Chinese Annals of Mathematics, Series B © The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2008

Sharp Growth Theorems and Coefficient Bounds for Starlike Mappings in Several Complex Variables^{***}

Hidetaka HAMADA* Tatsuhiro HONDA**

Abstract Let *B* be the unit ball in a complex Banach space. Let $S_{k+1}^*(B)$ be the family of normalized starlike mappings *f* on *B* such that z = 0 is a zero of order k+1 of f(z)-z. The authors obtain sharp growth and covering theorems, as well as sharp coefficient bounds for various subsets of $S_{k+1}^*(B)$.

Keywords Sharp coefficient bound, Sharp covering theorem, Sharp growth theorem, Starlike mapping, Zero of order k
 2000 MR Subject Classification 32H02, 30C45

1 Introduction

In the case of one complex variable, the following growth theorem and de Branges theorem are well-known (cf. [28]).

Theorem 1.1 Let $f(z) = z + \sum_{m=2}^{\infty} a_m z^m$ be a normalized univalent holomorphic function on the unit disc U in \mathbb{C} . Then

(i)
$$\frac{|z|}{(1+|z|)^2} \le |f(z)| \le \frac{|z|}{(1-|z|)^2}.$$
 (1.1)

(ii) $a_m \leq m.$

However, in the case of several complex variables, Cartan [3] pointed out that the above theorem does not hold.

Barnard, FitzGerald and Gong [2], Chuaqui [4] extended the growth theorem (1.1) to normalized starlike mappings on the Euclidean unit ball in \mathbb{C}^n . Kohr [20] obtained a sharp growth theorem for normalized starlike mappings of order α on the Euclidean unit ball in \mathbb{C}^n . Liu and Liu [24] generalized these results and obtained a sharp growth theorem for a normalized starlike mapping f or a normalized starlike mapping f of order α on the unit ball B in a complex Banach space such that f(z) - z has a zero of order k+1 at z = 0. On the other hand, Graham, Hamada and Kohr [8] obtained a growth theorem for the set $S_q^0(B)$ of mappings which have

Manuscript received August 31, 2007. Published online June 24, 2008.

^{*}Faculty of Engineering, Kyushu Sangyo University, 3-1 Matsukadai 2-Chome, Higashi-ku, Fukuoka 813-8503, Japan. E-mail: h.hamada@ip.kyusan-u.ac.jp

^{**}Department of Architectural Engineering, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan. E-mail: thonda@cc.it-hiroshima.ac.jp

^{***}Project supported by Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science (Nos. 19540205, 2007; 17540138, 2007).

g-parametric representation on the unit ball in \mathbb{C}^n with respect to an arbitrary norm. Hamada, Honda and Kohr [12] generalized this result to the set $S_{g,k+1}^0(B)$ of mappings f for which there exists a g-Loewner chain f(z,t) such that $\{e^{-t}f(z,t)\}_{t\geq 0}$ is a normal family on the unit ball B in \mathbb{C}^n with respect to an arbitrary norm, $f = f(\cdot, 0)$ and z = 0 is a zero of order k + 1 of $e^{-t}f(z,t) - z$ for each $t \geq 0$. For the growth theorem of convex mappings, see [6, 15, 18, 34].

Concerning the bounds for coefficients of subclasses of normalized biholomorphic mappings, Kohr [21] obtained a sharp bound for the second coefficient of starlike mappings or starlike mappings of order α on the Euclidean unit ball in \mathbb{C}^n . Gong [7] obtained bounds for the second and third coefficients of starlike mappings on the unit polydisc in \mathbb{C}^n . Liu and Liu [25] obtained bounds for the *m*-th coefficient $(m = k + 1, \dots, 2k)$ of starlike mappings or starlike mappings of order α on the unit ball in a complex Banach space. Especially, the bound is sharp when m = k + 1. On the other hand, Graham, Hamada and Kohr [8] obtained a bound for the second coefficient of mappings which have *g*-parametric representation on the unit ball in \mathbb{C}^n with respect to an arbitrary norm. Hamada, Honda and Kohr [12] obtained a bound for the (k + 1)-th coefficient of mappings in the set $S_{g,k+1}^0(B)$, where *B* is the unit ball in \mathbb{C}^n with respect to an arbitrary norm.

We do not know whether the growth theorems and coefficient bounds in [8] and [12] are sharp or not. In this paper, we shall obtain sharp growth and covering theorems, as well as sharp coefficient bounds for various subsets of $S_{k+1}^*(B)$, where B is the unit ball in a complex Banach space and $S_{k+1}^*(B)$ is the family of normalized starlike mappings f on B such that z = 0 is a zero of order k + 1 of f(z) - z. These results are generalizations of the above sharp results.

2 Preliminaries

Let X be a complex Banach space with respect to a norm $\|\cdot\|$. Let $B_r = \{z \in X : \|z\| < r\}$ and $B = B_1$. When $X = \mathbb{C}$, B_r is denoted by U_r and B_1 by U. For a domain $G \subset X$, let H(G) be the set of holomorphic mappings from G into X. When $f \in H(B)$, we say that f is biholomorphic on B if f(B) is a domain and the inverse exists and is holomorphic on f(B). Let L(X, Y) denote the set of continuous linear operators from X into a complex Banach space Y. Let I be the identity in L(X, X). For each $z \in X \setminus \{0\}$, let

$$T(z) = \{ l_z \in L(X, \mathbb{C}) : \ l_z(z) = ||z||, \ ||l_z|| = 1 \}.$$

This set is nonempty by the Hahn-Banach theorem.

When $f \in H(B)$, we say that f is normalized if f(0) = 0 and Df(0) = I. When $f \in H(B)$, we say that f is starlike if f is biholomorphic on B and f(B) is starlike with respect to the origin. Let $S^*(B)$ be the set of normalized starlike mappings on B. When B = U, the set $S^*(U)$ is denoted by S^* .

Assumption 2.1 Let $g: U \to \mathbb{C}$ be a univalent holomorphic function such that g(0) = 1, $g(\overline{\zeta}) = \overline{g(\zeta)}$ for $\zeta \in U$ (so, g has real coefficients in its power series expansion), g'(0) < 0 and $\Re g(\zeta) > 0$ on U. We assume that g satisfies the conditions

$$\begin{cases} \min_{\substack{|\zeta|=r}} \Re g(\zeta) = g(r), \\ \max_{|\zeta|=r} \Re g(\zeta) = g(-r) \end{cases}$$

for $r \in (0, 1)$.

We mention that there are many functions which satisfy the above assumption (cf. [8]).

The following set \mathcal{M} of normalized mappings of "positive real part" on B plays a fundamental role in the study of the Loewner differential equations. Let

 $\mathcal{M} = \{ p \in H(B) : \ p(0) = 0, \ Dp(0) = I, \ \Re l_z(p(z)) > 0, \ z \in B \setminus \{0\}, \ l_z \in T(z) \}.$

As in [8, 12, 22], we shall introduce various subsets of \mathcal{M} . Let

$$\mathcal{M}_g = \Big\{ p \in H(B) : \ p(0) = 0, \ Dp(0) = I, \ \frac{1}{\|z\|} l_z(p(z)) \in g(U), \ z \in B \setminus \{0\}, \ l_z \in T(z) \Big\}.$$

If $g(\zeta) = \frac{1-\zeta}{1+\zeta}$, then we obtain $\mathcal{M}_g = \mathcal{M}$. However, there are other choices of g which provide interesting properties of the set \mathcal{M}_g .

Let $f \in H(B)$ be a normalized locally biholomorphic mapping. Then f is starlike if and only if $[Df(z)]^{-1}f(z) \in \mathcal{M}$ (cf. [10, 16, 33]). Let $S_g^*(B)$ denote the subset of $S^*(B)$ consisting of those normalized locally biholomorphic mappings f such that $[Df(z)]^{-1}f(z) \in \mathcal{M}_g$.

Now, we will give particular subsets of $S^*(B)$.

Definition 2.1 Let $0 \le p < 1$. A normalized locally biholomorphic mapping $f \in H(B)$ is said to be starlike of order p if

$$[Df(z)]^{-1}f(z) \in \mathcal{M}_g,$$

where $g(\zeta) = \frac{1-\zeta}{1-(2p-1)\zeta}$.

We denote by $S_p^*(B)$ the set of all starlike mappings of order p on B.

Definition 2.2 Let $0 < \alpha \leq 1$. A normalized locally biholomorphic mapping $f \in H(B)$ is said to be strongly starlike of order α if

$$[Df(z)]^{-1}f(z) \in \mathcal{M}_g,$$

where $g(\zeta) = \frac{(1-\zeta)^{\alpha}}{(1+\zeta)^{\alpha}}$ and the branches of the power functions are chosen such that $(1-\zeta)^{\alpha}|_{\zeta=0} = (1+\zeta)^{\alpha}|_{\zeta=0} = 1$.

We denote by $SS^*_{\alpha}(B)$ the set of all strongly starlike mappings of order α on B.

Definition 2.3 Let $0 \le \alpha < 1$. A normalized locally biholomorphic mapping $f \in H(B)$ is said to be almost starlike of order α if

$$[Df(z)]^{-1}f(z) \in \mathcal{M}_g,$$

where $g(\zeta) = (1 - \alpha)\frac{1-\zeta}{1+\zeta} + \alpha$.

We denote by $AS^*_{\alpha}(B)$ the set of all almost starlike mappings of order α on B.

Definition 2.4 Let

$$q_{\rho}(\zeta) = 1 + \frac{4(1-\rho)}{\pi^2} \left(\log\frac{1+\sqrt{\zeta}}{1-\sqrt{\zeta}}\right)^2,$$

where we choose the branch of the square root such that $\sqrt{\zeta}|_{\zeta=1} = 1$ and the branch of logarithm function such that $\log 1 = 0, 0 \le \rho < 1$. A normalized locally biholomorphic mapping $f \in H(B)$ is said to be parabolic starlike of order ρ if

$$[Df(z)]^{-1}f(z) \in \mathcal{M}_g,$$

where $g = \frac{1}{q_{\rho}}$.

We denote by $PS^*_{\rho}(B)$ the set of all parabolic starlike mappings of order ρ on B.

When B = U, $S^*(U)$ (respectively $S^*_g(U)$, $S^*_p(U)$, $SS^*_\alpha(U)$, $AS^*_\alpha(U)$, $PS^*_\rho(U)$) is denoted by S^* (respectively S^*_q , S^*_p , SS^*_α , AS^*_α , PS^*_ρ).

Let $f \in H(B)$ and let k be a positive integer. We say that z = 0 is a zero of order k of f(z) if $f(0) = 0, \dots, D^{k-1}f(0) = 0$ and $D^k f(0) \neq 0$ (compare with [26]).

Also, we denote by $S_{k+1}^*(B)$ (respectively $S_{g,k+1}^*(B)$, $S_{p,k+1}^*(B)$, $SS_{\alpha,k+1}^*(B)$, $AS_{\alpha,k+1}^*(B)$, $PS_{\rho,k+1}^*(B)$) the subset of $S^*(B)$ (respectively $S_g^*(B)$, $S_p^*(B)$, $SS_{\alpha}^*(B)$, $AS_{\alpha}^*(B)$, $PS_{\rho}^*(B)$) of mappings f such that z = 0 is a zero of order k + 1 of f(z) - z. When B = U, $S_{k+1}^*(U)$ (respectively $S_{g,k+1}^*(U)$, $S_{p,k+1}^*(U)$, $SS_{\alpha,k+1}^*(U)$, $AS_{\alpha,k+1}^*(U)$, $PS_{\rho,k+1}^*(U)$) is denoted by S_{k+1}^* (respectively $S_{g,k+1}^*$, $S_{p,k+1}^*$, $SS_{\alpha,k+1}^*$, $AS_{\alpha,k+1}^*$, $PS_{\rho,k+1}^*$).

3 Sharpness of Growth Theorems

For the set $S_{g,k+1}^*(B)$, we obtain the following growth result by an argument similar to that in the proof of [12, Theorem 10] (cf. [8, Theorem 2.2] and [22, Theorem 2.3]).

Theorem 3.1 Let $g: U \to \mathbb{C}$ satisfy the conditions of Assumption 2.1 and $f \in S^*_{g,k+1}(B)$. Then

$$\|z\| \exp \int_0^{\|z\|} \left[\frac{1}{g(-x^k)} - 1\right] \frac{\mathrm{d}x}{x} \le \|f(z)\| \le \|z\| \exp \int_0^{\|z\|} \left[\frac{1}{g(x^k)} - 1\right] \frac{\mathrm{d}x}{x}, \quad z \in B.$$
(3.1)

Later, we will show that the above estimations (3.1) are sharp. First, we give a lemma. Let $b \in S_q^*$ be defined by b(0) = b'(0) - 1 = 0 and

$$\frac{\zeta b'(\zeta)}{b(\zeta)} = \frac{1}{g(\zeta)}, \quad \zeta \in U$$

For a positive integer k, let

$$b_k(\zeta) = \zeta[\varphi(\zeta^k)]^{\frac{1}{k}},$$

where

$$\varphi(\zeta) = \frac{b(\zeta)}{\zeta}.$$

The branches of the power functions are chosen so that

$$(\varphi(\zeta^k))^{\frac{1}{k}}|_{\zeta=0} = 1.$$

Sharp Growth Theorems and Coefficient Bounds

Also, for $u \in \partial B$, let

$$f_u(z) = \frac{b_k(l_u(z))}{l_u(z)} z, \quad z \in B.$$
(3.2)

Then, we obtain the following lemma by direct computations.

Lemma 3.1 Let b_k and f_u be as above. Then (i) $b_k(\zeta) = \zeta - \frac{1}{k}g'(0)\zeta^{k+1} + \cdots, \ \zeta \in U$ and

$$\frac{\zeta b'_k(\zeta)}{b_k(\zeta)} = \frac{1}{g(\zeta^k)}, \quad \zeta \in U.$$

Thus, $b_k \in S^*_{g,k+1}$ and $b_k(0) = b'_k(0) - 1 = 0$. (ii) $f_u \in S^*_{a,k+1}(B)$ and

$$f_u(\zeta u) = b_k(\zeta)u = \left(\zeta - \frac{1}{k}g'(0)\zeta^{k+1} + \cdots\right)u, \quad \zeta \in U.$$

Now, we obtain the following equivalent formulation of Theorem 3.1 (cf. [1, Theorem 2.5], [13] and [27]).

Theorem 3.2 Let $g: U \to \mathbb{C}$ satisfy the conditions of Assumption 2.1. If $f \in S^*_{g,k+1}(B)$, then

$$e^{-\frac{\pi i}{k}}b_k(e^{\frac{\pi i}{k}}||z||) \le ||f(z)|| \le b_k(||z||), \quad z \in B.$$
 (3.3)

These estimations are sharp.

Proof From (3.1) and Lemma 3.1(i), we obtain

$$\exp \int_0^{\|z\|} \left[\frac{x \widetilde{b}'_k(x)}{\widetilde{b}_k(x)} - 1 \right] \frac{\mathrm{d}x}{x} \le \frac{\|f(z)\|}{\|z\|} \le \exp \int_0^{\|z\|} \left[\frac{x b'_k(x)}{b_k(x)} - 1 \right] \frac{\mathrm{d}x}{x}$$

for $z \in B$, where $\widetilde{b}_k(\zeta) = e^{-\frac{\pi i}{k}} b_k(e^{\frac{\pi i}{k}}\zeta)$. Then, we obtain

$$\exp\left[\log\frac{\tilde{b}_{k}(\|z\|)}{\|z\|} - \log\tilde{b}'_{k}(0)\right] \le \frac{\|f(z)\|}{\|z\|} \le \exp\left[\log\frac{b_{k}(\|z\|)}{\|z\|} - \log b'_{k}(0)\right]$$

for $z \in B$, since $\tilde{b}_k(x), b_k(x) > 0$ for x > 0. This implies (3.3).

Next, we will show that the estimations (3.3) are sharp. Let $f_u \in S^*_{q,k+1}(B)$ be as in (3.2). Since $||f_u(ru)|| = b_k(r)$ and $||f_u(e^{\frac{\pi i}{k}}ru)|| = |b_k(e^{\frac{\pi i}{k}}r)|$, the equalities of the estimations (3.3) hold. This completes the proof.

Remark 3.1 The equivalence of (3.1) and (3.3) implies that the estimations (3.1) are sharp.

Now, we obtain the following corollaries from Theorems 3.1 or 3.2.

For $g(\zeta) = \frac{1-\zeta}{1+\zeta}$, we have the following sharp growth and covering results for the set $S_{k+1}^*(B)$ due to Liu and Liu [24, Theorem 1] (cf. [2, 4, 11, 35]).

Corollary 3.1 If $f \in S^*_{k+1}(B)$, then

$$\frac{\|z\|}{(1+\|z\|^k)^{\frac{2}{k}}} \le \|f(z)\| \le \frac{\|z\|}{(1-\|z\|^k)^{\frac{2}{k}}}, \quad z \in B.$$

Consequently, $f(B) \supset B_{2^{-\frac{2}{k}}}$. These estimations are sharp.

For $g(\zeta) = \frac{1-\zeta}{1-(2p-1)\zeta}$, where $0 \le p < 1$, we have the following sharp growth and covering results for the set $S_{p,k+1}^*(B)$ due to Liu and Liu [24, Theorem 2] (cf. [17, 20]).

Corollary 3.2 If $f \in S^*_{p,k+1}(B)$, then

$$\frac{\|z\|}{(1+\|z\|^k)^{\frac{2(1-p)}{k}}} \le \|f(z)\| \le \frac{\|z\|}{(1-\|z\|^k)^{\frac{2(1-p)}{k}}}, \quad z \in B.$$

Consequently, $f(B) \supset B_{2^{-\frac{2(1-p)}{k}}}$. These estimations are sharp.

For $g(\zeta) = \frac{(1-\zeta)^{\alpha}}{(1+\zeta)^{\alpha}}$, where $0 < \alpha \leq 1$, we have the following sharp growth and covering results for the set $SS^*_{\alpha,k+1}(B)$ (cf. [23]).

Corollary 3.3 Let $f \in SS^*_{\alpha,k+1}(B)$. Then

$$\|z\| \exp \int_0^{\|z\|} \left[\left(\frac{1-x^k}{1+x^k}\right)^{\alpha} - 1 \right] \frac{\mathrm{d}x}{x} \le \|f(z)\| \le \|z\| \exp \int_0^{\|z\|} \left[\left(\frac{1+x^k}{1-x^k}\right)^{\alpha} - 1 \right] \frac{\mathrm{d}x}{x}, \quad z \in B.$$

Consequently, $f(B) \supset B_r$, where

$$r = \exp \int_0^1 \left[\left(\frac{1 - x^k}{1 + x^k} \right)^\alpha - 1 \right] \frac{\mathrm{d}x}{x}.$$

These estimations are sharp.

For $g(\zeta) = (1 - \alpha)\frac{1-\zeta}{1+\zeta} + \alpha$, where $0 \le \alpha < 1$, we have the following sharp growth and covering results for the set $AS^*_{\alpha,k+1}(B)$ (cf. [5, 19]).

Corollary 3.4 Let $f \in AS^*_{\alpha,k+1}(B)$.

(i) If $\alpha \in [0,1)$ and $\alpha \neq \frac{1}{2}$, then

$$\frac{\|z\|}{(1+(1-2\alpha)\|z\|^k)^{\frac{2(1-\alpha)}{k(1-2\alpha)}}} \le \|f(z)\| \le \frac{\|z\|}{(1-(1-2\alpha)\|z\|^k)^{\frac{2(1-\alpha)}{k(1-2\alpha)}}}$$

for $z \in B$. Consequently, $f(B) \supset B_r$, where

$$r = \frac{1}{(2 - 2\alpha)^{\frac{2(1 - \alpha)}{k(1 - 2\alpha)}}}$$

These estimations are sharp.

(ii) If $\alpha = \frac{1}{2}$, then

$$||z|| \exp\left(-\frac{1}{k}||z||^{k}\right) \le ||f(z)|| \le ||z|| \exp\left(\frac{1}{k}||z||^{k}\right), \quad z \in B$$

Consequently, $f(B) \supset B_r$, where

$$r = \exp\left(-\frac{1}{k}\right)$$

These estimations are sharp.

For $g = \frac{1}{q_{\rho}}$, where

$$q_{\rho}(\zeta) = 1 + \frac{4(1-\rho)}{\pi^2} \left(\log\frac{1+\sqrt{\zeta}}{1-\sqrt{\zeta}}\right)^2$$

and $0 \le \rho < 1$, we have the following sharp growth and covering results for the set $PS^*_{\rho,k+1}(B)$ (cf. [1, Theorem 2.5], [13], [27] and [31, Theorem 2.3]).

358

Corollary 3.5 If $f \in PS^*_{\alpha,k+1}(B)$, then

$$-\frac{16(1-\rho)}{\pi^2} \int_0^{\|z\|} \frac{1}{x} (\tan^{-1}\sqrt{x^k})^2 \mathrm{d}x \le \log\frac{\|f(z)\|}{\|z\|} \le \frac{4(1-\rho)}{\pi^2} \int_0^{\|z\|} \frac{1}{x} \left(\log\frac{1+\sqrt{x^k}}{1-\sqrt{x^k}}\right)^2 \mathrm{d}x.$$

Consequently, $f(B) \supset B_r$, where

$$r = \exp\left(-\frac{16(1-\rho)}{\pi^2}\int_0^1 \frac{1}{x} (\tan^{-1}\sqrt{x^k})^2 \mathrm{d}x\right).$$

These estimations are sharp.

4 Coefficient Bounds

We now obtain an estimate for the (k + 1)-th order coefficients of mappings in the set $S_{g,k+1}^*(B)$ as in [12, Theorem 24] (cf. [8, Theorem 2.14], [22, Theorem 2.4] and [29, Theorem 3]). Moreover, we will show that this estimation is sharp.

Theorem 4.1 Let $g: U \to \mathbb{C}$ satisfy the conditions of Assumption 2.1 and $f \in S^*_{g,k+1}(B)$. Then

$$\left|\frac{1}{(k+1)!}l_w(D^{k+1}f(0)(w^{k+1}))\right| \le \frac{1}{k}|g'(0)|, \quad ||w|| = 1, \quad l_w \in T(w).$$

$$(4.1)$$

This estimation is sharp.

Proof Since $f \in S^*_{q,k+1}(B)$, f has the Taylor expansion

$$f(z) = z + \frac{1}{(k+1)!} D^{k+1} f(0)(z^{k+1}) + \cdots, \quad z \in B.$$

Let $h(z) = [Df(z)]^{-1}f(z)$. Then h has the Taylor expansion

$$h(z) = z - \frac{k}{(k+1)!} D^{k+1} f(0)(z^{k+1}) + \cdots, \quad z \in B.$$

Fix $w \in \partial B$, $l_w \in T(w)$. Let

$$p(\zeta) = \begin{cases} \frac{1}{\zeta} l_w(h(\zeta w)), & \zeta \in U \setminus \{0\}, \\ 1, & \zeta = 0. \end{cases}$$

Then p is a holomorphic function on U and has the Taylor expansion

$$p(\zeta) = 1 - \frac{k}{(k+1)!} l_w(D^{k+1}f(0)(w^{k+1}))\zeta^k + \cdots, \quad \zeta \in U.$$

Therefore, we obtain

$$p^{(k)}(0) = -\frac{k}{k+1}l_w(D^{k+1}f(0)(w^{k+1}))$$

Also, there exists a holomorphic function \widetilde{p} on U such that $p(\zeta) = 1 + \zeta^k \widetilde{p}(\zeta)$ for $\zeta \in U$. Since $h \in \mathcal{M}_g$, we deduce that $p(\zeta) \in g(U)$ for $\zeta \in U$. Therefore, $g^{-1} \circ p(\cdot) : U \to U$ and $g^{-1} \circ p(0) = 0$. Since $g^{-1}(1) = 0$, there exists a holomorphic function G(w) on a neighborhood of 1 such that $g^{-1}(w) = (w-1)G(w)$. Therefore, we obtain $g^{-1} \circ p(\zeta) = \zeta^k \tilde{p}(\zeta)G(p(\zeta))$ on a neighborhood of 0. Then, by the Schwarz lemma, we obtain $|g^{-1} \circ p(\zeta)| \leq |\zeta|^k$ for $\zeta \in U$. Thus, there exists a holomorphic function $H(\zeta)$ on U such that $g^{-1} \circ p(\zeta) = \zeta^k H(\zeta)$ on U and $|H(\zeta)| \leq 1$ on U. Then, $p(\zeta) = g(\zeta^k H(\zeta))$. Hence we obtain $|p^{(k)}(0)| \leq k! |g'(0)|$. Thus, we obtain

$$\left|\frac{1}{(k+1)!}l_w(D^{k+1}f(0)(w^{k+1}))\right| = \frac{1}{k}\frac{1}{k!}|p^{(k)}(0)| \le \frac{1}{k}|g'(0)|.$$

We will show that the estimation (4.1) is sharp. Let f_u be as in (3.2). Then

$$f_w(\zeta w) = \zeta w - \frac{1}{k}g'(0)\zeta^{k+1}w + \cdots$$

by Lemma 3.1(ii). Therefore,

$$\left|\frac{1}{(k+1)!}l_w(D^{k+1}f_w(0)(w^{k+1}))\right| = \frac{1}{k}|g'(0)|.$$

This completes the proof.

Moreover, if g is convex, then we obtain the following theorem.

Theorem 4.2 Let $g: U \to \mathbb{C}$ be a convex function which satisfies the conditions of Assumption 2.1 and $f \in S^*_{g,k+1}(B)$. Then

$$\left|\frac{1}{m!}l_w(D^m f(0)(w^m))\right| \le \frac{1}{m-1}|g'(0)|, \quad ||w|| = 1, \quad l_w \in T(w)$$

for $m = k + 1, \cdots, 2k$.

Proof Let $h(z) = [Df(z)]^{-1}f(z)$ and

$$p(\zeta) = \begin{cases} \frac{1}{\zeta} l_w(h(\zeta w)), & \zeta \in U \setminus \{0\}\\ 1, & \zeta = 0. \end{cases}$$

Since g is convex and p is subordinate to g, we obtain

$$\left|\frac{p^{(m)}}{m!}(0)\right| \le |g'(0)|, \quad m \ge 1$$
(4.2)

by Rogosinski's Theorem (cf. [30]). Since

$$p(\zeta) = \sum_{m=1}^{\infty} l_w \left(\frac{1}{m!} D^m h(0)(w^m)\right) \zeta^{m-1},$$

we obtain

$$\left|l_w\left(\frac{1}{m!}D^mh(0)(w^m)\right)\right| \le |g'(0)| \tag{4.3}$$

by (4.2). Since f(z) - z has a zero of order k + 1 at z = 0,

$$\frac{1}{m!}D^m f(0) = \frac{-1}{m-1}\frac{1}{m!}D^m h(0), \quad m = k+1, \cdots, 2k$$
(4.4)

by [25, (2.3)]. From (4.3) and (4.4), we obtain

$$\left|\frac{1}{m!}l_w(D^m f(0)(w^m))\right| \le \frac{1}{m-1}|g'(0)|, \quad ||w|| = 1, \quad l_w \in T(w)$$

for $m = k + 1, \dots, 2k$. This completes the proof.

Now, we obtain the following corollaries from Theorem 4.2. For the norm of the *m*-th order Fréchet derivative of a mapping in $S_{g,k+1}^*(B)$, where $m = k + 1, \dots, 2k$, we have the following estimate by an argument similar to that in the proof of [12, Corollary 25] (cf. [8, Corollary 2.15]).

Corollary 4.1 Let $g: U \to \mathbb{C}$ be a convex function which satisfies the conditions of Assumption 2.1 and $f \in S^*_{q,k+1}(B)$. Then

$$\left\|\frac{1}{m!}D^m f(0)\right\| \le c_m |g'(0)|$$

for $m = k + 1, \dots, 2k$, where $c_m = \frac{m^{\frac{m}{m-1}}}{m-1}$.

For the mappings in $S_{k+1}^*(B)$ (respectively $S_{p,k+1}^*(B)$, $SS_{\alpha,k+1}^*(B)$, $AS_{\alpha,k+1}^*(B)$, $PS_{\rho,k+1}^*(B)$), we obtain the following estimates (cf. [12, Corollaries 26 and 27], [13], [21] and [25, Theorems 4 and 5]).

Corollary 4.2 For $m = k + 1, \dots, 2k$, ||w|| = 1 and $l_w \in T(w)$, we have the following estimates:

(i) If $f \in S^*_{k+1}(B)$, then

$$\left|\frac{1}{m!}l_w(D^mf(0)(w^m))\right| \le \frac{2}{m-1}$$

(ii) If $f \in S^*_{p,k+1}(B)$, then

$$\left|\frac{1}{m!}l_w(D^m f(0)(w^m))\right| \le \frac{2(1-p)}{m-1}.$$

(iii) If $f \in SS^*_{\alpha,k+1}(B)$, then

$$\left|\frac{1}{m!}l_w(D^m f(0)(w^m))\right| \le \frac{2\alpha}{m-1}.$$

(iv) If $f \in AS^*_{\alpha,k+1}(B)$, then

$$\left|\frac{1}{m!}l_w(D^m f(0)(w^m))\right| \le \frac{2(1-\alpha)}{m-1}.$$

(v) If $f \in PS^*_{\rho,k+1}(B)$, then

$$\left|\frac{1}{m!}l_w(D^m f(0)(w^m))\right| \le \frac{16(1-\rho)}{\pi^2(m-1)}.$$

These estimations are sharp for m = k + 1.

Corollary 4.3 Let c_m be as in Corollary 4.1. For $m = k + 1, \dots, 2k$, we have the following estimates:

(i) If $f \in S_{k+1}^{*}(B)$, then

$$\left\|\frac{1}{m!}D^mf(0)\right\| \le 2c_m.$$

(ii) If $f \in S^*_{p,k+1}(B)$, then

$$\left\|\frac{1}{m!}D^m f(0)\right\| \le 2(1-p)c_m.$$

(iii) If $f \in SS^*_{\alpha,k+1}(B)$, then

$$\left\|\frac{1}{m!}D^mf(0)\right\| \le 2\alpha c_m.$$

(iv) If $f \in AS^*_{\alpha,k+1}(B)$, then

$$\left\|\frac{1}{m!}D^mf(0)\right\| \le 2(1-\alpha)c_m.$$

(v) If $f \in PS^*_{\rho,k+1}(B)$, then

$$\left\|\frac{1}{m!}D^mf(0)\right\| \le \frac{16(1-\rho)c_m}{\pi^2}.$$

Let B be the unit polydisc U^n in \mathbb{C}^n . Since

$$\begin{split} \left| \frac{1}{m!} D^m f(0) \right| &= \sup_{\|w\|=1} \left\| \frac{1}{m!} D^m f(0)(w^m) \right\| \\ &= \sup_{\|w_1\|=\|w_2\|=\dots=\|w_m\|=1} \left\| \frac{1}{m!} D^m f(0)(w^m) \right\| \\ &= \sup_{\|w_1\|=\|w_2\|=\dots=\|w_m\|=1} \max_{1 \le i \le n} \left| l_i \left(\frac{1}{m!} D^m f(0)(w^m) \right) \right|, \end{split}$$

where $l_i \in T(w)$ with $l_i(y) = \frac{y_i}{w_i}$, we obtain the following corollaries (cf. [25, Theorems 1 and 2]).

Corollary 4.4 Let $g: U \to \mathbb{C}$ be a convex function which satisfies the conditions of Assumption 2.1 and $f \in S^*_{g,k+1}(U^n)$. Then

$$\left\|\frac{1}{m!}D^m f(0)\right\| \le \frac{1}{m-1}|g'(0)|, \quad \|w\| = 1$$

for $m = k + 1, \dots, 2k$. This estimation is sharp for m = k + 1.

Corollary 4.5 For $m = k + 1, \dots, 2k$, we have the following estimates: (i) If $f \in S^*_{k+1}(U^n)$, then

$$\left\|\frac{1}{m!}D^mf(0)\right\| \le \frac{2}{m-1}.$$

(ii) If $f \in S^*_{p,k+1}(U^n)$, then

$$\left\|\frac{1}{m!}D^mf(0)\right\| \le \frac{2(1-p)}{m-1}.$$

(iii) If $f \in SS^*_{\alpha,k+1}(U^n)$, then

$$\left\|\frac{1}{m!}D^mf(0)\right\| \le \frac{2\alpha}{m-1}.$$

362

(iv) If $f \in AS^*_{\alpha,k+1}(U^n)$, then

$$\left\|\frac{1}{m!}D^m f(0)\right\| \le \frac{2(1-\alpha)}{m-1}.$$

(v) If $f \in PS^*_{\rho,k+1}(U^n)$, then

$$\left\|\frac{1}{m!}D^m f(0)\right\| \le \frac{16(1-\rho)}{\pi^2(m-1)}$$

These estimations are sharp for m = k + 1.

Let g be a function which satisfies the conditions of Assumption 2.1. Moreover, we assume that $\frac{1}{g}$ is convex. In this case, we will obtain the estimation of $\|\frac{1}{2}D^2f(0)\|$ and $\|\frac{1}{3!}D^3f(0)\|$ for $S_g^*(U^n)$ (cf. [1, Theorem 3.4], [7, Theorem 5.3.1], [13] and [32, Theorem 5]). First, we give a lemma.

Lemma 4.1 Let g be a function which satisfies the conditions of Assumption 2.1. Moreover, we assume that $\frac{1}{g}$ is convex. Let $f \in S_g^*(U^n)$, $h(z) = [Df(z)]^{-1}f(z)$ and let the Taylor expansion of $\frac{z_i}{h_i(z)}$ at z = 0 be

$$\frac{z_i}{h_i(z)} = 1 + \sum_{m=1}^{\infty} Q_i^{(m)}(z),$$

where $Q_i^{(m)}$ is a homogeneous polynomial of degree m in z. Then

$$|Q_i^{(m)}(z)| \le |g'(0)| ||z||^m \tag{4.5}$$

holds for all $m = 1, 2, 3, \cdots$ and $z \in U^n$.

Proof Let $z \in U^n \setminus \{0\}$ be fixed. We may assume that $|z_i| = ||z||$ for all *i* by the maximum principle. Let

$$\psi(\zeta) = \frac{\zeta \frac{z_i}{\|z\|}}{h_i(\zeta \frac{z}{\|z\|})}, \quad \zeta \in U.$$

Since

$$I_a(y) = ||a|| \frac{y_i}{a_i} \in T(a)$$

for all $a \in U^n \setminus \{0\}$ with $|a_i| = ||a||$, we have

$$\frac{1}{\|a\|} l_a(h(a)) = \frac{h_i(a)}{a_i} \in g(U)$$

for all $a \in U^n \setminus \{0\}$ with $|a_i| = ||a||$. This implies that $\psi(\zeta) \in \frac{1}{g}(U)$ for all $\zeta \in U$. Since $\psi(0) = \frac{1}{g}(0) = 1$, we have $\psi \prec \frac{1}{g}$. Since $\frac{1}{g}$ is convex and

$$\psi(\zeta) = 1 + \sum_{m=1}^{\infty} Q_i^{(m)} \left(\frac{z}{\|z\|}\right) \zeta^m,$$

we obtain

$$Q_i^{(m)}\left(\frac{z}{\|z\|}\right) \le |g'(0)|$$

by Rogosinski's theorem (cf. [30]). This implies the inequality (4.5). This completes the proof.

Theorem 4.3 Let g be a function which satisfies the conditions of Assumption 2.1. Moreover, we assume that $\frac{1}{g}$ is convex. If $f \in S_g^*(U^n)$, then

$$\left\|\frac{1}{2!}D^2f(0)\right\| \le |g'(0)|, \quad \left\|\frac{1}{3!}D^3f(0)\right\| \le \frac{|g'(0)|}{2}(1+|g'(0)|).$$

 $\mathbf{Proof} \ \mathrm{Let}$

$$\varphi^{(2)}(z) = \frac{1}{2!}D^2 f(0)(z^2), \quad \varphi^{(3)}(z) = \frac{1}{3!}D^3 f(0)(z^3).$$

By [7, (5.3.8)],

$$\varphi^{(2)}(z) = (Q_1^{(1)}(z)z_1, \cdots, Q_n^{(1)}(z)z_n).$$

Then, by Lemma 4.1, we obtain

$$\|\varphi^{(2)}(z)\| \le |g'(0)| \|z\|^2.$$

By the proof of [7, Theorem 5.3.1],

$$2\varphi^{(3)}(z) = \begin{pmatrix} Q_1^{(2)}(z)z_1\\ \vdots\\ Q_n^{(2)}(z)z_n \end{pmatrix} + \begin{pmatrix} a_{11}z_1\varphi_1^{(2)}(z) + \dots + a_{1n}z_1\varphi_n^{(2)}(z)\\ \vdots\\ a_{n1}z_n\varphi_1^{(2)}(z) + \dots + a_{nn}z_n\varphi_n^{(2)}(z) \end{pmatrix},$$

where

$$Q_i^{(1)}(z) = a_{i1}z_1 + \dots + a_{in}z_n.$$

By Lemma 4.1, we obtain

$$2\|\varphi^{(3)}(z)\| \le |g'(0)| \|z\|^3 + |g'(0)|^2 \|z\|^3$$

This completes the proof.

Corollary 4.6 (i) If $f \in S^*(U^n)$, then

$$\left\|\frac{1}{3!}D^3f(0)\right\| \le 3.$$
 (4.6)

 $This\ estimation\ is\ sharp.$

(ii) If $f \in S_p^*(U^n)$, then

$$\left\|\frac{1}{3!}D^3f(0)\right\| \le (1-p)(3-2p). \tag{4.7}$$

 $This\ estimation\ is\ sharp.$

(iii) If $f \in SS^*_{\alpha}(U^n)$, then

$$\left\|\frac{1}{3!}D^3f(0)\right\| \le \alpha(1+2\alpha).$$

(iv) If $f \in AS^*_{\alpha}(U^n)$, then

$$\left\|\frac{1}{3!}D^3f(0)\right\| \le (1-\alpha)(3-2\alpha).$$

(v) If $f \in PS^*_{\rho}(U^n)$, then

$$\left\|\frac{1}{3!}D^3f(0)\right\| \le \frac{8(1-\rho)}{\pi^2} \left(1 + \frac{16(1-\rho)}{\pi^2}\right).$$

Sharp Growth Theorems and Coefficient Bounds

Proof It suffices to show that the estimations (4.6) and (4.7) are sharp. We can verify that the mapping

$$f(z) = \left(\frac{z_1}{(1-z_1)^{2(1-p)}}, z_2, \cdots, z_n\right), \quad z = (z_1, \cdots, z_n) \in U^n$$

attains the equalities in (4.6) and (4.7).

Remark 4.1 The upper bounds in (iii), (iv) and (v) of Corollary 4.6 may not be sharp. The reason is that the sharp upper bounds for the third coefficients of functions in SS^*_{α} , AS^*_{α} and PS^*_{ρ} are less than the bounds in Corollary 4.6 (cf. [27, Theorem 3]).

For $S_{q,k+1}^*(U^n)$, we obtain the following estimation.

Theorem 4.4 Let g be a function which satisfies the conditions of Assumption 2.1. Moreover, we assume that $\frac{1}{g}$ is convex. If $f \in S^*_{g,k+1}(U^n)$, then

$$\left\|\frac{1}{m!}D^m f(0)\right\| \le \frac{1}{m-1}|g'(0)|$$

for $m = k + 1, \dots, 2k$. This estimation is sharp for m = k + 1.

 $\mathbf{Proof} \ \mathrm{Let}$

$$\varphi^{(m)}(z) = \frac{1}{m!} D^m f(0)(z^m).$$

Since f(z) - z has a zero of order k + 1 at z = 0, we have $\varphi^{(m)} = 0$ for $m = 2, \dots, k$. Then we obtain

$$\sum_{m=k+1}^{\infty} (m-1)\varphi^{(m)}(z) = [(I + J_{\varphi^{(k+1)}}(z) + \cdots) \\ \times \begin{pmatrix} \sum_{m=1}^{\infty} Q_1^{(m)}(z) & 0 \\ & \ddots \\ 0 & \sum_{m=1}^{\infty} Q_n^{(m)}(z) \end{pmatrix} \\ \times (I - J_{\varphi^{(k+1)}}(z) + \cdots)] \cdot (z + \varphi^{(k+1)}(z) + \cdots)$$
(4.8)

from [7, p. 173]. Comparing *m*-th degree terms on both sides of (4.8), where $m = 2, \dots, k$, we obtain

$$Q_i^{(m)}(z) = 0$$
 for $i = 1, \dots, n$ and $m = 1, \dots, k-1$.

Therefore, comparing *m*-th degree terms on both sides of (4.8), where $m = k + 1, \dots, 2k$, we obtain

$$(m-1)\varphi^{(m)}(z) = (Q_1^{(m-1)}(z)z_1, \cdots, Q_n^{(m-1)}(z)z_n)$$

for $m = k + 1, \dots, 2k$. Then by Lemma 4.1, we obtain

$$\|\varphi^{(m)}(z)\| \le \frac{1}{m-1} |g'(0)| \|z\|^m$$

for $m = k + 1, \dots, 2k$. This completes the proof.

5 Examples

Let $B^n(p)$ denote the unit ball in \mathbb{C}^n with respect to a *p*-norm $\|\cdot\|$, $1 \le p \le \infty$, where

$$|z|| = \begin{cases} \left[\sum_{j=1}^{n} |z_j|^p\right]^{\frac{1}{p}}, & 1 \le p < \infty, \\ \max_{1 \le j \le n} |z_j|, & p = \infty. \end{cases}$$

In Lemma 3.1, we give an example of a mapping for $S^*_{g,k+1}(B)$. In this section, we will give other examples in the case $B = B^n(p)$ and g(U) is a starlike domain with respect to 1.

Let $\alpha \in [0,1]$. Hamada, Honda and Kohr [13] showed that if f is a parabolic starlike mapping of order ρ on U, then $\Psi_{n,\alpha}(f)$ is a parabolic starlike mapping of order ρ on $B^n(p)$, where

$$\Psi_{n,\alpha}(f)(z) = \left(f(z_1), \widetilde{z}\left(\frac{f(z_1)}{z_1}\right)^{\alpha}\right)$$

for $z = (z_1, \tilde{z}) \in B^n(p)$. The branch of the power function is chosen so that

$$\left(\frac{f(z_1)}{z_1}\right)^{\alpha}\Big|_{z_1=0} = 1.$$

We will generalize the above result to $f \in S^*_{g,k+1}$ in the case where g(U) is a starlike domain with respect to 1. This result gives many examples of mappings in $S^*_{g,k+1}(B^n(p))$.

Theorem 5.1 Assume that g satisfies Assumption 2.1 and g(U) is a starlike domain with respect to 1. Let $\alpha \in [0,1]$. Let $\Psi_{n,\alpha}(f)$ be as above. If $f \in S^*_{g,k+1}$, then $F_{\alpha} = \Psi_{n,\alpha}(f) \in S^*_{g,k+1}(B^n(p))$, where $1 \le p \le \infty$.

Proof When 1 , <math>T(z) ($z \neq 0$) consists of those functionals given by

$$l_z(w) = \sum_{j=1}^n \frac{1}{\|z\|^{p-1}} |z_j|^p \frac{w_j}{z_j}$$

(cf. [33]). Since $f \in S^*_{q,k+1}$, we obtain

$$h(z_1) = \frac{f(z_1)}{z_1 f'(z_1)} \in g(U).$$
(5.1)

By direct computations, we have

$$[DF_{\alpha}(z)]^{-1}F_{\alpha}(z) = (z_1h(z_1), (1 - \alpha + \alpha h(z_1))\tilde{z})$$

for $z = (z_1, \tilde{z}) \in B^n(p)$. Then

$$\frac{1}{\|z\|} l_z([DF_\alpha(z)]^{-1}F_\alpha(z)) = \frac{|z_1|^p + \alpha \|\tilde{z}\|^p}{\|z\|^p} h(z_1) + \frac{(1-\alpha)\|\tilde{z}\|^p}{\|z\|^p} \in g(U)$$

by (5.1). Therefore, $F_{\alpha} \in S^*_{g,k+1}(B^n(p))$. The proof for the case p = 1 or $p = \infty$ is similar. This completes the proof.

Theorem 5.2 Assume that g satisfies Assumption 2.1 and g(U) is starlike with respect to 1. Then $f_1 \in S^*_{q,k+1}$ if and only if $f(z) = (f_1(z_1), z_2, \dots, z_n) \in S^*_{q,k+1}(B^n(p))$, where $1 \le p \le \infty$. **Proof** When $p = \infty$, T(z) ($z \neq 0$) consists of those functionals l_z given by

$$l_{z}(w) = \sum_{|z_{k}| = ||z||} t_{k} ||z|| \frac{w_{k}}{z_{k}}, \quad t_{k} \ge 0, \quad \sum_{|z_{k}| = ||z||} t_{k} = 1$$

(cf. [33]). Then

$$\frac{1}{\|z\|} l_z([Df(z)]^{-1}f(z)) = \begin{cases} 1, & |z_1| \neq \|z\|, \\ t_1 \frac{f_1}{z_1 f_1'} + (1-t_1)1, & |z_1| = \|z\|. \end{cases}$$

Since g(U) is a starlike domain with respect to 1, $f_1 \in S^*_{g,k+1}$ if and only if $f \in S^*_{g,k+1}(B^n(p))$. The proof in the case $p < \infty$ is similar.

Furthermore, if g(U) is convex, then we obtain the following theorem.

Theorem 5.3 Assume that g satisfies Assumption 2.1 and g(U) is convex. Then f_1, f_2, \cdots , $f_n \in S^*_{g,k+1}$ if and only if $f(z) = (f_1(z_1), f_2(z_2), \cdots, f_n(z_n)) \in S^*_{g,k+1}(B^n(p))$, where $1 \le p \le \infty$.

Proof When p = 1, T(z) ($z \neq 0$) consists of those functionals given by

$$l_z(w) = \sum_{z_j \neq 0} \frac{|z_j|}{z_j} w_j + \sum_{z_j = 0} \alpha_j w_j, \quad |\alpha_j| \le 1$$

(cf. [33]). Then

$$\frac{1}{\|z\|} l_z([Df(z)]^{-1}f(z)) = \sum_{z_j \neq 0} \frac{|z_j|}{\|z\|} \frac{f_j(z_j)}{z_j f'_j(z_j)}.$$

Since g(U) is convex, $f_1, f_2 \cdots, f_n \in S^*_{g,k+1}$ if and only if $f \in S^*_{g,k+1}(B^n(p))$. The proof in the case p > 1 is similar.

Acknowledgement The authors thank the referee for helpful comments and suggestions.

References

- [1] Ali, R. M., Starlikeness associated with parabolic regions, Int. J. Math. Math. Sci., 2005, 2005, 561–570.
- [2] Barnard, R. W., FitzGerald, C. H. and Gong, S., The growth and ¹/₄-theorems for starlike functions in Cⁿ, Pacific J. Math., 150, 1991, 13–22.
- [3] Cartan, H., Sur la possibilité d'étendre aux fonctions de plusieurs variables complexes, La théorie des fonctions univalents, Lecons sur les Fonctions Univalents ou Multivalentes, Paul Montel (ed.), Gauthier-Villars, Pairs, 1933, 129–155.
- Chuaqui, M., Applications of subordination chains to starlike mappings in Cⁿ, Pacific J. Math., 168, 1995, 33–48.
- [5] Feng, S. and Lu, K., The growth theorem for almost starlike mappings of order α on bounded starlike circular domains, *Chin. Quart. J. Math.*, **15**, 2000, 50–56.
- [6] FitzGerald, C. H. and Thomas, C., Some bounds on convex mappings in several complex variables, *Pacific J. Math.*, 165, 1994, 295–320.
- [7] Gong, S., The Bieberbach Conjecture, Amer. Math. Soc. Intern. Press, Cambridge, MA, 1999.
- [8] Graham, I., Hamada, H. and Kohr, G., Parametric representation of univalent mappings in several complex variables, *Canad. J. Math.*, 54(2), 2002, 324–351.

- [9] Graham, I. and Kohr, G., Geometric Function Theory in One and Higher Dimensions, Marcel Dekker Inc., New York, 2003.
- [10] Gurganus, K., Φ-like holomorphic functions in Cⁿ and Banach spaces, Trans. Amer. Math. Soc., 205, 1975, 389–406.
- [11] Hamada, H., Starlike mappings on bounded balanced domains with C¹-plurisubharmonic defining functions, Pacific J. Math., 194, 2000, 359–371.
- [12] Hamada, H., Honda, T. and Kohr, G., Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation, J. Math. Anal. Appl., 317, 2006, 302–319.
- [13] Hamada, H., Honda, T. and Kohr, G., Parabolic starlike mappings in several complex variables, Manuscripta Math., 123, 2007, 301–324.
- [14] Hamada, H. and Kohr, G., Subordination chains and the growth theorem of spirallike mappings, Mathematica (Cluj), 42(65), 2000, 153–161.
- [15] Hamada, H. and Kohr, G., Growth and distortion results for convex mappings in infinite dimensional spaces, Complex Var. Theory Appl., 47, 2002, 291–301.
- [16] Hamada, H. and Kohr, G., Φ-like and convex mappings in infinite dimensional spaces, Rev. Roumaine Math. Pures Appl., 47, 2002, 315–328.
- [17] Hamada, H., Kohr, G. and Liczberski, P., Starlike mappings of order α on the unit ball in complex Banach spaces, *Glas. Mat. Ser.* III, **36**(56), 2001, 39–48.
- [18] Honda, T., The growth theorem for k-fold symmetric convex mappings, Bull. London Math. Soc., 34, 2002, 717–724.
- [19] Kohr, G., Certain sufficient conditions of almost starlikeness of order ¹/₂ on the unit ball in Cⁿ, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 19, 1996, 13–25.
- [20] Kohr, G., On starlikeness and strongly starlikeness of order α in \mathbb{C}^n , Mathematica (Cluj), 40(63), 1998, 95–109.
- [21] Kohr, G., On some best bounds for coefficients of subclasses of univalent holomorphic mappings in Cⁿ, Complex Var. Theory Appl., 36, 1998, 261–284.
- [22] Kohr, G., Using the method of Löwner chains to introduce some subclasses of univalent holomorphic mappings in Cⁿ, Rev. Roumaine Math. Pures Appl., 46, 2001, 743–760.
- [23] Liu, H. and Li, X., The growth theorem for strongly starlike mappings of order α on bounded starlike circular domains, *Chin. Quart. J. Math.*, **15**, 2000, 28–33.
- [24] Liu, T. and Liu, X., On the precise growth, covering and distortion theorem for normalized biholomorphic mappings, J. Math. Anal. Appl., 295, 2004, 404–417.
- [25] Liu, T. and Liu, X., A refinement about estimation of expansion coefficients for normalized biholomorphic mappings, Sci. in China, Ser. A, 48, 2005, 865–879.
- [26] Lloyd, N., Degree Theory, Cambridge University Press, Cambridge, 1978.
- [27] Ma, W. and Minda, D., A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I, Internat. Press, Cambridge, MA, 1994.
- [28] Pommerenke, C., Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.
- [29] Poreda, T., On the univalent holomorphic maps of the unit polydisc in Cⁿ which have the parametric representation, I-the geometrical properties, Ann. Univ. Mariae Curie Sklodowska, Sect. A, 41, 1987, 105–113.
- [30] Rogosinski, W., On the coefficients of subordinate functions, Proc. London Math. Soc. (2), 48, 1943, 48-82.
- [31] Rønning, F., On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 45, 1991, 117–122.
- [32] Rønning, F., Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118, 1993, 189–196.
- [33] Suffridge, T. J., Starlike and convex maps in Banach spaces, Pacific J. Math., 46, 1973, 474–489.
- [34] Suffridge, T. J., Biholomorphic mappings of the ball onto convex domains, Abstract Amer. Math. Soc., 11(66), 1990, 46.
- [35] Zhang, W. J. and Dong, D. Z., A growth theorem and a ¹/₄-theorem for starlike mappings in Banach spaces (in Chinese), Chin. Ann. Math., 13A(4), 1992, 417–423.