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Abstract The semiclassical limit in the transient quantum drift-diffusion equations with

isentropic pressure in one space dimension is rigorously proved. The equations are supple-

mented with homogeneous Neumann boundary conditions. It is shown that the semiclas-

sical limit of this solution solves the classical drift-diffusion model. In the meanwhile, the

global existence of weak solutions is proved.
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1 Introduction

This is one of the series on the mathematical analysis of the quantum drift-diffusion (QDD)

model which is one kind of the quantum macroscopic models for miniaturized semiconductor

devices. For semiconductor physics and modelling, we refer to the references [3, 8, 12, 14].

One could find the full picture on quantum models in the review papers [7, 13]. The quantum

macroscopic models could be derived from the mixed state Schrödinger system, or equivalently

the Wigner equation by Wigner transformation. Compared with those microscopic models like

Schrödinger-Poisson or Wigner-Poisson system, these macroscopic quantum models can save

more time and energy in numerical simulations.

The scaled QDD model takes the form

nt = div
[

− ε2n∇
(△√

n√
n

)

+ ∇(Pn(n)) − n∇V
]

,

pt = div
[

− ξε2p∇
(△√

p
√

p

)

+ ∇(Pp(p)) + p∇V
]

,

λ2△V = n − p − C(x),

(1.1)

where n = n(x, t) is the electron density, p = p(x, t) is the hole density and V = V (x, t) is the

electrostatic potential. The pressure functions Pn and Pp are usually of the forms Pn(n) = θnnα

and Pp(p) = θpp
β with θn > 0, θp > 0, α ≥ 1 and β ≥ 1. ε > 0 is the scaled Plank constant,
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λ > 0 is the ratio of the Debye length to the characteristic length (e.g. the device diameter),

and ξ > 0 is the ratio of the effective masses of electrons and holes. The doping profile C(x)

represents the distribution of charged background ions. The system will be considered in a

bounded domain Ω ∈ R
N and fixed time interval (0, T ] with reasonable boundary and initial

conditions. Without loss of generality, θn and θp are normalized to be 1 throughout this paper.

The QDD equations equal up to a quantum correction of classical drift-diffusion (DD) model.

The quantum correction terms are −ε2n∇(△
√

n√
n

) and −ξε2p∇(
△√

p√
p

), respectively, in (1.1)1 and

(1.1)2. The semiclassical limit ε → 0 describes the relation between QDD model and DD model.

Formally, letting ε → 0, one has the classical DD model

nt = div(∇nα − n∇V ),

pt = div(∇pβ + p∇V ),

λ2△V = n − p − C(x).

The main purpose of the present paper is to analyze rigorously the semiclassical limit.

The previous mathematical analysis on (1.1) is mainly about isothermal model (i.e. α = β =

1). For the stationary equations, Abdallah and Unterreiter [2] proved the existence of solutions

and studied the semiclassical limit. For the transient unipolar equation (i.e. only one carrier),

Jüngel and Pinnau [9, 10] established a positivity preserving scheme and got the existence of

the solution in a weak sense for fixed ε and λ in one dimension. Recently, Chen and Ju [4, 6]

got the first semiclassical limit for transient unipolar and bipolar equations in one dimension

with homogeneous Neumann boundary conditions. Indeed, the treatment of transient QDD in

multi-dimension is currently not known.

As far as the isentropic model (i.e. α > 1 and β > 1) is concerned, X. Q. Chen [5] studied the

unipolar model with homogeneous Neumann boundary conditions in 1-dimension, and obtained

the semiclassical limit under the assumption that the exponent of pressure is less than or equal

to 3
2 . Clearly, this is not satisfactory from physical consideration. It also seems impossible to

get rid of (or weaken) such assumption by the approaches used in [5]. In this paper, we would

employ different ideas to prove the semiclassical limit to the solution of (1.1) with α, β ∈ (1, 3].

We will focus on 1-dimensional case with Ω = (0, 1). Since all the results discussed here are

obtained for fixed λ, ξ > 0, for convenience, we let λ = ξ = 1 through the paper. To search

for physically reasonable solutions, namely, nonnegative solutions for densities n and p, with

the help of the so-called quantum quasi-Fermi levels F and G, it is equivalent to consider the

system, with n = ρ2 and p = η2, namely

(ρ2)t = (ρ2Fx)x,

(η2)t = (η2Gx)x,

− ε2 ρxx

ρ
+

α

α − 1
ρ2(α−1) − V = F,

− ε2 ηxx

η
+

β

β − 1
η2(β−1) + V = G,

Vxx = ρ2 − η2 − C(x).

(1.2)

We will consider an insulated model, i.e. a model with the following homogenous Neumann
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boundary condition,

ρx = ηx = Fx = Gx = Vx = 0, on ∂Ω, (1.3)

and the initial condition

ρ|t=0 = ρ0(x) ≥ 0, η|t=0 = η0(x) ≥ 0. (1.4)

Also, we assume the compatible condition
∫

Ω

(ρ2
0 − η2

0 − C(x))dx = 0. (1.5)

We will use the following notations in this paper.

(1) The Sobolev spaces, Wm,p (Wm,2 = Hm).

(2) The Orlicz LΨ(Ω) with the Young function Ψ(s) = s(ln s − 1) + 1, here the definition

and basic properties of Orlicz space can be found in [1].

(3) For any Banach space B,

Lp(0, T ; B) = {f : ‖ ‖f‖B‖Lp(0,T ) ≤ C}.

Let E = Vx, 0 < T < ∞ be given and QT = Ω × (0, T ].

The main results in this paper are the following two theorems.

Theorem 1.1 (Existence of Solutions) Let α, β > 1. Assume C(x) ∈ L∞(Ω) and

ρ2
0 ∈ LΨ(Ω), η2

0 ∈ LΨ(Ω), (1.6)

ρ2
0 − ln ρ2

0 ∈ L1(Ω), η2
0 − ln η2

0 ∈ L1(Ω), (1.7)

(ρ0)x ∈ L2(Ω), (η0)x ∈ L2(Ω). (1.8)

Then, there exist functions (ρε, ηε, Jε, Kǫ, Eε) satisfying

ρε, ηε ∈ L∞(0, T ; H1(Ω)) ∩ L2(0, T ; H2(Ω)), (1.9)

(ρ2
ε)t, (η2

ε)t ∈ L2(0, T ; (H1(Ω))′), (1.10)

Jε, Kε ∈ L2(QT ), Eε ∈ L∞(QT ), (1.11)

such that for all φ ∈ C∞
0 (QT ), it holds that

∫ T

0

〈(ρ2
ε)t, φ〉〈(H1)′,H1〉dt +

∫

QT

Jεφxdxdt = 0, (1.12)

∫ T

0

〈(η2
ε)t, φ〉〈(H1)′,H1〉dt +

∫

QT

Kεφxdxdt = 0, (1.13)

∫

QT

Jεφdxdt =

∫

QT

ε2(ρε)xx(2(ρε)xφ + ρεφx)dxdt

+

∫

QT

[α(ρε)
2α−2(ρ2

ε)xφ − Eερ
2
εφ]dxdt, (1.14)

∫

QT

Kεφdxdt =

∫

QT

ε2(ηε)xx(2(ηε)xφ + ηεφx)dxdt

+

∫

QT

[β(ηε)
2β−2(η2

ε)xφ + Eεη
2
εφ]dxdt, (1.15)

−
∫

QT

Eεφxdxdt =

∫

QT

((ρε)
2 − (ηε)

2 − C(x))φdxdt. (1.16)
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Remark 1.1 Theorem 1.1 shows that for fixed ε, (ρε, ηε, Jε, Kǫ, Eε) is a weak solution to

the problem (1.2)–(1.5) in the sense of (1.12)–(1.16).

Remark 1.2 One could show that the solutions ρε and ηε have the regularity up to the

third order by the same method as in [4, 5].

Theorem 1.2 (Semiclassical Limit) Let α, β ∈ (1, 3]. Assume that (ρε, ηε, Jε, Kǫ, Eε) is

the solution obtained in Theorem 1.1. Then as ε → 0+, for a.e. t ∈ (0, T ), it holds that

ρ2
ε → n strongly in L2(0, T ; C0,γ1(Ω)) for some 0 < γ1 < 1, (1.17)

η2
ε → p strongly in L2(0, T ; C0,γ2(Ω)) for some 0 < γ2 < 1, (1.18)

and

Jε ⇀ J weakly in L2(0, T ; L
2α

1+α (Ω)), (1.19)

Kε ⇀ K weakly in L2(0, T ; L
2β

1+β (Ω)), (1.20)

(ρ2
ε)t ⇀ nt weakly in L2(0, T ; (W 1, 2α

1+α (Ω))′), (1.21)

(η2
ε)t ⇀ pt weakly in L2(0, T ; (W 1,

2β

1+β (Ω))′), (1.22)

Eε ⇀ E weakly- ∗ in L∞(QT ), (1.23)

where (n, p, J, K, E) satisfies

∫ T

0

〈(n)t, φ〉〈(W 1, 2α
1+α )′,W

1, 2α
1+α 〉

dt +

∫

QT

Jφxdxdt = 0, (1.24)

∫ T

0

〈(p)t, φ〉
〈(W 1,

2β
1+β )′,W

1,
2β

1+β 〉
dt +

∫

QT

Kφxdxdt = 0, (1.25)

J = αnα−1nx − En, a.e., (1.26)

K = βpβ−1px + Ep, a.e., (1.27)

−
∫

QT

Eφxdxdt =

∫

QT

(n − p − C(x))φdxdt (1.28)

for all φ ∈ C∞
0 (QT ).

Remark 1.3 Theorem 1.2 shows that (n, p, E) is a weak solution to the classical drift-

diffusion model

nt = div(∇nα − nE),

pt = div(∇pβ + pE),

divE = n − p − C(x)

with homogeneous Neumann boundary condition in the sense of (1.24)–(1.28).

Remark 1.4 The above results are also true for periodic boundary conditions.

Let us explain the basic ideas involved in this paper briefly. The proofs of Theorems 1.1 and

1.2 depend on the entropy estimates and compactness arguments. The approximation solutions
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are constructed by semi-discretization in time. Thus the key points are to get uniform estimates

on approximation solutions with respect to time step for the existence of weak solutions and to ε

for the semiclassical limit, respectively. The difficulties come from the nonlinearity, singularity

and the higher order derivatives. In fact, it is much harder to get the uniform estimates on

solution with respect to ε. When 1 ≤ α ≤ 3
2 , [4, 5] get the key estimates on ‖ρx‖L∞(0,T ;L2(Ω))

and quantum terms by using − ρxx

ρ
as test function for the unipolar case. But for α > 3

2 , such

arguments fail to work. Roughly speaking, the most difficult point is to deal with ε2ρxxρx

from the quantum terms as ε → 0+. When 1 < α ≤ 2, our idea is to combine the entropy

estimates from 1 − 1
ρ2 and ln ρ2 in an efficient way to get the uniform estimates on ‖ρx‖L2(QT )

and ε‖ρxx‖L2(QT ). Then, with the help of the entropy estimates from the quantum-Fermi level

F , the semiclassical limit could be obtained. However, when 2 < α ≤ 3, we are not able to

obtain the uniform estimates on ‖ρx‖L2(QT ). Actually, we find that the estimate on ‖ρx‖L2(QT )

is not necessary in the discussion of semiclassical limit. To get the strong convergence, we

use the estimate on ‖(ρ2)x‖L2(QT ) instead. With the help of ‖(√ρτ )x‖L4(QT ) ≤ Cε−
1
2 , which

comes from the entropy estimates, we can control ε2ρxxρx by O(ε
1
2 ) through the expression

2ε2ρxx(
√

ρ)x
√

ρ. In the above discussion, we also overcome the difficulties coming from the

bipolar coupled terms.

Another interesting limit in (1.1) is the quasineutral limit λ → 0. This limit was studied first

in [15] for the corresponding thermal equilibrium problem in multi-dimension. In [11], the limit

has been shown rigorously for the transient equations in one dimension with Dirichlet-Neumann

boundary conditions.

The paper is organized as follows. In Section 2, we will construct the approximation problem,

which is a series of elliptic problems. In Section 3, we generate the a priori estimates which

are used not only in the proof for existence but also in guaranteeing the semiclassical limit.

Theorems 1.1 and 1.2 will be proved in Sections 4 and 5, respectively.

2 Approximation

In this section, we will describe the approximation to (1.2)–(1.5).

We divide the time interval (0, T ] into several subintervals (0, T ] =
K
⋃

k=1

(tk−1, tk] such that

tk − tk−1 = τ , k = 1, · · · , K. Given ρk−1 and ηk−1, we will solve the following problem

ρ2
k − ρ2

k−1

τ
= (ρ2

k(Fk)x)x,

η2
k − η2

k−1

τ
= (η2

k(Gk)x)x,

− ε2 (ρk)xx

ρk

+
α

α − 1
ρ
2(α−1)
k − Vk = Fk,

− ε2 (ηk)xx

ηk

+
β

β − 1
η
2(β−1)
k + Vk = Gk, (2.1)

(Vk)xx = ρ2
k − η2

k − C(x),

(ρk)x = (Fk)x = 0, on ∂Ω,

(ηk)x = (Gk)x = (Vk)x = 0, on ∂Ω.
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Also, (2.1) is supplemented with the following compatible condition

∫

Ω

(ρ2
k − η2

k − C(x))dx = 0. (2.2)

For the above problem, we have the following existence results.

Theorem 2.1 Let α > 1, β > 1. Assume ρk−1, ηk−1 ∈ C0,γ(Ω) for some 0 < γ < 1,

min
Ω

ρk−1 > 0 and min
Ω

ηk−1 > 0, C(x) ∈ L∞(Ω). Then problem (2.1)–(2.2) has a solution

(ρk, ηk, Gk, Fk, Vk) such that ρk, ηk ∈ W 4,p(Ω), Fk, Gk ∈ W 2,p(Ω), Vk ∈ W 2,p(Ω) (∀ p > 1) with

ρk ≥ ck > 0 and ηk ≥ ck > 0 for some positive constant ck.

One can modify slightly the proof in [5] and [4] to get Theorem 2.1, where the key idea is

to use exponential transformation. The details are omitted here.

Remark 2.1 It is worth noting that we cannot get the uniform positive lower bound on

the approximation solutions ρk and ηk, and therefore the limit weakens to be nonnegative.

3 Uniform Estimates — Entropy Inequalities

The approximate solutions for our problem are constructed in the following way. Introduce

the functions ρτ (x, t) = ρk(x), ητ (x, t) = ηk(x), Vτ (x, t) = Vk(x) if x ∈ Ω and t ∈ ((k− 1)τ, kτ ].

Then Fτ (x, t) = Fk(x) and Gτ (x, t) = Gk(x) for x ∈ Ω and t ∈ ((k−1)τ, kτ ]. Let Qt = Ω×(0, t]

for t ∈ (0, T ]. Next, we will focus on the uniform estimates for the approximate solutions.

Lemma 3.1 Assume α > 1, β > 1. Let ρk, ηk ∈ W 4,p(Ω), Fk, Gk ∈ W 2,p(Ω) and Vk ∈
W 2,p(Ω) be the solutions obtained in Theorem 2.1. Then the following inequality holds:

ǫ2
∫

Ω

(|(ρk)x|2 + |(ηk)x|2)dx +

∫

Ω

( 1

α − 1
ρ2α

k +
1

β − 1
η
2β
k

)

dx

+
1

2

∫

Ω

|(Vk)x|2dx + τ

∫

Ω

((ρk(Fk)x)2 + (ηk(Gk)x)2)dx

≤ ǫ2
∫

Ω

(|(ρk−1)x|2 + |(ηk−1)x|2)dx +

∫

Ω

( 1

α − 1
ρ2α

k−1 +
1

β − 1
η
2β
k−1

)

dx

+
1

2

∫

Ω

|(Vk−1)x|2dx. (3.1)

Proof Multiplying (2.1)1 and (2.1)2 by Fk and Gk, respectively, we obtain

∫

Ω

(ρ2
k − ρ2

k−1)Fkdx = τ

∫

Ω

(ρ2
k(Fk)x)xFkdx,

∫

Ω

(η2
k − η2

k−1)Gkdx = τ

∫

Ω

(η2
k(Gk)x)xGkdx.

Integration by parts yields

∫

Ω

(ρ2
k(Fk)x)xFkdx = −τ

∫

Ω

(ρk(Fk)x)2dx,

∫

Ω

(η2
k(Gk)x)xGkdx = −τ

∫

Ω

(ηk(Gk)x)2dx.
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It is easy to find that

∫

Ω

(ρ2
k − ρ2

k−1)Fkdx

= −ε2

∫

Ω

(ρ2
k − ρ2

k−1)
(ρk)xx

ρk

dx +
α

α − 1

∫

Ω

(ρ2
k − ρ2

k−1)ρ
2(α−1)
k dx −

∫

Ω

(ρ2
k − ρ2

k−1)Vkdx, (3.2)

∫

Ω

(η2
k − η2

k−1)Gkdx

= −ε2

∫

Ω

(η2
k − η2

k−1)
(ηk)xx

ηk

dx +
β

β − 1

∫

Ω

(η2
k − η2

k−1)η
2(β−1)
k dx +

∫

Ω

(ρ2
k − ρ2

k−1)Vkdx. (3.3)

Next, we will treat the right sides of (3.2) and (3.3) term by term. Firstly, using integration by

parts, we have

− ε2

∫

Ω

(ρ2
k − ρ2

k−1)
(ρk)xx

ρk

dx

= ε2

∫

Ω

|(ρk)x|2dx − ε2

∫

Ω

(ρ2
k−1

ρk

)

x
(ρk)xdx

= ε2

∫

Ω

|(ρk)x|2dx − ε2

∫

Ω

|(ρk−1)x|2dx + ε2

∫

Ω

∣

∣

∣
(ρk−1)x − ρk−1

ρk

(ρk)x

∣

∣

∣

2

dx

≥ ε2

∫

Ω

|(ρk)x|2dx − ε2

∫

Ω

|(ρk−1)x|2dx.

Similarly, we have

−ε2

∫

Ω

(η2
k − η2

k−1)
(ηk)xx

ηk

dx ≥ ε2

∫

Ω

|(ηk)x|2dx − ε2

∫

Ω

|(ηk−1)x|2dx.

In view of the convexity of sγ (γ > 1), we have

α

α − 1

∫

Ω

(ρ2
k − ρ2

k−1)ρ
2(α−1)
k dx ≥ 1

α − 1

∫

Ω

ρ2α
k dx − 1

α − 1

∫

Ω

ρ2α
k−1dx,

β

β − 1

∫

Ω

(η2
k − η2

k−1)η
2(β−1)
k dx ≥ 1

β − 1

∫

Ω

η
2β
k dx − 1

β − 1

∫

Ω

η
2β
k−1dx.

At last, by the Poisson equation, we have

−
∫

Ω

(ρ2
k − ρ2

k−1)Vkdx +

∫

Ω

(η2
k − η2

k−1)Vkdx

= −
∫

Ω

((Vk)xx − (Vk−1)xx)Vkdx

=

∫

Ω

((Vk)x − (Vk−1)x)(Vk)xdx

=
1

2

∫

Ω

|(Vk)x|2dx − 1

2

∫

Ω

|(Vk−1)x|2dx +
1

2

∫

Ω

|(Vk)x − (Vk−1)x|2dx

≥ 1

2

∫

Ω

|(Vk)x|2dx − 1

2

∫

Ω

|(Vk−1)x|2dx.

Thus, the above treatments yield (3.1).

It is easy to derive the following estimates from Lemma 3.1.
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Corollary 3.1 There exists a positive constant independent of τ and ε such that

‖ρτ‖L∞(0,T ;L2α(Ω)) + ‖ητ‖L∞(0,T ;L2β(Ω)) ≤ C, (3.4)

‖ε(ρτ )x ; ε(ητ )x‖L∞(0,T ;L2(Ω)) ≤ C, (3.5)

‖ρτ (Fτ )x ; ητ (Gτ )x‖L2(QT ) ≤ C. (3.6)

Furthermore, we have

‖ρ2
τ (Fτ )x‖

L2(0,T ;L
2α

1+α (Ω))
+ ‖η2

τ (Gτ )x‖
L2(0,T ;L

2β
1+β (Ω))

≤ C.

It is convenient to rewrite the approximate system (2.1) in the following form:

ρ2
k − ρ2

k−1

τ
= −ε2

2
(ρ2

k(ln ρ2
k)xx)xx + ((ρ2α

k )x − ρ2
k(Vk)x)x,

η2
k − η2

k−1

τ
= −ε2

2
(η2

k(ln η2
k)xx)xx + ((η2β

k )x + η2
k(Vk)x)x,

(Vk)xx = ρ2
k − η2

k − C(x).

(3.7)

Since both ρk and ηk are strictly positive, the boundary conditions are equivalent to

(ρk)x = (ρ2
k(ln ρ2

k)xx)x = (Vk)x = 0, on ∂Ω,

(ηk)x = (η2
k(ln η2

k)xx)x = 0, on ∂Ω.
(3.8)

Lemma 3.2 Under the same assumptions as in Lemma 3.1, it holds that
∫

Ω

((ρ2
k − ln ρ2

k) + (η2
k − ln η2

k))dx + 2ε2τ

∫

Ω

(|(ln ρk)xx|2 + |(ln ηk)xx|2)dx

+ τ4α

∫

Ω

|ρα−2
k (ρk)x|2dx + τ4β

∫

Ω

|ηβ−2
k |(ηk)x|2dx + τ

∫

Ω

(ρ2
k − η2

k)(ln ρ2
k − ln η2

k)dx

≤
∫

Ω

((ρ2
k−1 − ln ρ2

k−1) + (η2
k−1 − ln η2

k−1))dx + 2τ‖C(x)‖L∞

∫

Ω

(| ln ρk| + | ln ηk|)dx. (3.9)

Proof We multiply (3.7)1 and (3.7)2 by (1 − 1
ρ2

k

) and (1 − 1
η2

k

), respectively, and integrate

them over Ω. By the inequality x − 1 ≥ lnx (∀x > 0), we get
∫

Ω

ρ2
k − ρ2

k−1

τ

(

1 − 1

ρ2
k

)

dx +

∫

Ω

η2
k − η2

k−1

τ

(

1 − 1

η2
k

)

dx

=
1

τ

∫

Ω

(

ρ2
k − ρ2

k−1 +
ρ2

k−1

ρ2
k

− 1
)

dx +
1

τ

∫

Ω

(

η2
k − η2

k−1 +
η2

k−1

η2
k

− 1
)

dx

≥ 1

τ

∫

Ω

((ρ2
k − ρ2

k−1) − (ln ρ2
k − ln ρ2

k−1))dx +
1

τ

∫

Ω

((η2
k − η2

k−1) − (ln η2
k − ln η2

k−1))dx.

Using integration by parts and the boundary condition (3.8), we have

ε2

2

∫

Ω

(ρ2
k(ln ρ2

k)xx)xx

(

1 − 1

ρ2
k

)

dx +
ε2

2

∫

Ω

(η2
k(ln η2

k)xx)xx

(

1 − 1

η2
k

)

dx

= 2ε2

∫

Ω

(|(ln ρk)xx|2 + |(ln ηk)xx|2)dx − 4ε2

∫

Ω

((ln ρk)xx|(ln ρk)x|2 + (ln ηk)xx|(ln ηk)x|2)dx

= 2ε2

∫

Ω

(|(ln ρk)xx|2 + |(ln ηk)xx|2)dx − 4

3
ε2

∫

Ω

[(((ln ρk)x)3)x + (((ln ηk)x)3)x]dx

= 2ε2

∫

Ω

(|(ln ρk)xx|2 + |(ln ηk)xx|2)dx,
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−
∫

Ω

(ρ2α
k )xx

(

1 − 1

ρ2
k

)

dx −
∫

Ω

(η2β
k )xx

(

1 − 1

η2
k

)

dx

= 4α

∫

Ω

ρ2α−4
k |(ρk)x|2dx + 4β

∫

Ω

η
2β−4
k |(ηk)x|2dx

= 4α

∫

Ω

|ρα−2
k (ρk)x|2dx + 4β

∫

Ω

|ηβ−2
k (ηk)x|2dx.

In view of integration by parts and Poisson equation (3.7)3, we have
∫

Ω

(ρ2
k(Vk)x)x

(

1 − 1

ρ2
k

)

dx −
∫

Ω

(η2
k(Vk)x)x

(

1 − 1

η2
k

)

dx

= −2

∫

Ω

(Vk)x(ln ρk)xdx + 2

∫

Ω

(Vk)x(ln ηk)xdx

=

∫

Ω

(Vk)xx(ln ρ2
k − ln η2

k)dx

≥
∫

Ω

(ρ2
k − η2

k)(ln ρ2
k − ln η2

k)dx − ‖C(x)‖L∞(Ω)

∫

Ω

(| ln ρ2
k| + | ln η2

k|)dx.

Putting all the above inequalities together, we can prove (3.9).

For the subsequent entropy estimates, it is appropriate to use the following equivalent form

of (3.7):
ρ2

k − ρ2
k−1

τ
= −ε2

(

ρ2
k

((ρk)xx

ρk

)

x

)

x
+ ((ρ2α

k )x − ρ2
k(Vk)x)x,

η2
k − η2

k−1

τ
= −ε2

(

η2
k

((ηk)xx

ηk

)

x

)

x
+ ((η2β

k )x + η2
k(Vk)x)x,

(Vk)xx = ρ2
k − η2

k − C(x).

(3.10)

Lemma 3.3 Under the same assumptions as in Lemma 3.1, it holds that
∫

Ω

(ρ2
k(ln ρ2

k − 1) + 1)dx +

∫

Ω

(η2
k(ln η2

k − 1) + 1)dx

+ τ2ε2

∫

Ω

(|(ρk)xx|2 + |(ηk)xx|2)dx + τ
32

3
ε2

∫

Ω

(|(√ρk)x|4 + |(√ηk)x|4)dx

+ τ
4

α

∫

Ω

|(ρα
k )x|2dx + τ

4

β

∫

Ω

|(ρβ
k )x|2dx + τ

∫

Ω

(ρ2
k − η2

k)2dx

≤
∫

Ω

(ρ2
k−1(ln ρ2

k−1 − 1) + 1)dx +

∫

Ω

(η2
k−1(ln η2

k−1 − 1) + 1)dx

+ τ‖C(x)‖L∞(Ω)

∫

Ω

(ρ2
k + η2

k)dx. (3.11)

Proof We multiply (3.10)1 and (3.10)2 by ln ρ2
k and ln η2

k, respectively, and integrate them

over Ω. In the same way as in [4], we have

∫

Ω

ρ2
k − ρ2

k−1

τ
ln ρ2

kdx +

∫

Ω

η2
k − η2

k−1

τ
ln η2

kdx

≥ 1

τ

∫

Ω

(ρ2
k(ln ρ2

k − 1) + 1)dx − 1

τ

∫

Ω

(ρ2
k−1(ln ρ2

k−1 − 1) + 1)dx

+
1

τ

∫

Ω

(η2
k(ln η2

k − 1) + 1)dx − 1

τ

∫

Ω

(η2
k−1(ln η2

k−1 − 1) + 1)dx.
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Using integration by parts and boundary conditions, we have

ε2

∫

Ω

(

ρ2
k

((ρk)xx

ρk

)

x

)

x
ln ρ2

kdx = −2ε2

∫

Ω

( (ρk)xx

ρk

)

x
(ρk(ρk)x)dx

= 2ε2

∫

Ω

((ρk)xx)2dx + 2ε2

∫

Ω

(ρk)xx((ρk)x)2

ρk

dx

= 2ε2

∫

Ω

((ρk)xx)2dx +
32

3
ε2

∫

Ω

|(√ρk)x|4dx.

Similarly, we have

∫

Ω

ε2
(

η2
k

((ηk)xx

ηk

)

x

)

x
ln η2

kdx = 2ε2

∫

Ω

((ηk)xx)2dx +
32

3
ε2

∫

Ω

|(√ηk)x|4dx.

The diffusion terms are treated as follows:

−
∫

Ω

(ρ2α
k )xx ln ρ2

kdx −
∫

Ω

(η2β
k )xx ln η2

kdx = 4α

∫

Ω

ρ2α−2
k |(ρk)x|2dx + 4β

∫

Ω

η
2β−2
k |(ηk)x|2dx

=
4

α

∫

Ω

|(ρα
k )x|2dx +

4

β

∫

Ω

|(ηβ
k )x|2dx.

At last, we treat the drift terms. In view of integration by parts and Poisson equation (3.10)3,

we have
∫

Ω

(ρ2
k(Vk)x)x ln ρ2

kdx −
∫

Ω

(η2
k(Vk)x)x ln η2

kdx = −
∫

Ω

(Vk)x(ρ2
k)xdx +

∫

Ω

(Vk)x(η2
k)xdx

=

∫

Ω

(Vk)xx(ρ2
k − η2

k)dx

=

∫

Ω

(ρ2
k − η2

k − C(x))(ρ2
k − η2

k)dx

≥
∫

Ω

(ρ2
k − η2

k)2dx −‖C(x)‖L∞(Ω)

∫

Ω

(ρ2
k + η2

k)dx.

The above treatments yield the estimate (3.11).

From Lemmas 3.2 and 3.3, we get the following corollary.

Corollary 3.2 There exists a positive constant C, independent of τ and ε, such that

‖ρτ ; ητ‖L∞(0,T ;L2(Ω)) ≤ C, (3.12)

‖ε(ρτ )x ; ε(ητ )x‖L∞(0,T ;L2(Ω)) ≤ C, (3.13)

‖ ln ρτ ; ln ητ‖L∞(0,T ;L1(Ω)) ≤ C, (3.14)

‖(ρα
τ )x ; (ηβ

τ )x‖L2(QT ) ≤ C, (3.15)

‖(ρα−1
τ )x ; (ηβ−1

τ )x‖L2(QT ) ≤ C, (3.16)

and

ε2‖(ln ρτ )xx ; (ln ητ )xx‖2
L2(QT ) ≤ C, (3.17)

ε2‖(ρτ )xx ; (ητ )xx‖2
L2(QT ) ≤ C, (3.18)

ε
1
2 ‖(√ρτ )x ; (

√
ητ )x‖L4(QT ) ≤ C. (3.19)
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Proof It is a direct consequence of (3.9), (3.11), Gronwall inequality, and the inequalities

x ≤ x(ln x + 1) + 3, | lnx| ≤ x − lnx for any x > 0. (3.20)

Remark 3.1 The positive constant C in Corollary 3.2 actually depends on the initial data

ρ0, η0 and C(x) in some norm.

Remark 3.2 In [4, 6], for isothermal pressure model, the uniform estimates on ‖(ρτ)xx‖L2(QT)

and ‖(ητ )xx‖L2(QT ) in ε have been obtained. Here, we only get the estimates such as (3.18).

But it is already sufficient for us to perform the semiclassical limit.

Furthermore, we have a uniform upper bound on potential Vx.

Corollary 3.3 There exists a positive constant C, independent of τ and ε, such that

‖(Vτ )x‖L∞(QT ) ≤ C. (3.21)

Proof (3.12) implies

‖(Vτ )xx‖L∞(0,T ;L1(Ω)) ≤ C

in view of Poisson equation (2.1)5. Furthermore, by Poincaré inequality, we have

‖(Vτ )x‖L∞(0,T ;W 1,1(Ω)) ≤ C.

Hence Sobolev embedding W 1,1(Ω) → L∞(Ω) (in 1-dimension) yields (3.21).

Furthermore, if α, β ∈ (1, 3], we can get the following uniform estimates.

Corollary 3.4 If α, β ∈ (1, 2], there exists a positive constant C independent of τ and ε

such that

‖(ρτ )x ; (ητ )x‖L2(QT ) ≤ C, (3.22)

and

‖ρ2
τ‖

L2(0,T ;W
1, 2α

1+α (Ω))
≤ C, ‖η2

τ‖
L2(0,T ;W

1,
2β

1+β (Ω))
≤ C. (3.23)

If α, β ∈ (2, 3], there exists a positive constant C independent of τ and ε such that

‖ρ2
τ ; η2

τ‖L2(0,T ;H1(Ω)) ≤ C. (3.24)

Proof Using (3.15) and (3.16), we have for 1 < α ≤ 2,

∫ T

0

∫

Ω

|(ρτ )x|2dxdt ≤
∫ T

0

∫

Ω∩{ρτ <1}
|(ρτ )x|2dxdt +

∫ T

0

∫

Ω∩{ρτ≥1}
|(ρτ )x|2dxdt

≤
∫ T

0

∫

Ω∩{ρτ <1}
ρ2α−4

τ |(ρτ )x|2dxdt +

∫ T

0

∫

Ω∩{ρτ≥1}
ρ2α−2

τ |(ρτ )x|2dxdt

≤
∫ T

0

∫

Ω

ρ2α−4
τ |(ρτ )x|2dxdt +

∫ T

0

∫

Ω

ρ2α−2
τ |(ρτ )x|2dxdt

≤ C.
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The similar estimate holds for ‖(ητ )x‖L2(QT ). Thus (3.22) is proved. By (3.4), (3.22) and

Hölder inequality, we obtain

‖(ρ2
τ )x‖

L2(0,T ;L
2α

1+α (Ω))
≤ C, ‖(η2

τ )x‖
L2(0,T ;L

2β
1+β (Ω))

≤ C. (3.25)

Moreover, in view of
2α

1 + α
< α and

2β

1 + β
< β for α, β > 1,

(3.4) and (3.25) imply (3.23).

For 2 < α ≤ 3, it holds that

∫ T

0

∫

Ω

ρ2
τ |(ρτ )x|2dxdt ≤

∫ T

0

∫

Ω∩{ρτ <1}
ρ2

τ |(ρτ )x|2dxdt +

∫ T

0

∫

Ω∩{ρτ≥1}
ρ2

τ |(ρτ )x|2dxdt

≤
∫ T

0

∫

Ω∩{ρτ <1}
ρ2α−4

τ |(ρτ )x|2dxdt +

∫ T

0

∫

Ω∩{ρτ≥1}
ρ2α−2

τ |(ρτ )x|2dxdt

≤
∫ T

0

∫

Ω

ρ2α−4
τ |(ρτ )x|2dxdt +

∫ T

0

∫

Ω

ρ2α−2
τ |(ρτ )x|2dxdt

≤ C.

The similar estimate holds for ‖(η2
τ )x‖L2(QT ). Thus (3.24) is proved in view of (3.4).

4 Existence of Solutions

In this section, we will prove the existence of weak solutions for any fixed ε. The constant

C in this section will be independent of τ , but may depend on ε.

For the following arguments, we also need some bound on the time differences. For this

purpose, we define

∂τ
t ρ2

τ (x, t) =
ρ2

k − ρ2
k−1

τ
, ∂τ

t η2
τ (x, t) =

η2
k − η2

k−1

τ

for x ∈ Ω, t ∈ ((k − 1)τ, kτ ].

From Corollary 3.2, we have the boundedness of (ρτ ) in L2(0, T ; H2(Ω)), which implies that

we can choose a subsequences, again denoted by (ρτ ), such that

ρτ ⇀ ρ weakly in L2(0, T ; H2(Ω)). (4.1)

Since H1(Ω) →֒ L∞(Ω) (in 1-dimension), we have

‖ρτ‖L∞(QT ) ≤ ‖ρτ‖L∞(0,T ;H1(Ω)) ≤ C.

Thus we obtain

‖ρ2
τ (Fτ )x‖L2(0,T ;L2(Ω)) ≤ ‖ρτ‖L∞(QT )‖ρτ(Fτ )x‖L2(0,T ;L2(Ω)) ≤ C, (4.2)

which yields

‖∂τ
t ρ2

τ‖L2(0,T ;(H1(Ω))′) ≤ C.
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Also, by Poincaré inequality, we have

‖ρ2
τ‖L∞(0,T ;H1(Ω)) ≤ C(‖ρτ (ρτ )x‖L∞(0,T ;L2(Ω)) + ‖ρ2

τ‖L∞(0,T ;L1(Ω))) ≤ C.

Since

H1(Ω) →֒→֒ C0,γ(Ω)

in 1-dimension for γ ∈ (0, 1
2 ), we deduce from Aubin-Lions lemma that

ρ2
τ → ρ2 in C([0, T ]; C0,γ(Ω)). (4.3)

Furthermore, we have

ρ2α−2
τ → ρ2α−2 strongly in C([0, T ]; C0,γ(Ω)). (4.4)

By Gagliardo-Nirenberg’s inequality, we have

‖((ρτ )x)2‖L2(QT ) = ‖(ρτ )x‖2
L4(QT ) ≤ C‖ρτ‖L∞(QT )‖ρτ‖L2(0,T ;H2(Ω)) ≤ C.

So we obtain

‖(ρ2
τ )xx‖L2(QT ) ≤ 2‖ρτ‖L∞(QT )‖(ρτ )xx‖L2(QT ) + 2‖((ρτ )x)2‖L2(QT ) ≤ C,

which means that

‖ρ2
τ‖L2(0,T ;H2(Ω)) ≤ C.

We use again Aubin-Lions lemma to show that

ρ2
τ → ρ2 strongly in L2(0, T ; H1(Ω)). (4.5)

So (4.4) and (4.5) imply

ρ2α−2
τ (ρ2

τ )x → ρ2α−2(ρ2)x strongly in L2(0, T ; L2(Ω)).

Next, we will prove that

(ρτ )x → ρx strongly in L6(0, T ; L2(Ω)). (4.6)

Indeed, by Gagliardo-Nirenberg’s inequality, we have

∫ T

0

‖(ρτ )x − ρx‖6
L2(Ω)dt ≤ C

∫ T

0

‖ρτ − ρ‖4
L∞(Ω)‖ρτ − ρ‖2

H2(Ω)dt

≤ C‖ρτ − ρε‖4
L∞(QT )

∫ T

0

‖ρτ − ρ‖2
H2(Ω)dt,

which implies (4.6) in view of (4.3). So (4.1) and (4.6) yield

(ρτ )xx(ρτ )x ⇀ (ρ)xxρx weakly in L
3
2 (0, T ; L1(Ω)).

From Corollary 3.3, we have

(Vτ )x ⇀ E weakly-∗ in L∞(QT ).
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(4.2) implies

ρ2
τ (Fτ )x ⇀ J weakly in L2(QT ).

The similar convergence arguments could be performed for (ητ ) and (η2
τ (Gτ )x). We denote the

weak limit of (ητ ) by η in L2(0, T ; H2). Also, we have

η2
τ (Gτ )x ⇀ K weakly in L2(QT ).

Corollary 4.1 The function (ρ, η, J, K, E) obtained is the solution of (1.2) in the sense of

(1.12)–(1.16).

5 Semiclassical Limit

In this section, we will prove Theorem 1.2. Since the solutions obtained in Corollary 4.1

depend on ε, we denote them by (ρε, ηε, Jε, Kε, Eε) for clarity. For convenience, we first

discuss the case that α, β ∈ (1, 2]. By weak convergence and the uniform estimates obtained in

Section 3, it is easy to get the following uniform estimates:

‖Eε‖L∞(QT ) ≤ C, (5.1)

‖(ρε)x ; (ηε)x‖L2(QT ) ≤ C, (5.2)

‖ρε‖L∞(0,T ;L2α(Ω)) + ‖ηε‖L∞(0,T ;L2β(Ω)) ≤ C, (5.3)

‖ρ2
ε‖

L2(0,T ;W
1, 2α

1+α (Ω))
+ ‖η2

ε‖
L2(0,T ;W

1,
2β

1+β (Ω))
≤ C, (5.4)

‖Jε‖
L2(0,T ;L

2α
1+α (Ω))

+ ‖Kε‖
L2(0,T ;L

2β
1+β (Ω))

≤ C, (5.5)

‖ε(ρε)xx ; ε(ηε)xx‖L2(QT ) ≤ C, (5.6)

‖ε 1
2 (
√

ρε)x ; ε
1
2 (
√

ηε)x‖L4(QT ) ≤ C, (5.7)

where C is independent of ε. So there exists a subsequence, again denoted by (ρε, ηε, Jε, Kε, Eε),

such that

ρ2
ε ⇀ n weakly in L2(0, T ; W 1, 2α

1+α (Ω)), (5.8)

η2
ε ⇀ p weakly in L2(0, T ; W 1,

2β

1+β (Ω)), (5.9)

Jε ⇀ J weakly in L2(0, T ; L
2α

1+α (Ω)), (5.10)

Kε ⇀ K weakly in L2(0, T ; L
2β

1+β (Ω)), (5.11)

Eε ⇀ E weakly-∗ in L∞(QT ). (5.12)

From (5.5), (1.12) and (1.13), we have

‖∂tρ
2
ε‖

L2(0,T ;(W
1, 2α

1+α (Ω))′)
+ ‖∂tη

2
ε‖

L2(0,T ;(W
1,

2β
1+β (Ω))′)

≤ C.

Observing that

W 1, 2α
1+α (Ω) →֒→֒ C0,γ1(Ω) and W 1,

2β

1+β (Ω) →֒→֒ C0,γ2(Ω)
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for some 0 < γ1, γ2 < 1, we deduce from Aubin-Lions lemma the following strong convergence:

ρ2
ε → n strongly in L2(0, T ; C0,γ1(Ω)),

η2
ε → p strongly in L2(0, T ; C0,γ2(Ω)).

Thus, by (5.12), we obtain

Eερ
2
ε ⇀ En weakly in L2(0, T ; C0,γ1(Ω)),

Eεη
2
ε ⇀ Ep weakly in L2(0, T ; C0,γ2(Ω)).

Furthermore, by Lebesgue dominated convergence theorem and the assumption α, β ∈ (1, 2],

we have

ρ2α−2
ε → nα−1 strongly in L2(0, T ; C0,γ1(Ω)),

η2β−2
ε → pβ−1 strongly in L2(0, T ; C0,γ2(Ω)).

Hence, we obtain

ρ2α−2
ε (ρ2

ε)x ⇀ nα−1nx weakly in L2(0, T ; L
2α

1+α ),

η2β−2
ε (η2

ε)x ⇀ pβ−1px weakly in L2(0, T ; L
2β

1+β ).

Next, we have to show that the quantum term would disappear in some sense as ε → 0. By

(5.2), (5.3), (5.6) and (5.7), we have

‖ε2(ρε)xxρε‖
L2(0,T ;L

2α
1+α (Ω))

≤ ε‖ε(ρε)xx‖L2(QT )‖ρε‖2
L∞(0,T ;L2α(Ω)) ≤ εC → 0,

‖ε2(ρε)xx(ρε)x‖L1(QT ) ≤ ε‖ε(ρε)xx‖L2(QT )‖(ρε)x‖L2(QT ) ≤ εC → 0,

as ε → 0+.

Similarly, we have

‖ε2(ηε)xxηε‖
L2(0,T ;L

2β
1+β (Ω))

→ 0, ‖ε2(ηε)xx(ηε)x‖L1(QT ) → 0.

Now, we can pass to the limit in (1.12)–(1.16) and conclude that the limit satisfies (1.24)–(1.28).

For α, β ∈ (2, 3], we get the following uniform estimates from (3.24):

‖ρ2
ε‖L2(0,T ;H1(Ω)) + ‖η2

ε‖L2(0,T ;H1(Ω)) ≤ C. (5.13)

And with the help of (5.6) and (5.7), we have

‖ε2(ρε)xx(ρε)x‖L1(QT ) = 2‖ε2(ρε)xx(
√

ρε)x

√
ρε‖L1(QT )

≤ 2ε
1
2 ‖ε(ρε)xx‖L2(QT )‖ε

1
2 (
√

ρε)x‖L4(QT )‖
√

ρε‖L4(QT )

≤ ε
1
2 C → 0,

as ε → 0+. Similarly we have

‖ε2(ηε)xx(ηε)x‖L1(QT ) → 0.

Thus, the previous discussion on α, β ∈ (1, 2] could be repeated to finish the proof.
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