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The Change-Base Issue for (2-Categories™*
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Abstract Let G : Q — Q' be a closed unital map between commutative, unital quantales.
G induces a functor G from the category of Q-categories to that of Q/-categories. This
paper is concerned with some basic properties of G. The main results are: (1) when Q, Q'
are integral, G : Q — Q' and F : ' — Q are closed unital maps, F is a left adjoint of G if
and only if F is a left adjoint of G; (2) G is an equivalence of categories if and only if G is
an isomorphism in the category of commutative unital quantales and closed unital maps;
and (3) a sufficient condition is obtained for G to preserve completeness in the sense that
G A is a complete Q'-category whenever A is a complete -category.
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1 Introduction

Let (,*,1) (or € for short) be a commutative, unital quantale (cf. Definition 2.1). From
the point of view of category theory, (£2,*,I) is exactly a symmetric, monoidal closed category
with the underlying category being a complete lattice. Thus, one can establish a theory of
Q-categories (that is, categories enriched over Q). If G : (Q,*,I) — (', +', I') is a closed unital

map between commutative, unital quantales (cf. Definition 3.1) and A is an -category, then
(GA)(a,b) = G(A(a,b))

defines an -category GA. This correspondence defines a functor G : Q-Cat — '-Cat from
the category of Q-categories to that of -categories (cf. [4, 9]). This functor plays a role of
change-base in the theory of Q-categories. Therefore, the study of the functor G is important
for Q-categories. In this paper, we are concerned with some basic questions about G:

(1) When does G have a left adjoint which is also of this form?

(2) When is G an equivalence of categories?

(3) When does G preserve completeness?

For the first question, a necessary and sufficient condition is obtained in the case that both
and € are integral quantales. For the second, it is shown that G is an equivalence of categories

if and only if G is an isomorphism in the category of commutative, unital quantales and closed
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unital maps. For the third, it is shown that if G has a left adjoint which preserves tensors then
G preserves completeness.

At the end of this introduction, we recall some basic notions of concrete categories from [1],
which shall be needed in the sequel.

By a concrete category over the category Set of sets is meant a pair (A, U), where A is
a category and U : A — Set is a faithful functor. U is called the underlying functor or the
forgetful functor. For each object A in A, U(A) (also written as |A|) is called the underlying
set of A; and for each morphism f : A — B in A, U(f) is called the underlying function of
f. In this paper, by a concrete category we always mean a concrete category over Set. A
concrete category (A,U) is often abbreviated to A if the functor U is obvious. A concrete

functor F': (A,U) — (B, V) is a functor F': A — B such that Vo FF =U.
2 Basic Ideas of 2-Categories

Definition 2.1 (cf. [12]) A (commutative) unital quantale is a triple (Q,*,I), where Q
is a complete lattice, I is a fized element of Q, and * is a (commutative) associative binary
operation on Q such that a * (Vb;) = V(a *b;), (Vb;)*xa=V(bjxa) and [ xa=a=axI for
all a,b; € Q.

For a unital quantale (£2,*,I), the binary operation x is called the tensor on Q. (€, x,1) is
often abbreviated to € if there would be no confusion with respect to the unit and the tensor.
A unital quantale  is integral (cf. [6]) if the unit element coincides with the top element in €.

We are mainly concerned with commutative, unital quantales in this article. Given a com-
mutative, unital quantale (Q,x,1),let a — b= V{c € Q,a*c < b} for all a,b € Q. Then * and
— are interlocked with each other by the adjoint property: ¢ < a — b < a*c¢ < b. The binary
operation — shall be called the cotensor of € (with respect to ).

Given a commutative, unital quantale (§2, %, I'), an Q-category (cf. [7, 9]) is a set A together
with an assignment of an element A(a,b) € Q to every ordered pair (a,b) € A X A, such that

(1) I < A(a,a) for every a € A;

(2) A(a,b) x A(b,c) < A(a,c) for all a,b, c € A.

An Q-functor (or simply a functor) between Q2-categories A and B is a function f: A — B
such that A(a,b) < B(f(a), f(b)) for all a,b € A. An Q-functor f is called an Q-isometry
if A(a,b) = B(f(a), f(b)) for all a,b € A. A bijective Q-isometry f is an (Q-)isomorphism.
Q-functors are composed by composing the underlying functions on sets. $2-categories and
Q-functors form a concrete category, which is denoted by Q-Cat.

Given an Q-category A and z,y € A, set © < y if I < A(x,y). Then Ay £ (A, <) is
a preordered set, called the underlying preordered set of A. An -category A is said to be
antisymmetric if Ag is a partially ordered set, that is, if A(z,y) > I and A(y,x) > I then
x = y. Some examples of commutative, unital quantales and corresponding (2-categories are

given below.

Example 2.1 (1) Let {0,1} be the two-point lattice ordered by 0 < 1. Then 2 =
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({0,1},A,1) is a commutative, unital quantale. The category of 2-categories is exactly the

category PrOrd of preordered sets and order-preserving functions.

(2) (The Canonical Q-Category Structure on Q) Let Q(a, 3) = o — (. Then it is easy to
check that Q becomes an antisymmetric 2-category. We shall write (£2, —) (or € for short) for
this Q-category.

(3) Let 2 = [0, 0]°P denote the extended interval of all non-negative real numbers with the
opposite ordering as real numbers (so 0 is the greatest element). Let + be the usual addition
on real numbers extended to cope with infinity such as z 4+ co = oo for every z € [0, 00]. Then
Q = ([0,0]°P, +,0) is a commutative, unital quantale. The category of Q-categories is just the
category GMet of generalized metric spaces (or pseudo-quasi-metric spaces) and non-expansive
functions (cf. [2, 9]).

(4) (Discrete 2-Categories) Let X be a set. For all z,y € X, let X(z,y) = I, the unit
element in Q, if © = y; otherwise, let X (x,y) = 0, the least element in Q. Then X becomes an
Q-category. Such an Q-category will be called a discrete 2-category since every function from

such an Q-category to any other Q-category is always an Q-functor.

Definition 2.2 (cf. [7, 16]) Let K and A be Q-categories.
(1) An element a € A is called a limit of an Q-functor [ : K — A weighted by ¢ : K — Q
if for each y € A,
Aly,a) = N\ v(@) — Ay, f(2)).

zeK
(2) An element b € A is called a colimit of an Q-functor f : K — A weighted by ¢ : K°P — Q
if for each y € A,
Ab,y) = N o(z) = A(f(2),y).

reEK
Weighted limits, when they exist, are unique up to isomorphism. Thus, we write b = lim,; f
if b is a limit of f weighted by 1; similarly, we write b = colimgy f if b is a colimit of f weighted
by ¢.

Example 2.2 If A is an Q-category, let |A] be the discrete Q-category with the same
underlying set of A. If a is a limit of id : |A| — A weighted by p : |[A| — €, then for all y € A,

A(y,a) = N p(z) — Ay, ).
T€EA
This equality can be interpreted as that y is smaller than or equal to a if and only if y is smaller
than or equal to  whenever x is in . Therefore, a is called an infimum (or a greatest lower
bound) of u, denoted by inf p.
Similarly, if a is a colimit of id : |A| — A weighted by p : |A| — €, then for all y € A,

Ab,y) = N\ ) — Alz,y).

T€A

b is called a supremum (or a least upper bound) of u, denoted by sup p.
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Definition 2.3 (cf. [3, 7]) An Q-category A is said to be complete if for any Q-functor
f: K — Aand any ¢ : K — Q, the weighted limit limy, f exists. A is said to be cocomplete if
for any Q-functor f : K — A and any ¢ : K°? — Q, the weighted colimit colimg f exists.

Proposition 2.1 (cf. [10, 14]) Suppose that A is an Q-category. Then the following
conditions are equivalent:

(1) A is complete.

(2) Every p € Q4 has an infimum.
(3) Every pn € Q4 has a supremum.
(4)

4) A is cocomplete.

Definition 2.4 An Q-functor f : A — B is said to preserve weighted limits if for all
Q-functor g : C — A and ¢ : C — Q such that the weighted limit limy g exists, the weighted
limit of fog:C — B weighted by ¥ exists and limy(fg) = f(limy g). Dually, one can define
weighted-colimits-preserving Q-functors. An Q-functor f is said to be complete if f preserves

both weighted limits and weighted colimits.

A complete Q-lattice is an antisymmetric, complete Q2-category. All complete Q-lattices and

complete maps form a category, denoted (2-CLat.

Example 2.3 (cf. [3,10]) (92, —) is a complete Q-lattice, since for any Q-functor f: K —
Q and any 1 : K — () the weighted limit exists and

limy f = /\ (¥(2) = ().
reK
Definition 2.5 (cf. [3, 7, 15]) Let A be an Q-category. Then
(1) A is said to be tensored if for all « € Q,x € A, there is an element a @ x € A such that

Ala®@z,y) = a— Az,y)

for any y € A. In this case a ® x is called the tensor of a with x.
(2) A is said to be cotensored if for all o € Q,x € A, there is an element o — x € A such
that
Aly,a — x) = a — Ay, x)

for any y € A. In this case a — x is called the cotensor of o with x.

For any a € Q,z € A, define a function o, : |A| = Q by a,(z) = aif z =z and a,(z) =0
if z # x. Then a ® x and o — z are exactly the supremum and infimum of «, respectively (cf.
[17]). Thus, every complete Q-category is both tensored and cotensored (cf. [15]).

It is easy to see that if an Q-category A is tensored then Ay has a bottom element L.

Similarly, if A is cotensored then Aj has a top element T.

Proposition 2.2 (cf. [15]) Suppose that A is an antisymmetric Q-category.
(1) If A is tensored, then the tensor ® : Q x Ay — Ag satisfies:
(i) Ovzx=1, Izx==x.
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(ii) Ala®@z,y)=a— A(x,y). Hence, a @z <y in Ay & a < A(z,y).

(iii) (axf)@r=a® (B®x).

(2) If A is both tensored and cotensored, then for any o € Q, a ® (=) : Ag — Ao s a left
adjoint of o — (=) : Ag — Ayp.

(3) If A is both tensored and cotensored, then for any x € A, (=) @z : Q — Ap is a left
adjoint of A(x,—): Ag — Q.

Theorem 2.1 (cf. [15]) Let A be a both tensored and cotensored Q-category. Then A is a

complete Q-category if and only if Ag is a complete preorder.

Theorem 2.2 (cf. [15]) Let f : A — B be an Q-functor between complete Q2-categories.
Then the following conditions are equivalent:

(1) f is complete.

(2) f: Ay — By preserves meets and joins; and [ preserves tensors and cotensors in the
sense that fla®@z) =a® f(x), fla—z)=a— f(x) foralz e A, a €.

A combination of Proposition 2.2 and Theorem 2.1 shows that a complete (2-lattice is essen-
tially an ©Q-module in the category of complete lattices and suprema-preserving functions (cf.
[15]). The details are as follows.

Suppose that A is a complete Q-lattice. Then Ay is a complete lattice. The set [Ag, Ag] of
join-preserving endo-maps on Ay is a complete lattice under the pointwise ordering. Clearly,
([Ag, Ao], 0,1id) becomes a unital quantale, which is not commutative in general. By Proposition
2.2, the function k : Q — [Ao, Ao], k(a) = a ® (—), satisfies: (a) k preserves joins; (b)
k(I) =id; and (c) k(a*3) = k(o) ok(B). Conversely, given a complete lattice Ag and a function
k:Q — [Ag, Ap] fulfilling the conditions (a)—(c), define A(z,y) = V{a € Q | k(«a)(x) < y} for
all z,y € Ag. Then A becomes an Q-category with Ay as underlying preorder. Moreover, A
is tensored and cotensored, with tensor and cotensor given by o ® = k(«)(z) and o — = =
V{y € Ao | k(a)(y) < x}. Therefore A is a complete Q-lattice.

3 The Change-Base Issue

Definition 3.1 (cf. [12]) A closed unital map G : (Q,x,1) — (', ', I') is a function
G :Q — Q such that

(1) G preserves order;

(2) I'<G(I);

(3) G(a)*" G(b) < G(axDb) for all a,b € Q.

In terminology of category theory, a closed unital map between commutative unital quantales

is a closed functor if we regard commutative unital quantales as symmetric, monoidal closed
categories (cf. [4, 7, 9]).

Remark 3.1 In the presence of (1), (3) in the above definition is equivalent to
(3") G(a — b) < G(a) =" G(b) for all a,b € Q.
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On one hand, if (3’) holds, then G(b) < G(a — a *b) < G(a) —' G(a *b), hence
G(a) *" G(b) < G(a*Db).
On the other hand, if (3) holds, then G(a) *" G(a — b) < G(a * (a — b)) < G(b), thus
G(a —b) < G(a) =" G(b).
Let G : (Q,%,I) — (2%, I') be a closed unital map and A be an Q-category. Then
(GA)(a,b) = G(A(a, b))

defines an (Y'-category G A with the same underlying set of A. Moreover, if f : X — Y is an
Q-functor, then f : GX — GY is also an {¥'-functor, denoted by G f. Therefore, we obtain a
functor G : Q-Cat — /-Cat, which plays a role of change-base in the theory of Q-categories.

Example 3.1 (1) For each commutative, unital quantale (Q,x,I). Let [—] : @ — 2 be
given by
)L x> 1
l2] = 0, z=#I.

Then [—] is a closed unital map. For each Q-category A, [A] is exactly the underlying preordered
set Ag of A. Therefore, we write (—)o to denote the functor [—] : Q-Cat — PrOrd.

(2) If e : 2— Q is the function given by e(0) = 0,e(1) = I. Then e is a closed unital map
and the functor € : PrOrd — Q-Cat is clearly an embedding. € is a left adjoint of (=)o (cf.

Example 3.2).

Theorem 3.1 Let 2,8 be integral, commutative, unital quantales. If both G : Q — Q' and
F:Q — Q are closed unital maps, then the following conditions are equivalent:

(1) (F,G) is an adjunction.

(2) (F,G) is an adjunction.

Proof (1) = (2) Let A be an Q-category and B an '-category. Then f : B — GA is an
O-functor < B(x,y) < G(A(f(z), f(y))) for all z,y € B < F(B(z,y)) < A(f(x), f(y)) for all
r,y € B f:FB— Ais an Q-functor. Therefore (I, G) is an adjunction, and it is indeed a
Galois correspondence following the terminology of [1].

(2) = (1) First, let 77 : id — G o F be the unit of the adjunction (F,G). Then for each /-
category B, the underlying function of fj5 : B — G o F(B) must be the identity function on B.
Suppose on the contrary that there is an {'-category B such that 7z (z) = y for some different
elements x,y € B. Let f: B — B be a constant map with value z. Then f is easily checked
to be an /-functor since € is integral. Because G o F(f)(Mg(x)) = x and (g o f)(z) = v,

B2 GoF(B)

the diagram fl \Léof( 5) does not commute, a contradiction to that 7 is a natural

B2 G oF(B)
transformation.
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Similarly, if € denotes the co-unit of the adjunction (F,G), then for each Q-category A, the
underlying function of £4 : F' o G(A) — A is the identity function on A.
Now, we show that (F,G) is an adjunction. Since the underlying functions of 7,,2q are

both identities, for any o € Q and o’ € €/, we have

o =)< Go FQ(I',d) = GF(d),
FG(a) = FoGQI,a) < Q(I,a) = a.

Therefore, (F,G) is an adjunction.

Example 3.2 For each commutative, unital quantale €2, let [—] and e be defined as in
Example 3.1. Then (e,[—]) is an adjunction in the category of quantales and closed unital

maps. Hence (€, (—)o) is an adjunction.

Theorem 3.2 If G:Q — Q' is a closed unital map, then the following (1), (2) and (3)
are equivalent:

(1) G : Q-Cat — '-Cat is an equivalence of categories,

(2) G is an order isomorphism and preserves tensor,

(3) G : Q-Cat — Q'-Cat is an isomorphism of categories.

Proof (1) = (2) (i) G is surjective. Since G is an equivalence of categories, there is an
Q-category A such that (€, —') = GA. Let f: Q' — GA be an '-isomorphism. Then for any
e, =2 =GA(f(I'), f(2')) = G(A(f(I'), f(z"))). Hence, G is surjective.

(ii) G reflects order in the sense that if G(o) < G(f) then o < . In particular, G is
injective.

First, we note that f: A — B is an Q-functor if and only if f: GA — GB is an {'-functor
since G is a full and faithful concrete functor.

Suppose on the contrary that G(a) < G(3) but o £ 3. Define two Q-categories A and B as
follows. The underlying set of A is {z,y} and that of B is {z, w}; the hom-functors are given
by

Alz,y) =, Alw,x) = Aly,y) =1, Ay,z) =0

and
B(z,w) =6, B(s2) = B(w,w) =1, B(w,z)=0.
Let f be the function given by f(z) = z, f(y) = w. Then f : GA — GB is an Q/-functor, but
f:A— Bisnot an Q-functor, a contradiction.
(iii) It follows from (i) and (ii) that G is an order isomorphism.

(iv) G preserves tensor. Suppose on the contrary that there exist a, 3 € €, such that
G(ax ) > G(«a) «' G(B). Define an {Y'-category B as follows: the underlying set is {2’,y’, '},

and the hom-functor is given by

B(a',y') = G(a), B(Y,7)=G(B), B 2)=G(a)+ G(B)
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and
B(y',2') = B(Z,y') = B(z',2') =0, B(2',2') =B/ ,y')=B(,2)=1T.

Since G is an equivalence, there is an Q-category A, such that GA = B. Let f : GA — B
be such an Y'-isomorphism. By definition of G, the underlying set of A has exactly 3 elements,

say, {x,y,z}. Suppose that f(z) =2/, f(y) =¥/, and f(z) = z’. Because G is injective and

G(A(z,y)) = GA(z,y) = B(f(z), f(y)) = B(a',y') = G(a),
we get A(z,y) = a. Similarly, it can be checked that A(y,z) = 8. Thus,

G(a) ' G(B) < GlaxpB) = G(A(z,y) * Ay, 2))
< G(A(z,2)) = B2, 2)
= G(a) ¥ G(B),

a contradiction. Hence, G preserves tensor.

(2) = (3) Since G is an order isomorphism, there is a functor F' : ' — €, such that
GF =1q/, FG = 1q.

We check that F' preserves tensor and unit, which is thus a closed unital map. Since G
preserves tensor, for any o/, 3 € Q', o/ ¥’ 3/ = GF(a/) ¥ GF(f') = G(F (/) « F(f')). Then
F(o'+'p") = F(a')*F (), i.e., F preserves tensor. F preserves unit because F(I') = F(I')xI =
F(I"«FG(I)=F(I'¥ G(I))=FGI)=1.

Thus, both I and G are isomorphisms, inverse to each other, in the category of commutative,
unital quantales and unital closed maps. By definition of F' and G, it is easy to see that they

are inverse to each other. Therefore, G is an isomorphism of categories.
(3) = (1) Trivial.

Example 3.3 Let Q = (]0,00]°P, +,0), @ = ([0,1], -,1). Then, G: Q — Q' ,G(x) = e
is an order isomorphism and preserves tensor. Hence, G : Q-Cat — €'-Cat is an isomorphism

of categories.

4 Preservation of Completeness

In this section a sufficient condition is obtained for G to preserve completeness in the sense

that GA is a complete {'-category whenever A is a complete Q-category.

Theorem 4.1 Suppose that G : (,*,1) — (', «',I') is a closed unital map with a left
adjoint F : Q' — Q which preserves tensor in the sense that F(o/)x F(8') = F(a' ' 3) for any
o, B3 €. Then for any complete Q-category A, G(A) is a complete Q' -category.

We prove a lemma first.

Lemma 4.1 Suppose that G : (Q,*,I) — (', «',I') is a closed unital map with a left

adjoint F : Q' — Q. Then the following conditions are equivalent:



The Change-Base Issue for Q-Categories 349
(1) Forany o' ,B €Y, F(o/) = F(3') = F(a/ " ).
(2) Foranyod €Y, aeQ, G(F(d)— a)=d —' Gla).
Proof (1) = (2) (F,G) is an adjunction. For any o € Q, o/, 3/ € ',
B <d =" Gla)e 3+ d <G(a)
S Fp+d)<a
S FB)*xFld)<a
& F(3) <F(d) —a
& [ <GF(d) — a).
Thus, o —' G(a) = G(F(d/) — «).
(2) = (1) For any v € Q,
Flo'+ f') <y &+ 5 <G(y)
ed <f = Gly)=GFE) =)
& F(a) <F(f)—~
& F(a)«F() <v
Thus, F(a/) x F(8') = F(a' " 3).
Now we prove Theorem 4.1.
Proof Suppose that A is a complete Q-category. We show that GA is also a complete

Q/-category. To this end, we check that every y/ € 4 has an infimum in GA.
Let a € A be an infimum of F o/ € Q4 in A. Then, for any y € GA,

GA(y,a) = G(A(y,a))

I
>
Q
=
t\
&

!

b
=
2

Therefore, a is an infimum of 4/ in GA.

Example 4.1 (cf. [4, 7]) For each commutative, unital quantale €2, the closed unital map
[—] : @ — 2 satisfies the conditions in Theorem 4.1. Thus, Ay is a complete preorder if A is a

complete Q-category.

Given a closed unital map G : Q — Q' with the conditions in Theorem 4.1, the left adjoint
F of G is not always a closed unital map. And for an Q-category A, the underlying preorders
of A and GA might be different.
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Example 4.2 Let Q = ({0,3,1},A,1) and G : © — 2 be given by G(0) = 0, G(3) =
G(1) = 1. Then G is a closed unital map. The function F' : 2 —  given by F(0) =0, F(1) = 4
is a left adjoint of G. Obviously, F' preserves tensor. Hence, G satisfies the condition in
Theorem 4.1. But F' is not a closed unital map because F(1) < 1. Let A = (©,—). Then

GA(1,3) = G(A(1,3)) = G(3) = 1. Thus, 1 < 1 in (GA)o, which is not the case in Ay.

If the left adjoint F' in Theorem 4.1 is already a closed unital map, G can be described in

another equivalent way.

Definition 4.1 (cf. [11]) Let F: Q — Q' be a closed unital map. Then
(1) F s strict if F(I) =1" and F(ax* 3) = F(a) ' F(B) for all o, 3 € Q.

(2) F is cocontinuous if F' is join-preserving.

It is easy to check that the right adjoint of every strict, cocontinuous closed map is also a
closed unital map. Conversely, if F': Q — Q' is at the same time a closed unital map and a left
adjoint of a closed unital map G : Q" — Q, then F is strict and cocontinuous.

Suppose that F' : Q' — € is a strict, cocontinuous, closed unital map and that A is a
complete Q-category. Let k : Q — [Ag, Ao], k(a) = a ® (=), be the Q-module representation of
A. Then the composition ko F' defines a complete '-category F'A in terms of ’-modules with
(FA)g = Ap. If we denote the tensor and cotensor in A by ® and — respectively; the tensor

and cotensor in FA by @ and —' respectively, then we have the following conclusion.
Proposition 4.1 o/ @' z = F(¢/) @ x; o —' 2= F(d) — .

It is easy to check that F is a functor from the category (2-CLat of complete 2-lattices and

complete maps to the category 2'-CLat of complete {)'-lattices and complete maps.

Proposition 4.2 Let G : Q — Q' be a closed unital map such that G has a left adjoint
F : Q' — Q which is a closed unital map. Then, for any complete Q-lattice A, FA = GA. In

particular, G preserves completeness.

Proof For any 5/ € Q' and z,y € A,

Therefore, FA = GA.

Example 4.3 (1) Let Q = ([0,1],A,1), or Q = ([0,1], x,1), and e : 2— Q be the closed
unital map given by e(0) = 0 and e(1) = 1. e has a left adjoint F : Q — 2 given by F(0) =0
and F(x) = 1 whenever x # 0. It is easy to see that F' is a closed unital map. Thus, for any

complete 2-category A, €A is a complete -category.
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(2) A distance distribution function (briefly, a d.d.f.) is a non-decreasing function f defined
on [0, 00] such that f(0) =0, f(co) = 1, and is left continuous on (0, 00). The set of all d.d.f.’s
will be denoted by AT. Clearly, AT is a complete lattice under the pointwise order with a top
element g, where, £9(0) = 0 and o(z) = 1 whenever x > 0. Suppose that * is a left continuous
t-norm on [0, 1]. Let f® g(t) = \/{f(r) xg(s) | r + s < t} for all f,g € ATt € [0,00]. Then,
(AT, ®,g0) is a commutative, unital quantale. Categories enriched over (AT ®,¢q) are exactly
the pseudo-quasi-probabilistic metric spaces (cf. [13]). Define 7 : ([0, 00]°P, +,0) — (A", ®, &)
by i(x)(t) = 0if t <z and i(x)(t) = 1 if x < t. i is clearly a cocontinuous, strict closed unital
map. The right adjoint j : AT — [0,00]°P of i is given by j(f) = inf{z € [0,00] | f(z) = 1},
where the infimum is taken in [0, 0o, not in [0, 00]°P. Then, j : (A", ®,&9) — ([0, 00]°P, +,0) is

a closed unital map and j (= i) preserves completeness by the above proposition.

The following examples show that if the left adjoint F' in Theorem 4.1 does not preserve

tensor, then G does not preserve completeness in general.

Example 4.4 A left continuous t-norm (cf. [8]) on [0, 1] is a binary operation  on [0, 1] such
that ([0, 1], %, 1) becomes a commutative, unital quantale. Let * and " be two left continuous t-
norms on [0, 1] such that zxy > xx'y for all z,y € [0,1]. Then G =id : ([0,1],%,1) — ([0, 1], %, 1)
is a closed unital map. Clearly, G has a left adjoint which fails to preserve tenor whenever %’ # .
We shall show that G' does not preserve completeness whenever ' # x.

For convenience, we write Q for ([0,1],*,1) and €’ for ([0,1],+’,1). Let — and —' denote
the cotensors of Q and Q' respectively. Then A = ([0, 1], —) is a complete Q-category. Because
G = id, the underlying preorder of GA coincides with that of A, which is the usual order on
[0,1]. If GA is a complete {)'-category, it must be tensored. Denote the tensor on GA by ®'.
Then, appealing to Proposition 2.2 (1)(ii), we have

a®@ r<yea<GAmy) =Al,y) =2y axz <y,
which implies that o ® 2 = a % x. Therefore, for any «, 8 € [0, 1], by Proposition 2.2 (1)(iii)
ax'B=(a¥ B x1=(a¥p)@1=a@ (B 1)=ax*(B*1)=ax*p.

Example 4.5 Let Q = ([0, 1],*,1), where x is the Lukasiewicz t-norm on [0, 1], i.e., zxy =
max{z +y — 1,0}. The left adjoint F' : Q — 2 of the closed unital map e : 2 — Q does not
preserve tensor. We say that € : PrOrd — 2-Cat does not preserve completeness. Indeed, if
A is a complete lattice with at least 2 elements, we show that €A is not a complete 2-category.
To see this, let p: €A — [0,1] be a constant function with value 5. Then for each y € A\{L},
where L is the least element of A,

N n(z) = @A)y 2) = \ ulx) — e(Ay,z)) = % 0= %

z€A z€A

But, (€4)(y,a) = e(A(y,a)) # 1 for any a € A. Therefore, y has no infimum.
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