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1 Introduction

In the case of one complex variable, the following growth theorem and de Branges theorem
are well-known (cf. [28]).

Theorem 1.1 Let f(z) = z+ > amz™ be a normalized univalent holomorphic function
m=2
on the unit disc U in C. Then

Ed
(1 —lz)*

(1) L <o)<

(EE) 1)

(i) | < m.

However, in the case of several complex variables, Cartan [3] pointed out that the above
theorem does not hold.

Barnard, FitzGerald and Gong [2], Chuaqui [4] extended the growth theorem (1.1) to nor-
malized starlike mappings on the Euclidean unit ball in C™. Kohr [20] obtained a sharp growth
theorem for normalized starlike mappings of order a on the Euclidean unit ball in C". Liu and
Liu [24] generalized these results and obtained a sharp growth theorem for a normalized star-
like mapping f or a normalized starlike mapping f of order v on the unit ball B in a complex
Banach space such that f(z)—z has a zero of order k+1 at 2 = 0. On the other hand, Graham,
Hamada and Kohr [8] obtained a growth theorem for the set SJ(B) of mappings which have
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g-parametric representation on the unit ball in C™ with respect to an arbitrary norm. Hamada,
Honda and Kohr [12] generalized this result to the set Sg’ w41 (B) of mappings f for which there
exists a g-Loewner chain f(z,t) such that {e~'f(z,t)}+>0 is a normal family on the unit ball
B in C" with respect to an arbitrary norm, f = f(-,0) and z = 0 is a zero of order k + 1 of

e 'f(z,t) — z for each t > 0. For the growth theorem of convex mappings, see [6, 15, 18, 34].

Concerning the bounds for coefficients of subclasses of normalized biholomorphic mappings,
Kohr [21] obtained a sharp bound for the second coefficient of starlike mappings or starlike
mappings of order a on the Euclidean unit ball in C". Gong [7] obtained bounds for the second
and third coefficients of starlike mappings on the unit polydisc in C™. Liu and Liu [25] obtained
bounds for the m-th coefficient (m =k + 1,--- ,2k) of starlike mappings or starlike mappings
of order a on the unit ball in a complex Banach space. Especially, the bound is sharp when
m = k + 1. On the other hand, Graham, Hamada and Kohr [8] obtained a bound for the
second coefficient of mappings which have g-parametric representation on the unit ball in C"
with respect to an arbitrary norm. Hamada, Honda and Kohr [12] obtained a bound for the
(k + 1)-th coefficient of mappings in the set 5_27,64_1(3), where B is the unit ball in C" with
respect to an arbitrary norm.

We do not know whether the growth theorems and coefficient bounds in [8] and [12] are
sharp or not. In this paper, we shall obtain sharp growth and covering theorems, as well as
sharp coefficient bounds for various subsets of S;, | (B), where B is the unit ball in a complex
Banach space and S}, ,(B) is the family of normalized starlike mappings f on B such that
z =0is a zero of order k + 1 of f(z) — z. These results are generalizations of the above sharp

results.

2 Preliminaries

Let X be a complex Banach space with respect to a norm ||-||. Let B, = {z € X : ||z|| < r}
and B = B;. When X = C, B, is denoted by U, and B; by U. For a domain G C X, let
H(G) be the set of holomorphic mappings from G into X. When f € H(B), we say that f is
biholomorphic on B if f(B) is a domain and the inverse exists and is holomorphic on f(B).
Let L(X,Y) denote the set of continuous linear operators from X into a complex Banach space
Y. Let I be the identity in L(X, X). For each z € X \ {0}, let

T(z) ={l. € L(X,C) : L(2) = |lz]l, i) =1}

This set is nonempty by the Hahn-Banach theorem.

When f € H(B), we say that f is normalized if f(0) =0 and Df(0) = I. When f € H(B),
we say that f is starlike if f is biholomorphic on B and f(B) is starlike with respect to the
origin. Let S*(B) be the set of normalized starlike mappings on B. When B = U, the set
S*(U) is denoted by S*.

Assumption 2.1 Let g : U — C be a univalent holomorphic function such that g(0) = 1,

9(¢) = g(C) for ¢ € U (so, g has real coefficients in its power series expansion), ¢'(0) < 0 and
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Rg(() > 0 on U. We assume that g satisfies the conditions

min R9(C) = 9(r),

max Rg(C) = 9(-r)

forr e (0,1).
We mention that there are many functions which satisfy the above assumption (cf. [8]).

The following set M of normalized mappings of “positive real part” on B plays a funda-

mental role in the study of the Loewner differential equations. Let
M={pe H(B): p(0) =0, Dp(0) = I, Rl.(p(z)) > 0, 2 € B\ {0}, l. € T'(2)}.

As in [8, 12, 22], we shall introduce various subsets of M. Let
1
M, = {p € HB): pl0) = 0. D) = I, 7LD € 90, = € B\ {0}, 1 € 7).

If g(¢) = %2, then we obtain M, = M. However, there are other choices of g which provide
interesting properties of the set M,.

Let f € H(B) be a normalized locally biholomorphic mapping. Then f is starlike if and
only if [Df(2)]7'f(z) € M (cf. [10, 16, 33]). Let S;(B) denote the subset of S*(B) consisting
of those normalized locally biholomorphic mappings f such that [Df(2)]71f(z) € M,.

Now, we will give particular subsets of S*(B).

Definition 2.1 Let 0 < p < 1. A normalized locally biholomorphic mapping f € H(B) is
said to be starlike of order p if
[Df(2)] 7 f(2) € My,
_ 1-¢
where g(C) = =51y -
We denote by S;(B) the set of all starlike mappings of order p on B.
Definition 2.2 Let 0 < o < 1. A normalized locally biholomorphic mapping f € H(B) is
said to be strongly starlike of order o if
[Df(2)] 7' f(2) € My,
where g(¢) = 8;8; and the branches of the power functions are chosen such that (1—()*|¢=0 =
(1+¢)¢=0=1.

We denote by SS%(B) the set of all strongly starlike mappings of order a on B.

Definition 2.3 Let 0 < o < 1. A normalized locally biholomorphic mapping f € H(B) is
said to be almost starlike of order « if
[Df(2)] 7' f(2) € My,
where g(¢) = (1 — a)% +a.

We denote by AS*(B) the set of all almost starlike mappings of order « on B.
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Definition 2.4 Let

4(1 —p) 1++/C\2
= (lee7=02) -
0p(Q) =1+ ——3 Ly
where we choose the branch of the square root such that \/C|¢c=1 = 1 and the branch of logarithm
function such that log1 =0, 0 < p < 1. A normalized locally biholomorphic mapping f € H(B)

is said to be parabolic starlike of order p if

[DF(2)]7'f(2) € My,

where g = qi.
P

We denote by PS;(B) the set of all parabolic starlike mappings of order p on B.

When B = U, S*(U) (respectively S;(U), S;(U), SS5(U), AS;(U), PS;(U)) is denoted by
S* (respectively Sy, Sy, SS5, AS;, PSy).

Let f € H(B) and let k be a positive integer. We say that z = 0 is a zero of order k of f(z)
if £(0)=0,---,DF1f(0) =0 and D*f(0) # 0 (compare with [26]).

Also, we denote by S;,,(B) (respectively Sy ., (B), S} ;11 (B), SS; 41(B), AS; ;11 (B),
PS} 1 11(B)) the subset of S*(B) (respectively S;(B), S;(B), SS4(B), ASy(B), PS;(B)) of
mappings f such that z = 0 is a zero of order k + 1 of f(z) — 2. When B = U, S; ,(U)
(respectively Sy ;1 (U), Sy 111 (U), SS3 1 (U), ASS 11 (U), PS4 1(U)) is denoted by Sj 4
(respectively Sy 1. Sy kv1s SSm ki1 ASn ki1s PS) pi1)-

3 Sharpness of Growth Theorems

For the set S; r+1(B), we obtain the following growth result by an argument similar to that
in the proof of [12, Theorem 10] (cf. [8, Theorem 2.2] and [22, Theorem 2.3]).

Theorem 3.1 Let g : U — C satisfy the conditions of Assumption 2.1 and f € S;,k+1(B)-
Then

2]l exp / - [ﬁ ~1) % <1 < el exp / - [@ 1) seB B

Later, we will show that the above estimations (3.1) are sharp. First, we give a lemma.
Let b € S; be defined by 6(0) = b'(0) — 1 =0 and
¢v'(¢) 1

W0 g <Y

For a positive integer k, let
bi(¢) = Cle(¢M)]F,

where

_ Q)
©(C) = c

The branches of the power functions are chosen so that
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Also, for u € 0B, let

bi (lu(2))
u = 5 B.
fu(2) () z, zE€
Then, we obtain the following lemma by direct computations.

(3.2)

Lemma 3.1 Let by and f, be as above. Then
(i) br(¢) = ¢ — 79/ (0)¢F* +---, C €U and

W _ 1 .
w(©) gy <Y
Thus, by € S; 141 and bg(0) = b3 (0) —1=0.

(il) fu € S} 411 (B) and

Fulcu) = by(Qu = (¢ = 2o/ O + -+ Yu, CeU

Now, we obtain the following equivalent formulation of Theorem 3.1 (cf. [1, Theorem 2.5],
[13] and [27]).

Theorem 3.2 Let g : U — C satisfy the conditions of Assumption 2.1. If f € S;,k+1(B);
then

i

e Fop(e®||2ll) < [If )l < br(llzll), z€ B

. (3.3)
These estimations are sharp.

Proof From (3.1) and Lemma 3.1(i), we obtain

=1 ¢ b (2 z 2 1=l e oopt (2 T
x| %%qugmm<m/ () _)d

for z € B, where b(¢) = e~ % by (e* ). Then, we obtain

b (]1211) = £zl br(lI=1) /
exp[log k||z|\ —logbk(O)} < T Sexp{log k||z|\ —logbk(O)}

for z € B, since by(x), bg(z) > 0 for > 0. This implies (3.3).

Next, we will show that the estimations (3.3) are sharp. Let f, € S; ., (B) be as in (3.2)

Since || fu(ru)|| = bi(r) and || fu(e®ru)|| = |br(e®r)|, the equalities of the estimations (3.3)
hold. This completes the proof.

Remark 3.1 The equivalence of (3.1) and (3.3) implies that the estimations (3.1) are sharp.

Now, we obtain the following corollaries from Theorems 3.1 or 3.2.
For g(¢) = 15

= 17¢» e have the following sharp growth and covering results for the set 5S¢, (B)
due to Liu and Liu [24, Theorem 1] (cf. [2, 4, 11, 35]).

Corollary 3.1 If f € S} (B), then
Izl Il
<f&N <
TEAECE

, z€DB
(1= =l")*
Consequently, f(B) D BQ_%. These estimations are sharp.
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For g(¢) = ﬁ, where 0 < p < 1, we have the following sharp growth and covering
results for the set >, ., (B) due to Liu and Liu [24, Theorem 2] (cf. [17, 20]).

Corollary 3.2 If f € S}, .,(B), then

=]l =]l

m < IFG)I < an *€5

S o | N — =
(L +[=lF) = (1= 1lzl*)~=
Consequently, f(B) D B2_ 21-p) . These estimations are sharp.
k

For ¢(¢) = 8;81 where 0 < a < 1, we have the following sharp growth and covering
results for the set S, ;. (B) (cf. [23]).
Corollary 3.3 Let f € SS}, ;. 1(B). Then

=0 — ghna da I 14 gk 1dae
L LT [ L L
e [ [(5) — ] F <@l < e [ (1 s 2€
Consequently, f(B) D B,., where

/1 (G _xk)a 15
= ex — ) —1|—.
P o L\1+ gk x

These estimations are sharp.

For g(¢) = (1 — a)==¢ 1+C + «, where 0 < a < 1, we have the following sharp growth and
covering results for the set AS? ;.| (B) (cf. [5, 19]).

Corollary 3.4 Let f € AS}, ;. ,(B).
(i) Ifa €[0,1) and o # %, then

&l <)< &l _
(14 (1~ 20) 2| T (1~ (1 — 20)| 2||*) =5

for z € B. Consequently, f(B) D B,, where

1
2(1—a)

r=—
(2 — 20) 30

These estimations are sharp.
(ii) If o = 3, then

1, L,
J— < < — .
Izl exp (= Zl21%) < IFEI < Izl exp (£l21*), =€ B
Consequently, f(B) D B,, where

1
r = exp ( — E)
These estimations are sharp.
For g = =, where
41 -p) 1++/C\2
qP(C) - 1 + 71_2 (1Og 1 _ \/Z)

and 0 < p <1, we have the following sharp growth and covering results for the set PS7 +1(B)
(cf. [1, Theorem 2.5], [13], [27] and [31, Theorem 2.3]).
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Corollary 3.5 If f € PS}, . ,(B), then

_ Izl _ =1
—716(;2 P /0 l(tan_1 \/x_k)zdx < log 17l < 4 5 P /0 %(log 71 i_ g)de.

@ el @

Consequently, f(B) D B,, where
16(1 — '
T = exp ( - % /0 E(tanfl Vak )2dx).

These estimations are sharp.

4 Coefficient Bounds

We now obtain an estimate for the (k + 1)-th order coefficients of mappings in the set
Sy kr1(B) as in [12, Theorem 24] (cf. [8, Theorem 2.14], [22, Theorem 2.4] and [29, Theorem
3]). Moreover, we will show that this estimation is sharp.

Theorem 4.1 Let g : U — C satisfy the conditions of Assumption 2.1 and f € S;; ;. ,(B).

g
Then

1
(k+1)!

This estimation is sharp.

LD ) (@F )] < 21O, el =1, 1, € T(w). (4.1)

1
K

Proof Since f € 57, .,(B), f has the Taylor expansion

DFLFO) (Y +-.-, zeB.

1&) =2+ Gy

Let h(z) = [Df(2)]71f(2). Then h has the Taylor expansion
k

W) =2 = Gy P OET) £, ze B
Fix w € 0B, l,, € T(w). Let
1
—lw(h , U\ {0},
o) — | bCu)). ce U {0}
1, ¢=0.

Then p is a holomorphic function on U and has the Taylor expansion

k

p(Q)=1- mlu)(Dk+1f(0)(wk+l))Ck +---, C€eU.
Therefore, we obtain
®) () = _L k k
P0) =~ lu(DFF0) ),

Also, there exists a holomorphic function p on U such that p(¢) = 1+ ¢*p(¢) for ¢ € U.
Since h € Mg, we deduce that p(¢) € g(U) for ¢ € U. Therefore, g~ op(-) : U — U and
g top(0) =0. Since g~1(1) = 0, there exists a holomorphic function G(w) on a neighborhood
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of 1 such that g=*(w) = (w — 1)G(w). Therefore, we obtain g=! o p(¢) = ¢*p(¢)G(p(¢)) on
a neighborhood of 0. Then, by the Schwarz lemma, we obtain |g~! o p(¢)| < |¢|* for ¢ € U.
Thus, there exists a holomorphic function H(¢) on U such that ¢~ o p(¢) = ¢¥*H(¢) on U and
|H(¢)| <1 on U. Then, p(¢) = g(C*H(¢)). Hence we obtain |[p®*)(0)| < k!|¢’(0)|. Thus, we

obtain
1

@Iﬁww“Vwmﬁﬁ>=%$Wstéwm»

We will show that the estimation (4.1) is sharp. Let f, be as in (3.2). Then
1
fw((w) =(w— Egl(o)gk—i_lw +oee

by Lemma 3.1(ii). Therefore,

1 1 c+1 _1/
e (P O )| = 1lg O

This completes the proof.
Moreover, if g is convex, then we obtain the following theorem.

Theorem 4.2 Let g : U — C be a convex function which satisfies the conditions of As-
sumption 2.1 and f € S ;. (B). Then
1 1

(D FO™)] € ——

'O, Nwl =1, Ly e T(w)

form=k+1,---,2k.
Proof Let h(z) = [Df(2)]"1f(z) and

o= [, cevvon

1, ¢=0.

Since g is convex and p is subordinate to g, we obtain

by Rogosinski’s Theorem (cf. [30]). Since

§Q) = 3 (D hO)@™) ),

m=1
we obtain
1 (o D™ hO) ™) | < 19'(0) (43)
“\ml! =19 ’

by (4.2). Since f(z) — z has a zero of order k+ 1 at z =0,

Lpmro) = —2 L pmpo), m=ka1,. 2% (4.4)

! ~ m—1m! e o
by [25, (2.3)]. From (4.3) and (4.4), we obtain
1 1

L (D™ FO)(w™)] <

' =1 w€T
< ——lg' )], lwll =1, L € T(w)
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form=k+1,---,2k. This completes the proof.

Now, we obtain the following corollaries from Theorem 4.2. For the norm of the m-th order
Fréchet derivative of a mapping in ,S’;‘},CH(B)7 where m =k +1,--- 2k, we have the following
estimate by an argument similar to that in the proof of [12, Corollary 25] (cf. [8, Corollary
2.15]).

Corollary 4.1 Let g : U — C be a convex function which satisfies the conditions of As-
sumption 2.1 and f € S ;. (B). Then

H%WWWS%WW

m

f07“ m = k+ 1, e 72k; where Cm = ’mrnwl_l1 :

For the mappings in Sy, (B) (respectively Sy, 1 (B), SS}, 11 (B), AS; .1 (B), PS; ., (B)),
we obtain the following estimates (cf. [12, Corollaries 26 and 27], [13], [21] and [25, Theorems
4 and 5)).

Corollary 4.2 For m = k+1,---,2k, ||lw|| = 1 and I, € T(w), we have the following
estimates:

(i) If f € S§ 1(B), then

(ii) If f € S} ;11 (B), then

1 m m 2(1 _p)
| LD F(O) ™) < S
(iii) If f € SS;k_i_l(B), then
1 m m 20&
| LD FO) (™) < =
(iv) If f € AS} j41(B), then
1 m m 2(1 — )
| St O@™)| < =2

(v) If f € PS} 1 11(B), then

| Lo s < 022

These estimations are sharp for m =k + 1.

Corollary 4.3 Let ¢,, be as in Corollary 4.1. Form =k+1,--- 2k, we have the following
estimates:

(i) If f € S§ 1(B), then

om0 <
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(ii) If f € S} j11(B), then

|07 70| < 201 - e
(i) If f € S8 41 (B). then
H—Dmf H < 2acm.
() If | € AS} 1 (B), then
s <20 -

(v) If f € PS} ;1 (B), then

|00 < %
Let B be the unit polydisc U™ in C". Since
| 2070 = swp || fO)w >H
e llwll=1
" unltwalm =1 H )H
T nl s e =1 12420 li(ﬁDmf(O)(wm)) v

where /; € T'(w) with l;(y) = -, we obtain the following corollaries (cf. [25, Theorems 1 and
2]).

Corollary 4.4 Let g : U — C be a convex function which satisfies the conditions of As-
sumption 2.1 and f € Sy, (U"). Then

H—Dmf H "(0)], [lwl| =1

form=k+1,---,2k. This estimation is sharp for m =k + 1.

Corollary 4.5 Form=k+1,---,2k, we have the following estimates:
(i) If f € S; . (U"), then

1 2
—pm H <
Hm! FO)| = m —

(ii) If f € S} 1 (U™), then

[maomso) < 5=
(iil) If f € SS} 1.1 (U™), then
P s < 2
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(iv) If f € AS(’;JCH(U”), then
21 — )
b < 2222
P s < 5=
(v) If f € PS} ;1 (U"), then
16(1 —
om0 < 2
w2 (m —
These estimations are sharp for m =k + 1.

Let g be a function which satisfies the conditions of Assumption 2.1. Moreover, we assume
that é is convex. In this case, we will obtain the estimation of || $D?f(0) and ||3;D%f(0)|| for
Sy(U™) (cf. [1, Theorem 3.4, [7, Theorem 5.3.1], [13] and [32, Theorem 5]). First, we give a

lemma.

Lemma 4.1 Let g be a function which satisfies the conditions of Assumption 2.1. Moreover,
we assume that é is convex. Let f € S (U™), h(z) = [Df(2)]7' f(2) and let the Taylor expansion

of hiz(”’z) at z =10 be

z > m
F=1+ Q)
m=1
where ng) is a homogeneous polynomial of degree m in z. Then

Q™ ()] < 1g' (O)]|=]™ (4.5)

holds for allm=1,2,3,--- and z € U".

Proof Let z € U™\ {0} be fixed. We may assume that |z;| = ||z|| for all i by the maximum
principle. Let »
SE

—_— U.
hi(gﬁ)’ ‘e

P(¢) =

Since
la(y) = ||a||— €T(a)

for all a € U™\ {0} with |a;| = ||a||, we have

1, — U
Tal 0 S 90)

for all @ € U™\ {0} with |a;] = |a||. This implies that () € é(U) for all ¢ € U. Since
P(0) = é(O) =1, we have ¢ < é. Since é is convex and

w0 =1+ 30 ()

we obtain

o ()| < 10’0

by Rogosinski’s theorem (cf. [30]). This implies the inequality (4.5). This completes the proof.



364 H. Hamada and T. Honda

Theorem 4.3 Let g be a function which satisfies the conditions of Assumption 2.1. More-
over, we assume that é is conver. If f € S;(U™), then

Lozro)| <o), 20370 < L2 a0 4 0.
Proof Let

1

SDA0)(2), ¢ () =

@) () —
0 (2) 51

By [7, (5.3.8)],
PP (2) = (Q1V ()21, . QP (2)zn).
Then, by Lemma 4.1, we obtain
@ ()]l < 1g'(0)]1]1%

By the proof of [7, Theorem 5.3.1],

gQ) (2)21 a11Z1<,0g2) (2) + -+ a1n21<,0$12) (2)
%2) (2)2n an1zn<,0§2) (2)+- -+ annZnQOSLQ) (2)

where
le)(z) = Q121+ + QinZn-
By Lemma 4.1, we obtain
2@ ) < 19" Ol + 19" ©) (|21
This completes the proof.

Corollary 4.6 (i) If f € S*(U™), then

H%D%(O)H <3. (4.6)
This estimation is sharp.
(ii) If f € S;(U™), then
|50 < (= )3~ 2p). (17)

This estimation is sharp.
(iii) If f € SSL(U™), then

H%D?’f(O)H < a(l+20).
(iv) If f € ASE(U™), then
H%D?’f(O)H < (1-a)(3 - 2a).

(v) If f € PS;(U"), then

H%D3f<0>H < 8(1—p) (1+ 16(1—p)).

w2 2
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Proof It suffices to show that the estimations (4.6) and (4.7) are sharp. We can verify that
the mapping
21

f(z):(maz%'”azn)a Z:(Zly"'azn)eUn

attains the equalities in (4.6) and (4.7).

Remark 4.1 The upper bounds in (iii), (iv) and (v) of Corollary 4.6 may not be sharp.
The reason is that the sharp upper bounds for the third coefficients of functions in SS7%, AS}
and PSS} are less than the bounds in Corollary 4.6 (cf. [27, Theorem 3]).

For 57, . 1(U"), we obtain the following estimation.

Theorem 4.4 Let g be a function which satisfies the conditions of Assumption 2.1. More-

over, we assume that é is convez. If f € S5, . (U"), then

1

——g'(0)]

1 m
om0 <
form=k+1,--- 2k. This estimation is sharp for m =k + 1.

Proof Let 1
(=) = D" F(O)(").
Since f(z) — z has a zero of order k + 1 at z = 0, we have o™ =0 form=2,---,k. Then we
obtain

(o]

Yo (m =1 () = [+ Jpen (z) +---)
m=k+1

S M) 0

m=1
X
0 > QMM (2)
m=1

X (I = Jpon(2) + )] - (2 + "V () + ) (4.8)
from [7, p. 173]. Comparing m-th degree terms on both sides of (4.8), where m = 2,--- |k, we
obtain

ng)(z):O fori=1,---,nandm=1,--- k- 1.

Therefore, comparing m-th degree terms on both sides of (4.8), where m =k +1,--- |2k, we
obtain

(m — 1™ (2) = Q" V()21 QD (2)2)
form=k+1,---,2k. Then by Lemma 4.1, we obtain

1
m—1

le™ (2)]| < FACIE

form=k+1,---,2k. This completes the proof.
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5 Examples
Let B"(p) denote the unit ball in C" with respect to a p-norm || - ||, 1 < p < co, where
n 1
[Slp]", 1p<o,
[zl =4 “5=1
max. 1251, p = o0.

In Lemma 3.1, we give an example of a mapping for 57 , 41(B). In this section, we will give
other examples in the case B = B"(p) and g(U) is a starlike domain with respect to 1.

Let o € [0,1]. Hamada, Honda and Kohr [13] showed that if f is a parabolic starlike
mapping of order p on U, then U, ,(f) is a parabolic starlike mapping of order p on B"™(p),

Toa(PE) = (£, 2( L2

1

where

for z = (#1,%) € B™(p). The branch of the power function is chosen so that

)

We will generalize the above result to f € S;’k 41 in the case where g(U) is a starlike domain

=1

21:0

with respect to 1. This result gives many examples of mappings in S; ., (B"(p)).
Theorem 5.1 Assume that g satisfies Assumption 2.1 and g(U) is a starlike domain with

respect to 1. Let o € [0,1]. Let W, o(f) be as above. If f € S k1 then Fo, = U, o(f) €

S;7k+1(B"(p)), where 1 < p < oco.

Proof When 1 < p < 00, T(2) (2 # 0) consists of those functionals given by

n
"L ”,, i

%j
(cf. [33]). Since f € S}, ., we obtain

f(z1)

h(z1) = 721]“(21)

e g(U). (5.1)
By direct computations, we have
[DFa(2)] 7' Fa(2) = (21h(21), (1 — @+ ah(21))Z)

for z = (#1,2) € B"(p). Then

1 [21]” + ol 2]

T (PP Fale)) = ==ha) + a-olAP

127

€ g(U)

=1

by (5.1). Therefore, Fy, € S; ;. 1(B"(p)). The proof for the case p = 1 or p = o0 is similar.
This completes the proof.

Theorem 5.2 Assume that g satisfies Assumption 2.1 and g(U) is starlike with respect to 1.
Then f1 € S; i1y if and only if f(2) = (f1(21), 22, ,2n) € S5 111 (B"(p)), where 1 <p < oo.
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Proof When p = o0, T'(z) (z # 0) consists of those functionals I, given by
W
Lw)= Y tk||z||g, th>0, > tp=1
|z |=l12]] |z |=l ]l

(cf. [33]). Then

21| # 121,

HIDIOIIE = | Bl = el

Zfl

Since g(U) is a starlike domain with respect to 1, f1 € S5 k41 if and only if f € S;"kH(B”(p)).

121l

The proof in the case p < oo is similar.
Furthermore, if g(U) is convex, then we obtain the following theorem.

Theorem 5.3 Assume that g satisfies Assumption 2.1 and g(U) is convex. Then fy, fa,- -+,

Fu € Sipsn if and only if £(2) = (fi(21), fa(z2), -+ Ful20)) € Sty (B"(p)), where 1 < p <
Q.

Proof When p =1, T(z) (z # 0) consists of those functionals given by

i
w) = Z z_J-wj + Z ajw;, o <1

270 2j=0
(cf. [33]). Then

1 2] fi(z5)
il ()] O Sy
1] Z N2l 2 fi(z)
Since g(U) is convex, fi1, fo-+, fn € S5 ;4 if and only if f€5;,..(B"(p)). The proof in the
case p > 1 is similar.
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