset M (C X) is said to be porous if p(M,z) > 0 for any x € M.
Furthermore, M is said to be uniformly porous, if in]fup(M7 x) > 0.
xeM —

Remark 1.1 A porous set is always nowhere dense. In particular, any porous subset of
Euclidean space has zero Lebesgue measure. Notice that the porosity and uniform perfectness
(see [9, 11]) are invariants under the bi-Lipschitz mapping.

Porosity in R was used (under another form) already by A. Enjoy [2] in 1915. Probably the
theory of o-porous sets was started in 1967 by Solvendo [3] who applied o-porous sets in the
theory of boundary behavior of functions and who used for the first time the term porous set.
In the differentiation theory o-porous sets were used for the first time in 1978 (see [1]).

[7] proved that any C'*? (a > 0) self-conformal set satisfying the open set condition is
uniformly porous. As a result, the self-similar set satisfying the open set condition is uniformly
porous.

Remark 1.2 When the open set condition does not hold, the porosity of self-similar set

+ oo

maybe fails. Let fi(z) = £, fo(z) = ZE, f3(z) = ZE%, where u = ). 7ir. Suppose that
i=1

S, is the invariant set of {f;}3_;. Then dimpy S, = 1 and H'(S,) = 0 (see [11]). By Schief’s

Theorem (see [10]), S, does not satisfy the open set condition since H'(S,) = 0. Notice that
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S, is not porous, because dimgy S, = 1 and the Hausdorff dimension of a porous set in R is
strictly smaller than 1 (see [8]).

The motivation of this paper is to study the following questions:
(1) How is the porosity for self-affine sets?
(2) Can we get the uniform porosity for C' IFS?

The family {A;}!", of affine mappings from R™ to R™ is said to be non-degenerate and
contractive, if there is a norm || - || of R™ such that

dillz =yl <[|Ai(z) = Ai(y)|| < cillz -yl forall 2,y € R,

where 0 < d; <¢; <1lfori=1,---,m.

Given contractive non-degenerate affine mappings {4;}7,, let E = G A;(E) be the corre-
sponding self-affine set. We say E satisfies the strong separation conditiolnz,lif A (E)NA;(E)=10
for any i # j. We say FE satisfies the open set condition, if there is a non-empty open set U such
that q A(U) C U and A;(U) N A;(U) = 0 for any i # j.

3

Our main results can be stated as follows.

Theorem 1.1 Any self-affine set satisfying the strong separation condition is uniformly
porous.

The porosity of self-affine set maybe fail although the open set condition holds as in Theorem
1.2. Given integers a,b with a < b, let Cyp = {a,a+1,--- ,b—1,b}.

Theorem 1.2 Suppose that ki, ks € N with ke > k1 > 5, and I is a subset of Z x Z with
[Co,k1—-1) X Co,(ka=1)\[Co2, (k1 —3) X C2,(ko—3)] CT G [Co,(ky—1) X Co,(ko—1)] Let

L0 ai
k)l kl
A; (;) - <0 ,%) <§) + <2_> for any (a;,b;) € T.

#T
Then the self-affine set F'= |J A;(F) is not porous.
i=1

1=

For C' IFS, we can not get the porosity as in Theorem 1.3.
Theorem 1.3 There are C* injections g1, g2 : [0,1] — [0,1] in R with

2

91([07 1])092([0’1]) =0 and Ugi([07 1]) c [O’l]a
=1

such that the invariant set H = g1(H) U go(H) (C R) has positive Lebesgue measure and thus
H s not porous.

We organize the paper as follows. Section 2 is on the porosity of self-affine set. In Section
3, an invariant set of C! IFS is constructed to prove Theorem 1.3.

2 Self-affine Set

Proof of Theorem 1.1 Given a norm || - || of R™, let {A; : R™ — R"}; be contractive

non-degenerate affine mappings satisfying ||4;(z) — A:i(v)|| < cillz — y||, where ¢; € (0,1),
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i=1,---,m. Given i, let A;(x) = B;(x) + b;, where B; is linear and b; € R™. Write A4;,..;, =
oo
Aj o---0A; foranyiy---ip € J{1,---,m}', and B;,..;, = Bi, o---0 B;,. Then
=1

A711k (.23) = Bllﬂc (Z‘) + (bll + Bilbiz +eee B711k—1b7k)

Let | - | be the Euclidean metric on R™. Then there is a constant ¢ > 0 such that (y/c)~! |z| <
|lz|| < +/c|z| for all . That means for all z,y € R",

k
iy (@) = iy )] < o [T e, )2 = ol (2.1)
t=1

Let E = |J A;(E) be the self-affine set with A;(E)NA;(E) = ( for any i # j. Given subsets
i=1
C,D Cc R", let d(C,D) =inf{|lx —y|: 2 € C,y € D}. Let \ = rr;'éind(Ai(E),Aj(E))c’l > 0.
i#j

Lemma 2.1 There exists a constant no € (0, %] such that for any x € E and v € R™ with
lv| =1,
A
{t Dt < B and B(x + tv,no\) C ]R"\E} # .

Proof Since E is totally disconnected, the segment {z + tv : |t| < %} has non-empty
intersection with the open set R™\E. Let n(z,v) = sup{n € (0, 3] : there exists t € [-3, 3]
such that B(z + tv,n\) C R™\E} > 0. Because R"\E is open, the function n(z,v) is lower
continuous on the compact set £ x [—%, %] Therefore we let 1y = min R n(z,v). Then

(zw)EEX[-5,5]

no > 0.

For any linear mapping L : R™ — R", write

o(L) = inf [L(z)] and (L) = sup [L(z)]

|| |z|=1
Then we have the following lemma.

Lemma 2.2 Given a point © € E, there is an infinite sequence iy -+ iy -+ such that {x} =

N Ai,..i,, (E). Let 1, = a(Bi,...i, )A\. Then we have
k=1

Bz, r) N[E\NA;,...;, (E)] =0 and klim rp =0, ir]if Tett > min o(B;).
C— 00 Tk 7
Proof We conclude that for any ¢ with ¢ < k,
a(Bi1---it71) Z Ca(Bi1~~ik)~ (22)

In fact, it follows from (2.1) that {B;}; are linear mappings with | B;,...;, ()| < c(cs, -+ - ¢, )|x] <
clxl, ie., |B;1lk (y)| > ¢ Yyl for all y € R™. Take zg € R™ such that |zg| = 1 and | B;,...;, , (w0)]

=a(Ay..q,_,). Let yo = B L. (x0), where |yo| > ¢ x| = ¢! Then

Lg i

Yo )} _ Biyii s (w0)]

— <c_1a B; by 1)
ol ol (Bitis)

a(Ajy i) < Bv:r--z'f,_le'f,---z'k(

On the other hand, for any sequence ¢ - - - 4,1 and iy # jg,

d(Aiyeiy  Ai(B), Aiy iy A, (E)) > a(Biy i, y) Ygg? d(A;(E), 4;(E)). (2.3)
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Therefore, using (2.2), we have

d(Alllk(E)7E\Al1lk(E))2 mina(Bir“ith rznlnd(Al(E)?AJ(E))

t<k #i
> [ ta(Bi; )] n;ind(Ai(E),Aj(E))
i#]
> (B .ip,) = Tk
That means
B(z,r) N [E\A;, .., (E)] = 0. (2.4)
k
It follows from (2.1) that «(B;,...;,) < c( 11 cit), which implies klim rr, = 0. We also have
t=1 i—00
a(Bil"'ik+1) = |;I|1:fl |Bi1"'ik~Bik+1 ($)|
B; . .x
> f‘Bll( tetl )‘ inf |B;
2 |t |Biv-i\ 1, 7] @&J w1l
> a(Bi1~~~ik)a(Bik+1)v

which implies T’;—:“l > min a(B;).
¢ K3

By Lemma 2.2, we need only to prove that for any x € E,
E
lim inf p@,re, B)

2 o
k—oo Tk

Suppose E C B(0, Ry). Let y = Ai_l_l__ik (x) € E. There are two orthogonal bases {u1, -+ ,up},

{v1,+,vn} C R™ with |u;| = |v;| =1 for all 4, such that
Bi_l.l..ik (u;) = d;v;, (2.5)
where
dy = Oéil(Bil...ik) >dy > >d, = ﬁil(Bil..,ik). (26)

It follows from Lemma 2.1 that there exists a constant 79 € (0, %] such that an open ball

A
B(yk +t'U17770/\) C Rn\E with |t| < 5

Lemma 2.3 Let Q) = {(yk + tvr) + (remo) D tidivg = Y2 < 1} and A = {yk +
i=1 i=1

n n
T Y tidivg 1 Y t? < 1}. Then we have the following conclusions:
i=1 i=1

(1) Q) C R™\E:
(2) A = AL, (B(z,mh));

(3) Qp C Ayg.
Proof To prove (1), we need only to verify Qr C B(yx + tvi,no)), and this follows from

renod; < (redi)no = oA immediately. By (2.5) and (2.6), we get (2).
To verify (3), we notice that

n t n
(yx + tvr) + (rno) th‘dﬂ/v; =Yk + Tk {X + 770751} divi + 71 Z[Tloti]dﬂ/ia

i=1 =2
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where‘k|<2,n07—and [t1] < 1, and thus
= t t = , 1 N2
{ +770t1} +§_;770t (—) +2’ﬂ'|ﬂot1|+;[ﬁoti] §1+2(§) +m5 =1,

which implies Qi C Ay.

Notice

{ i1 yk—f—tvl (rkno)Ztiui : thz < ].}
=1 =1
B

(Aiy iy (Yr +tv1), o7 )- (2.7)

Since Q. C A, we have
Aiy i (Q) C Ay (i) = Bz, mx), (2.8)

due to Lemma 2.3. On the other hand, Q; C R™\E and
Ay iy (Qk) n [Rn\Ahlk (E)] C B(:E, rk) n [Rn\Ahlk (E)] =0, (29)
due to Lemma 2.2 and ry, = «(Bj;...i, )\. Therefore,

Alllk (Qk) NEC {Ail'“ik (Qk) n [Rn\Air“ik (E)]} U {Alllk (Qk) n Air”ik (E)}
= Aiy--ik (Qk) n Ai1~~ik (E) C Ai1---ik (Qk N E) = (. (210)

And thus, by (2.7), (2.8) and (2.10), we have
B(Aulk (yk + tvl)v 770776) - (Rn\E) n B({E, 7’]@), (211)

which implies
E
lim inf pi(x,rk, ) > no-
k— o0 Tk

This completes the proof of Theorem 1.1.

#T
Proof of Theorem 1.2 We will prove that the self-affine set ' = |J A;(F) is not porous.

Here ky > k1 > 5 and =
[Co,k1—1 % Co,ky—1]\[C2,k,—3 X Cok,—3] C T,
which implies the point
(kll ]:2) eF (2.12)

and the boundary 9(]0,1]?) of [0,1]? is contained in the self-affine set F, where 9(]0,1]?) =
([0,1] x {0,1}) U ({0,1} x [0,1]). Furthermore, the boundary of any rectangle A;,...;, ([0, 1]?) is
also contained in F) i.e.,
DA, ([0,1]?) C F. (2.13)
For any t > 1, let p; = kz_t and
1 1 1 1
I = | — — — — —
‘ [kl "k +or] x [kg s +i]

the square of side 2p; centered at (k—l17 é)
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Tk

a | o G .2
5/ o | e
171 2

(kk)  k=5,k=7 —
['=[CosX Cos\[{2} X {2,3,4}] I

Figure 1

Suppose on the contrary that F is porous. Then at the point (k—l17 é) € F, there exists a

constant ¢ > 0 such that for each ¢, there is a square of side ¢p; which is contained in I;\ F.
Given t > 1, let 1(¢) be a positive integer satisfying

ey YO <yt < kv, (2.14)

In fact, since ko > k1 and @ — logky 1 as ¢ — o0, there exists an integer t* such that

log k1
—t* —(t*
Spie =cky " >k, ven,

N T* . * *
Let 7% = kY77 — 1 and ©p = [0, k7" x [i - k5 Y7, (i + 1)ky ¥ 7] which is a
i=0
collection of rectangles as in Figure 1. Let

(2, y) = (2,y), m(z,y) =(—zy), m(y) =(-2,—y), mzy) = (z,-y),
and II; = (k—l17 %) +mOp (1 =1,2,3,4). Then as in Figure 1,
I C 11, UTL, U Il UTly,. (215)

Notice that each rectangle of width kl_w(t*) and height k;w(t*) appearing in II; (i = 1,2,3,4)
can be written in form of A;, .., ., ([0, 1]?), and thus its boundary is contained in F.
Suppose that Sy« is an open square of side ¢ps+ such that Sp= C I+ \ F. Since gpp > k;w(t*),
where ks Y s the height of the small rectangle mentioned above, by (2.15), there exists such
a rectangle R with its boundary OR satisfying OR N Sy« # (). Here OR N Sy~ € OR C F and

ORN Sy C Sy« C R?\F. This is a contradiction.

3 An Example of C! IFS

In this section, we will obtain an invariant set H of C! IFS in R such that H!(H) > 0. Thus
H is not porous, since the porous set in R has zero Lebesgue measure (see [8]).

Letan:%—kﬁ_g<1and5n+1=an—an+1=mfornZl. Then
n 6n
lim —2 = lim = 1. (3.1)
n—=00 Un41 n—oo 571,—}-1

For two intervals Jy, Jo, we denote J; < Jo if sup = < inf .
zeJy ye€J2
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Divide the unit interval [0, 1] into three intervals: [0,1] = I; UGUI,, where I, is closed with
length 4 for each r» = 1,2, G'is open and I} < G < .
By induction, for 4y ---ix € {1,2}*, we can divide the closed interval I;,..;, of length
|I“lk| = g’—i into
Liy iy = Liy it U Gy, U Ly g2, (3.2)

where Iil“'ikl < G“?k < Ii1~~~ik2 with

Akt 1 Ok+1
|I¢1...ik_1| = |I“7k2| = 2k+1 and |G“7k| = ?
Let H= () U ... For Lebesgue measure H', we have
E>1 i1--ei
1
H'(H) = lim 3" H (L) = lim 2’“% =35>0, (3.3)
i1l

That means H is not porous.
We will show that H is the invariant set of certain C! IFS {g1,g2}. On H the functions g1,
g2 can be defined by

{gio(x)} = ﬂ Ligiy iy for {{E} = ﬂ L i, - (34)

E>1 E>1

For the definitions of {g1, g2} on the gaps, we need the following lemma.

Lemma 3.1 Given sequence igiy - - i (k > 1), let Giy.ip, = (Ciyviys dig i) and Gy, =

(Cigiy-ins digiy--i ). Then there is a C1 increasing and contractive injection figi,...i,, : Giy.oip —
Gigiy i defined on G, ...i,, such that
(1) fioir”ik (Glllk) = Gioil'--ikf
(2) iloilwik (Cil"'ikg = iIDQiy»»ik (dil'”ik) = %7
(3) | fiiyoin (@) = 3| < 55 for any x € Giy.iy.
Proof Let
0, if (<0or¢>1,
1
_J4 ifo<¢< =
D(¢) = ¢ 46 127672,
and p(z) = [ ®(¢)d¢. Then ¢ € C'(R,R) satisfies
p(0) =¢'(0)=¢'(1) =0, »(1)=1 and 0<¢'(y) <2 foryeR.
For any = € G}, ...i),, let
T~ Ciyi Okt 1\ Oks1 T — Ciyei
T) = Cigiy--ip + : k—!—( ——) . ( ! k)
f( ) 0%1 "1k 2 25k+1 2/) 9k (52__’:1
Then f(cuzk) = Cigiy i f’(Cil...ik) = f/(d“%) = %, where
d711k Ciy iy, |G71 7k|
Fr = Toa =1 (3.5)
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Therefore
Ok+1 Ok42 Ok+2
f(dlllk) - f(cnlk) = ok 25k+1 90(1) = ok +1 = |G10117k|
For each x € Gy, ...i,,,
1 1 5k+2 T — Cjy...4
IfE :—+—( —].) I<_ . k) 3.6
As 0 < ¢'(y) <2 and g:—:’j = Z—jr'g, we have
) 1 2
— < /. 3.7
‘f @ -31< %33 3.1
Here 0 < ki_% <2< lfork>0.Then |f'(z)| € [&, 5] € (0,1) for cach & € Gj,...i, , and thus

f is an increasing contraction satisfying f(Giis-ip) = Gigiq-ip-
Let fiyi,.-i, = f and this lemma follows.

Remark 3.1 In the above lemma, we only need k > 0. In particular, for £k = 0, on G we
also get two C'!' mappings f1 : G — G and fy : G — G satisfying Lemma 3.1(1)—(3).

Then by (3.1), for any = € H,

64(@)] = lgbe)| = tim il g 1 (3.8)
k—o0 |I711k| k—o0 g_llz 2

For any sequence i - - - iy, with k£ > 0, on the open interval Gy, ...;, , let
Gio|Giy iy, = figiv-i # Giyeviy = Gigiyoviy

as in Lemma 3.1. Then it follows from Lemma 3.1 that g;, g2 are C! injective contractions
with ¢1([0,1]) N g2([0,1]) = I N I = 0, and H is their invariant set with H!(E) > 0.

Acknowledgement The author thanks Dr. Haiyi Jiang for his helpful comments.

References

[1] Belna, C. L., Evans, M. J. and Humke, P. D., Symmetric and ordinary differentiation, Proc. Amer. Math.
Soc., 72, 1978, 261-267.

[2] Denjoy, A., Sur les fonctions dérivées sommables, Bull. de la S. M. F., 43, 1915, 161-248.

[3] Dolzhenko, E. P., Boundary properties of arbitrary functions, Izv. Akad. Nauk SSSR Ser. Mat., 31, 1967,
3-14.

[4] Falconer, K. J., Fractal Geometry, Mathematical Foundations and Applications, John Wiley & Sons, Ltd.,
Chichester, 1990.

[5] Falconer, K. J., Techniques in Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1997.
[6] Hutchinson, J. E., Fractals and self-similarity, Indiana Univ. Math. J., 30, 1981, 714-747.

[7] Jarvenpad, E., Jarvenpad, M. and Mauldin, R. D., Deterministic and random aspects of porosities, Disc.
Cont. Dyn. Syst., 8, 2002, 121-136.

[8] Koskela, P. and Rohde, S., Hausdorff dimension and mean porosity, Ann. of Math., 309, 1997, 593-609.

[9] Ruan, H. J., Sun, Y. S. and Yin, Y. C., Uniform perfectness of the attractor of bi-Lipschitz IFS, Sci. in
China Ser. A, 49(4), 2006, 433-438.

[10] Schief, A., Separation properties for self-similar sets, Proc. Amer. Math. Soc., 122, 1994, 111-115.

[11] Yin, Y. C., Jiang, H. Y. and Sun, Y. S., Geometry and dimension of self-similar set, Chin. Ann. Math.,
24B(1), 2003, 57-64.



