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1 Introduction

Let F be a unitary flat vector bundle on a closed Riemannian manifold M . In [28], Ray and

Singer defined an analytic torsion associated to (M,F ) and proved that it does not depend on

the Riemannian metric on M . Moreover, they conjectured that this analytic torsion coincides

with the classical Reidemeister torsion defined using a triangulation on M (cf. [23]). This

conjecture was later proved in the celebrated papers of Cheeger [13] and Müller [24]. Müller

generalized this result in [25] to the case where F is a unimodular flat vector bundle on M . In

[4], inspired by the considerations of Quillen [26], Bismut and Zhang reformulated the above

Cheeger-Müller theorem as an equality between the Reidemeister and Ray-Singer metrics de-

fined on the determinant of cohomology, and proved an extension of it to the case of general flat

vector bundles over M . The method used in [4] is different from those of Cheeger and Müller

in that it makes use of a deformation by Morse functions introduced by Witten [35] on the de

Rham complex.

On the other hand, Turaev generalizes the concept of Reidemeister torsion to a complex

valued invariant whose absolute value provides the original Reidemeister torsion, with the help

of the so-called Euler structure (cf. [34, 15]). It is natural to ask whether there exists an

analytic interpretation of this Turaev torsion.

Recently, there appear two groups of papers dealing with explicitly this question. On one

hand, Braverman and Kappeler [6, 7] define what they call “refined analytic torsion” for flat

vector bundles over odd dimensional manifolds, and show that it equals to the Turaev torsion
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up to a multiplication by a complex number of absolute value one. On the other hand, Burghe-

lea and Haller [10, 11], following a suggestion of Müller, define a generalized analytic torsion

associated to a nondegenerate symmetric bilinear form on a flat vector bundle over an arbitrary

dimensional manifold and make an explicit conjecture between this generalized analytic torsion

and the Turaev torsion.

Both Braverman-Kappeler and Burghelea-Haller deal with the analysis of determinants of

non-self-adjoint Laplacians.

In this paper, we will follow the approach of Burghelea and Haller, which is closer in spirit

to the approach developed by Bismut-Zhang in [4, 5].

Let F be a flat complex vector bundle over an oriented closed manifoldM . Let detH∗(M,F )

be the determinant line of the cohomology with coefficient F .

We make the assumption that F admits a smooth fiberwise nondegenerate symmetric bi-

linear form. (In general, this might not exist. However, as indicated by Burghelea and Haller

[11], we can form a direct sum of copies of F to make such a symmetric bilinear form exists at

least on the direct sum.)

Following Farber-Turaev [15] and Burghelea-Haller [10, 11], one constructs naturally a (non-

degenerate) symmetric bilinear form on detH∗(M,F ). This resembles closely with the con-

struction of the Ray-Singer metric in [4], where one replaces the symmetric bilinear form by

a Hermitian metric on F . The main difference is that while the Ray-Singer metric is a real

valued function on elements in detH∗(M,F ), the analytically induced symmetric bilinear form

generally takes complex values on elements in detH∗(M,F ).

The main purpose of this paper is to generalize the main result in [4] to the current situation.

That is to say, we establish an explicit comparison result between the above analytically induced

symmetric bilinear form on detH∗(M,F ) and another one, which is of Reidemeister type,

constructed through a combinatorial way. We will state this result in Theorem 3.1.

We will prove this result by the same method as in [4], that is, by making use of the Witten

deformation (cf. [35]) of the de Rham complex by a Morse function. However, since we are

going to deal with complex valued torsion which arises from non-self-adjoint Laplacians (the

non-self-adjoint property comes from the fact that we are dealing with symmetric bilinear forms

instead of Hermitian metrics), we should take care at each step when we proceed the analytical

arguments in [4]. In particular, instead of generalizing each step in [4] to the non-self-adjoint

case, we will make full use of the results in [4] and see what else one needs to do in the current

case. It is remarkable that everything fits at last to give the desired result.

The idea of using the Witten deformation to study symmetric bilinear torsions was men-

tioned before in [10]. Moreover, an important anomaly formula for the analytically constructed

symmetric bilinear forms on detH∗(M,F ) has been proved in [11].

A direct consequence of our main result is that if M is of vanishing Euler characteristic and

we consider the Euler structure (introduced in [34]) on M , then we can prove the Burghelea-

Haller conjecture (cf. [11, Conjecture 5.1]) identifying a modified version of the above analytic

symmetric bilinear form on detH∗(M,F ) with (the square of) the Turaev torsion, which is also

interpreted as a symmetric bilinear form on detH∗(M,F ).

We should mention that independently and almost at the same time of our preprint of this

paper (cf. [33]), Burghelea and Haller [12] proved their conjecture, up to sign, in the case where
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M is of odd dimension. The method they use is different from ours.

The rest of this paper is organized as follows. In Section 2, we recall the basic definitions

of various torsions associated with nondegenerate symmetric bilinear forms on a flat vector

bundle, we also state an anomaly formula for the analytic torsion associated with nondegenerate

symmetric bilinear forms on a flat vector bundle. In Section 3, we state the main result of this

paper and provides a proof of it based on several intermediate technical results. Sections 4 to

9 are devoted to the proofs of the intermediate results stated in Section 3. In the final Section

10, we apply the main result proved in Section 3 to prove the Burghelea-Haller conjecture (cf.

[11, Conjecture 5.1]) on the analytic interpretation of (the square of) the Turaev torsion.

Since we will make substantial use of the results in [4], we will refer to [4] for related

definitions and notations directly when there will be no confusion.

2 Symmetric Bilinear Torsions Associated to

the de Rham and Thom-Smale Complexes

In this section, for a nondegenerate bilinear symmetric form on a complex flat vector bundle

over an oriented closed manifold, we define two naturally associated symmetric bilinear forms

on the determinant of the cohomology H∗(M,F ) with coefficient F . One is constructed in a

combinatorial way through the Thom-Smale complex associated to a Morse function, and the

other one is constructed in an analytic way through the de Rham complex. An anomaly formula

essentially due to Burghelea-Haller [11] of the later will also be recalled.

2.1 Symmetric bilinear torsion of a finite dimensional complex

Let (C∗, ∂) be a finite cochain complex

(C∗, ∂) : 0 −→ C0 ∂0−→ C1 ∂1−→ · · · ∂n−1−→ Cn −→ 0, (2.1)

where each Ci, 0 ≤ i ≤ n, is a finite dimensional complex vector space.

Let

H∗(C∗, ∂) =

n⊕

i=0

Hi(C∗, ∂) (2.2)

be the cohomology of (C∗, ∂).

Let

det(C∗, ∂) =

n⊗

i=0

(detCi)(−1)i

, (2.3)

detH∗(C∗, ∂) =
n⊗

i=0

(detHi(C∗, ∂))(−1)i

(2.4)

be the determinant lines of (C∗, ∂) and H∗(C∗, ∂) respectively.

It is well-known that there is a canonical isomorphism (cf. [20] and [2, Section 1a)])

det(C∗, ∂) ≃ detH∗(C∗, ∂). (2.5)

Let each Ci, 0 ≤ i ≤ n, admit a nondegenerate symmetric bilinear form bi. Then by (2.3)

they induce canonically a symmetric bilinear form bdet(C∗,∂) on det(C∗, ∂), which in turn, via

(2.5), induces a symmetric bilinear form bdetH∗(C∗,∂) on detH∗(C∗, ∂).
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Definition 2.1 (cf. [15, 10, 11]) We call bdetH∗(C∗,∂) the symmetric bilinear torsion on

detH∗(C∗, ∂).

Remark 2.1 If (C∗, ∂) is acyclic, that is, H∗(C∗, ∂) = {0}, then bdetH∗(C∗,∂) is identified

as a complex number.

Let Ai, 0 ≤ i ≤ n, be an automorphism of Ci. Then it induces a symmetric bilinear form

b′i on Ci defined by

b′i(x, y) = bi(Aix,Aiy). (2.6)

Let b′detH∗(C∗,∂) be the associated symmetric bilinear torsion on detH∗(C∗, ∂).

The following anomaly result is obvious.

Proposition 2.1 The following identity holds:

b′det H∗(C∗,∂)

bdet H∗(C∗,∂)
=

n∏

i=0

(det(Ai)
2)(−1)i

. (2.7)

2.2 Milnor symmetric bilinear torsion of the Thom-Smale complex

Let M be a closed smooth manifold, with dimM = n. For simplicity, we make the assump-

tion that M is oriented (the non-orientable case can be treated in exactly the same way, with

obvious modifications).

Let (F,∇F ) be a complex flat vector bundle over M carrying the flat connection ∇F . We

make the assumption that F carries a nondegenerate symmetric bilinear form bF .

Let (F ∗,∇F∗
) be the dual complex flat vector bundle of (F,∇F ) carrying the dual flat

connection ∇F∗
.

Let f : M → R be a Morse function. Let gTM be a Riemannian metric on TM such that

the corresponding gradient vector field −X = −∇f ∈ Γ(TM) satisfies the Smale transversality

conditions (cf. [32]), that is, the unstable cells (of −X) intersect transversally with the stable

cells.

Set

B = {x ∈M ;X(x) = 0}. (2.8)

For any x ∈ B, let Wu(x) (resp. W s(x)) denote the unstable (resp. stable) cell at x, with

respect to −X . We also choose an orientation O−
x (resp. O+

x ) on Wu(x) (resp. W s(x)).

Let x, y ∈ B satisfy the Morse index relation ind(y) = ind(x)− 1. Then Γ(x, y) = Wu(x) ∩
W s(y) consists of a finite number of integral curves γ of −X . Moreover, for each γ ∈ Γ(x, y),

by using the orientations chosen above, one can define a number nγ(x, y) = ±1 as in [4, (1.28)].

If x ∈ B, let [Wu(x)] be the complex line generated by Wu(x). Set

C∗(W
u, F ∗) =

⊕

x∈B

[Wu(x)] ⊗ F ∗
x , (2.9)

Ci(W
u, F ∗) =

⊕

x∈B
ind(x)=i

[Wu(x)] ⊗ F ∗
x . (2.10)



Symmetric Bilinear Torsions 389

If x ∈ B, the flat vector bundle F ∗ is canonically trivialized on Wu(x). In particular, if x, y ∈ B

satisfy ind(y) = ind(x) − 1, and if γ ∈ Γ(x, y), f∗ ∈ F ∗
x , let τγ(f∗) be the parallel transport of

f∗ ∈ F ∗
x into F ∗

y along γ with respect to the flat connection ∇F∗
.

Clearly, for any x ∈ B, there is only a finite number of y ∈ B, satisfying together that

ind(y) = ind(x) − 1 and Γ(x, y) 6= ∅.
If x ∈ B, f∗ ∈ F ∗

x , set

∂(Wu(x) ⊗ f∗) =
∑

y∈B
ind(y)=ind(x)−1

∑

γ∈Γ(x,y)

nγ(x, y)Wu(y) ⊗ τγ(f∗). (2.11)

Then ∂ maps Ci(W
u, F ∗) into Ci−1(W

u, F ∗). Moreover, one has

∂2 = 0. (2.12)

That is, (C∗(Wu, F ∗), ∂) forms a chain complex. We call it the Thom-Smale complex associated

to (M,F,−X).

If x ∈ B, let [Wu(x)]∗ be the dual line to Wu(x). Let (C∗(Wu, F ), ∂) be the complex which

is dual to (C∗(Wu, F ∗), ∂). For 0 ≤ i ≤ n, one has

Ci(Wu, F ) =
⊕

x∈B
ind(x)=i

[Wu(x)]∗ ⊗ Fx. (2.13)

Let Wu(x)∗ ∈ [Wu(x)]∗ be such that 〈Wu(x),Wu(x)∗〉 = 1.

We now introduce a symmetric bilinear form on each [Wu(x)]∗ ⊗ Fx such that for any

f, f ′ ∈ Fx,

〈Wu(x)∗ ⊗ f,Wu(x)∗ ⊗ f ′〉 = 〈f, f ′〉bFx . (2.14)

For any 0 ≤ i ≤ n, let Ci(Wu, F ) carry the symmetric bilinear form obtained from those

defined in (2.14) so that the splitting (2.13) is orthogonal with respect to it. One verifies that

this symmetric bilinear form is nondegenerate on Ci(Wu, F ).

Definition 2.2 The symmetric bilinear torsion on the determinant line of the cohomology

of the Thom-Smale cochain complex (C∗(Wu, F ), ∂), in the sense of Definition 2.1, is called the

Milnor symmetric bilnear torsion associated to (M,F, bF ,−X), and is denoted by bM(M,F,bF ,−X).

From the anomaly formula (2.7), one deduces easily the following result.

Proposition 2.2 If bF1 is another nondegenerate symmetric bilinear form on the flat vector

bundle F over M and bM
(M,F,bF

1 ,−X)
denotes the corresponding symmetric bilinear torsion on

detH∗(C∗(Wu, F ), ∂), then the following anomaly formula holds:

bM(M,F,bF
1 ,−X) = bM(M,F,bF ,−X)

∏

x∈B

det((bF |x)−1b
F |x
1 )(−1)ind(x)

. (2.15)

2.3 Ray-Singer symmetric bilinear torsion of the de Rham complex

We continue the discussion of the previous subsection. However, we do not use the Morse

function and make transversality assumptions.
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For any 0 ≤ i ≤ n, denote

Ωi(M,F ) = Γ(Λi(T ∗M) ⊗ F ), Ω∗(M,F ) =

n⊕

i=0

Ωi(M,F ). (2.16)

Let dF denote the natural exterior differential on Ω∗(M,F ) induced from ∇F which maps each

Ωi(M,F ), 0 ≤ i ≤ n, into Ωi+1(M,F ).

Let gF be a Hermitian metric on F . The Riemannian metric gTM and gF determine a

natural inner product (that is, a pre-Hilbert space structure) on Ω∗(M,F ) (cf. [4, (2.2)] and

[5, (2.3)]).

On the other hand gTM and the symmetric bilinear form bF determine together a symmetric

bilinear form on Ω∗(M,F ) such that if u = αf , v = βg ∈ Ω∗(M,F ) such that α, β ∈ Ω∗(M),

f, g ∈ Γ(F ), then

〈u, v〉b =

∫

M

(α ∧ ∗β)bF (f, g), (2.17)

where ∗ is the Hodge star operator (cf. [36]).

Consider the de Rham complex

(Ω∗(M,F ), dF ) : 0 → Ω0(M,F )
dF

→ Ω1(M,F ) → · · · dF

→ Ωn(M,F ) → 0. (2.18)

Let dF∗
b : Ω∗(M,F ) → Ω∗(M,F ) denote the formal adjoint of dF with respect to the

symmetric bilinear form in (2.17). That is, for any u, v ∈ Ω∗(M,F ), one has

〈dFu, v〉b = 〈u, dF∗
b v〉b. (2.19)

Set

Db = dF + dF∗
b , D2

b = (dF + dF∗
b )2 = dF∗

b dF + dFdF∗
b . (2.20)

Then the Laplacian D2
b preserves the Z-grading of Ω∗(M,F ).

As was pointed out in [10] and [11], D2
b has the same principal symbol as the usual Hodge

Laplacian (constructed using the inner product on Ω∗(M,F ) induced from (gTM , gF )) studied

for example in [4].

We collect some well-known facts concerning D2
b as in [11, Proposition 4.1], where the

reference [30] is indicated.

Proposition 2.3 The following properties hold for the Laplacian D2
b :

( i ) The spectrum of D2
b is discrete. For every θ > 0 all but finitely many points of the

spectrum are contained in the angle {z ∈ C | −θ < arg(z) < θ};
( ii ) If λ is in the spectrum of D2

b , then the image of the associated spectral projection is

finite dimensional and contains smooth forms only. We refer to this image as the (generalized)

λ-eigen space of D2
b and denote it by Ω∗

{λ}(M,F ). There exists Nλ ∈ N such that

(D2
b − λ)Nλ |Ω∗

{λ}(M,F ) = 0. (2.21)

We have a D2
b -invariant 〈 , 〉b-orthogonal decomposition

Ω∗(M,F ) = Ω∗
{λ}(M,F )

⊕
Ω∗

{λ}(M,F )⊥. (2.22)
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The restriction of D2
b − λ to Ω∗

{λ}(M,F )⊥ is invertible;

(iii) The decomposition (2.22) is invariant under dF and dF∗
b ;

(iv) For λ 6= µ, the eigen spaces Ω∗
{λ}(M,F ) and Ω∗

{µ}(M,F ) are 〈 , 〉b-orthogonal to each

other.

For any a ≥ 0, set

Ω∗
[0,a](M,F ) =

⊕

0≤|λ|≤a

Ω∗
{λ}(M,F ). (2.23)

Let Ω∗
[0,a](M,F )⊥ denote the 〈 , 〉b-orthogonal complement to Ω∗

[0,a](M,F ).

By [11, (29)] and Proposition 2.3, one sees that (Ω∗
[0,a](M,F ), dF ) forms a finite dimensional

complex whose cohomology equals to that of (Ω∗(M,F ), dF ). Moreover, the symmetric bilinear

form 〈 , 〉b clearly induces a nondegenerate symmetric bilinear form on each Ωi
[0,a](M,F ) with

0 ≤ i ≤ n. By Definition 2.1 one then gets a symmetric bilinear torsion bdetH∗(Ω∗
[0,a]

(M,F ),dF )

on detH∗(Ω∗
[0,a](M,F ), dF ) = detH∗(Ω∗(M,F ), dF ).

For any 0 ≤ i ≤ n, let D2
b,i be the restriction of D2

b on Ωi(M,F ). Then it is shown in

[11] (cf. [30, Theorem 13.1]) that for any a ≥ 0, the following regularized zeta determinant is

well-defined:

det′(D2
b,(a,+∞),i) = exp

(
− ∂

∂s

∣∣∣
s=0

Tr[(D2
b,i|Ω∗

[0,a]
(M,F )⊥)−s]

)
. (2.24)

Proposition 2.4 (cf. [11, Proposition 4.7]) The symmetric bilinear form on detH∗(Ω∗(M,

F ), dF ) defined by

bdetH∗(Ω∗
[0,a]

(M,F ),dF )

n∏

i=0

(det′(D2
b,(a,+∞),i))

(−1)ii (2.25)

does not depend on the choice of a ≥ 0.

Definition 2.3 The symmetric bilinear form defined by (2.25) is called the Ray-Singer

symmetric bilinear torsion on detH∗(Ω∗(M,F ), dF ) and is denoted by bRS
(M,F,gTM ,bF ).

2.4 An anomaly formula for the Ray-Singer symmetric bilinear torsion

We continue the discussion of the above subsection.

Let θ(F, bF ) ∈ Ω1(M) be the Kamber-Tondeur form defined by (cf. [11, (4)])

θ(F, bF ) = Tr[(bF )−1∇F bF ]. (2.26)

Then θ(F, bF ) is a closed one form on M whose cohomology class depends only on the homotopy

class of bF (cf. [11]).

Let ∇TM denote the Levi-Civita connection associated to the Riemannian metric gTM on

TM . Let RTM = (∇TM )2 be the curvature of ∇TM . Let e(TM,∇TM ) ∈ Ωn(M) be the

associated Euler form defined by (cf. [4, (3.17)] and [36, Chapter 3])

e(TM,∇TM ) = Pf
(RTM

2π

)
. (2.27)



392 G. X. Su and W. P. Zhang

Let g′TM be another Riemannian metric on TM and ∇′TM be the associated Levi-Civita

connection. Let ẽ(TM,∇TM ,∇′TM ) be the Chern-Simons class of n − 1 smooth forms on M ,

which is defined modulo exact n− 1 forms, such that

d ẽ(TM,∇TM ,∇′TM ) = e(TM,∇′TM ) − e(TM,∇TM ) (2.28)

(cf. [4, (4.10)]). Of course, if n is odd,

ẽ(TM,∇TM ,∇′TM ) = 0. (2.29)

Let b′F be another nondegenerate symmetric bilinear form on F .

Let bRS
(M,F,g′TM ,b′F ) denote the Ray-Singer symmetric bilinear torsion associated to g′TM and

b′F . Then the complex number
bRS
(M,F,g′T M ,b′F )

bRS
(M,F,gT M ,bF )

∈ C∗

is well-defined.

We can now state the anomaly formula, of which an equivalent form has been proved in [11,

Theorem 4.2], for the Ray-Singer symmetric bilinear torsion as follows.

Theorem 2.1 If bF , b′F lie in the same homotopy class of nondegenerate symmetric bilinear

forms on F , then the following identity holds:

bRS
(M,F,g′T M ,b′F )

bRS
(M,F,gT M ,bF )

= exp
(∫

M

log(det((bF )−1b′F ))e(TM,∇TM )
)

· exp
(
−
∫

M

θ(F, b′F )̃e(TM,∇TM ,∇′TM )
)
. (2.30)

In particular, if dimM = n is odd, then

bRS
(M,F,g′TM ,b′F )

bRS
(M,F,gTM ,bF )

= 1. (2.31)

Remark 2.2 Since bF , b′F lie in the same homotopy class, one sees that log(det((bF )−1b′F ))

is a well-defined univalent function on M .

Remark 2.3 For an alternate approach to the above anomaly formula, compare with Re-

mark 6.1.

3 Comparison Between the Ray-Singer and

Milnor Symmetric Bilinear Torsions

In this section, we prove the main result of this paper, which is an explicit comparison result

between the Ray-Singer and Milnor symmetric bilinear torsions introduced in the last section.

The form of the result we will state formally looks very similar to a theorem of Bismut-Zhang

proved in [4, Theorem 0.2], if one replaces the Hermitian metrics there by the symmetric bilinear

forms. This similarity also reflects in the proof of the main result here, where we will use as

in [4] the Witten deformation [35] of the de Rham complex by Morse functions. Moreover, we
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will make use the analytic techniques developed in [4, 5], some of which go back to the paper

of Bismut-Lebeau [3].

Still, since we will deal with non-self-adjoint operators, we have to generalize many of the

techniques in [4, 5] to the current situation. We will point out the differences in due context.

3.1 A Cheeger-Müller theorem for symmetric bilinear torsions

We assume that we are in the same situation as in Sections 2.2–2.4. By a simple argument

of Helffer-Sjöstrand [19, Proposition 5.1] (cf. [4, Section 7b)]), we may and we will assume that

gTM there satisfies the following property without altering the Thom-Smale cochain complex

(C∗(Wu, F ), ∂):

(∗) For any x ∈ B, there is a system of coordinates y = (y1, · · · , yn) centered at x such

that near x,

gTM =

n∑

i=1

|dyi|2, f(y) = f(x) − 1

2

ind(x)∑

i=1

|yi|2 +
1

2

n∑

i=ind(x)+1

|yi|2. (3.1)

By a result of Laudenbach [21], {Wu(x) : x ∈ B} forms a CW decomposition of M .

For any x ∈ B, F is canonically trivialized over each cell Wu(x).

Let P∞ be the de Rham map defined by

α ∈ Ω∗(M,F ) → P∞α =
∑

x∈B

Wu(x)∗
∫

W u(x)

α ∈ C∗(Wu, F ). (3.2)

By the Stokes theorem, one has

∂P∞ = P∞d
F . (3.3)

Moreover, it is shown in [21] that P∞ is a Z-graded quasi-isomorphism, inducing a canonical

isomorphism

PH
∞ : H∗(Ω∗(M,F ), dF ) → H∗(C∗(Wu, F ), ∂), (3.4)

which in turn induces a natural isomorphism between the determinant lines,

P detH
∞ : detH∗(Ω∗(M,F ), dF ) → detH∗(C∗(Wu, F ), ∂). (3.5)

Now let hTM be an arbitrary smooth metric on TM .

By Definition 2.3, one has an associated Ray-Singer symmetric bilinear torsion bRS
(M,F,hTM ,bF )

on detH∗(Ω∗(M,F ), dF ). From (3.5), one gets a well-defined symmetric bilinear form

P detH
∞ (bRS

(M,F,hTM ,bF )) (3.6)

on detH∗(C∗(Wu, F ), ∂).

On the other hand, by Definition 2.2, one has a well-defined Milnor symmetric bilinear

torsion bM(M,F,bF ,−X) on detH∗(C∗(Wu, F ), ∂), where X = ∇f is the gradient vector field of f

associated to gTM .

Let ψ(TM,∇TM ) be the Mathai-Quillen current (cf. [22]) over TM , associated to hTM ,

defined in [4, Definition 3.6]. As indicated in [4, Remark 3.8], the pull-back current X∗ψ(TM,

∇TM ) is well-defined over M .
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The main result of this paper, which generalizes [4, Theorem 0.2] to the case where F admits

a nondegenerate symmetric bilinear form, can be stated as follows.

Theorem 3.1 The following identity in C holds:

P detH
∞ (bRS

(M,F,hTM ,bF ))

bM(M,F,bF ,−X)

= exp
(
−
∫

M

θ(F, bF )X∗ψ(TM,∇TM )
)
. (3.7)

Remark 3.1 By proceeding similarly as in [4, Section 7b], in order to prove (3.7), we may

well assume that hTM = gTM . Moreover, we may assume that bF , as well as the Hermitian

metric gF on F , are flat on an open neighborhood of the zero set B of X . From now on, we

will make these assumptions.

3.2 Some intermediate results

We assume that the assumptions made in Remark 3.1 hold.

For any T ∈ R, let bFT be the deformed symmetric bilinear form on F defined by

bFT (u, v) = e−2TfbF (u, v). (3.8)

Let dF∗
bT

be the associated formal adjoint in the sense of (2.19). Set

DbT
= dF + dF∗

bT
, D2

bT
= (dF + dF∗

bT
)2 = dF∗

bT
dF + dFdF∗

bT
. (3.9)

Let Ω∗
[0,1],T (M,F ) be defined as in (2.23) with respect to D2

bT
, and let Ω∗

[0,1],T (M,F )⊥ be

the corresponding 〈 , 〉bT
-orthogonal complement.

Let P
[0,1]
T be the orthogonal projection from Ω∗(M,F ) to Ω∗

[0,1],T (M,F ) with respect to the

inner product determined by gTM and gF
T = e−2TfgF . Set P

(1,+∞)
T = Id − P

[0,1]
T .

Following [4, (7.13)–(7.15)], we introduce the notations

χ(F ) =

dim M∑

i=0

(−1)i dimHi(M,F ) = rk(F )
∑

x∈B

(−1)ind(x), (3.10)

χ′(F ) = rk(F )
∑

x∈B

(−1)ind(x)ind(x) = rk(F )
n∑

i=0

(−1)iiMi,

TrB
s [f ] =

∑

x∈B

(−1)ind(x)f(x),

where for any 0 ≤ i ≤ n, Mi is the number of x ∈ B of index i.

Let N be the number operator on Ω∗(M,F ) acting on Ωi(M,F ) by multiplication by i.

We now state several intermediate results whose proofs will be given later in Sections

4 to 9.

Theorem 3.2 (compare with [4, Theorem 7.6]) Let P
[0,1]
T be the restriction of P∞ on

Ω∗
[0,1],T (M,F ), and let P

[0,1],detH
T be the induced isomorphism on cohomology. Then the follow-

ing identity holds:

lim
T→+∞

P
[0,1],detH
T (bdet H∗(Ω∗

[0,1],T
(M,F ),dF ))

bM(M,F,bF ,−X)

(T
π

)n
2 χ(F )−χ′(F )

exp(2 rk(F )TrB
s [f ]T ) = 1. (3.11)



Symmetric Bilinear Torsions 395

Theorem 3.3 (compare with [4, Theorem 7.8]) For any t > 0,

lim
T→+∞

Trs[N exp(−tD2
bT

)P
(1,+∞)
T ] = 0. (3.12)

Moreover, for any d > 0 there exist c > 0, C > 0 and T0 ≥ 1 such that for any t ≥ d and

T ≥ T0,

|Trs[N exp(−tD2
bT

)P
(1,+∞)
T ]| ≤ c exp(−Ct). (3.13)

Theorem 3.4 (compare with [4, Theorem 7.9]) For T ≥ 0 large enough, then

dimΩi
[0,1],T (M,F ) = rk(F )Mi. (3.14)

Also,

lim
T→+∞

Tr[D2
bT
P

[0,1]
T ] = 0. (3.15)

For the next results, we will make use the same notation for Clifford multiplications and

Berezin integrals as in [4, Section 4].

Theorem 3.5 (compare with [4, Theorem 7.10]) As t→ 0, the following identity holds,

Trs[N exp(−tD2
bT

)] =





n

2
χ(F ) +O(t) (if n is even),

rk(F )

∫

M

∫ B

L exp
(
− ṘTM

2

) 1√
t

+O(
√
t ) (if n is odd),

(3.16)

where L is originally defined in [4, (3.52)].

Theorem 3.6 (compare with [5, Theorem A.1]) There exist 0 < α ≤ 1, C > 0 such that

for any 0 < t ≤ α, 0 ≤ T ≤ 1
t , then

∣∣∣Trs[N exp(−(tDb + T ĉ(∇f))2)] − 1

t

∫

M

∫ B

L exp(−BT 2)rk(F )

− T

2

∫

M

θ(F, bF )

∫ B

d̂f exp(−BT 2) − n

2
χ(F )

∣∣∣ ≤ Ct. (3.17)

Theorem 3.7 (compare with [5, Theorem A.2]) For any T > 0, the following identity

holds:

lim
t→0

Trs

[
N exp

(
−
(
tDb +

T

t
ĉ(∇f)

)2)]
=

1

1 − e−2T
((1 + e−2T )χ′(F )−ne−2Tχ(F )). (3.18)

Theorem 3.8 (compare with [5, Theorem A.3]) There exist α ∈ (0, 1], c > 0, C > 0 such

that for any t ∈ (0, α], T ≥ 1, then

∣∣∣Trs

[
N exp

(
−
(
tDb +

T

t
ĉ(∇f)

)2)]
− χ′(F )

∣∣∣ ≤ c exp(−CT ). (3.19)

Clearly, we may and we will assume that the number α > 0 in Theorems 3.7 and 3.9 have

been chosen to be the same.
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3.3 Proof of Theorem 3.1

First of all, by the anomaly formula (2.30), for any T ≥ 0, one has

P
[0,1],detH
T (bdetH∗(Ω∗

[0,1],T
(M,F ),dF ))

bM
(M,F,bF ,−X)

n∏

i=0

(det(D2
bT
|Ω∗

[0,1],T
(M,F )⊥∩Ωi(M,F )))

(−1)ii

=
P det H
∞ (bRS

(M,F,gT M ,bF ))

bM
(M,F,bF ,−X)

exp
(
− 2T rk(F )

∫

M

fe(TM,∇TM )
)
. (3.20)

From now on, we will write a ≃ b for a, b ∈ C if ea = eb. Thus, we can rewrite (3.20) as

log

(
P det H
∞ (bRS

(M,F,gTM ,bF ))

bM
(M,F,bF ,−X)

)
≃ log

(
P

[0,1],detH
T (bdet H∗(Ω∗

[0,1],T
(M,F ),dF ))

bM
(M,F,bF ,−X)

)

+
n∑

i=0

(−1)ii log(det(D2
bT
|Ω∗

[0,1],T
(M,F )⊥∩Ωi(M,F )))

+ 2T rk(F )

∫

M

fe(TM,∇TM). (3.21)

Let T0 > 0 be as in Theorem 3.3. For any T ≥ T0 and s ∈ C with Re(s) ≥ n+ 1, set

θT (s) =
1

Γ(s)

∫ +∞

0

ts−1Trs[N exp(−tD2
bT

)P
(1,+∞)
T ]dt. (3.22)

By (3.13), θT (s) is well-defined and can be extended to a meromorphic function which is holo-

morphic at s = 0 (cf. [30]). Moreover,

n∑

i=0

(−1)ii log(det(D2
bT
|Ω∗

[0,1],T
(M,F )⊥∩Ωi(M,F ))) ≃ −∂θT (s)

∂s

∣∣∣
s=0

. (3.23)

Let d = α2 with α being as in Theorem 3.8. From (3.22) and Theorems 3.3–3.5, one finds

∂θT (s)

∂s

∣∣∣
s=0

=

∫ d

0

(
Trs[N exp(−tD2

bT
)P

(1,+∞)
T ] − a−1√

t
− n

2
χ(F ) + χ′(F )

)dt

t

+

∫ +∞

d

Trs[N exp(−tD2
bT

)P
(1,+∞)
T ]

dt

t
− 2a−1√

d

− (Γ′(1) − log d)
(n

2
χ(F ) − χ′(F )

)
, (3.24)

where we denote for simplicity that

a−1 = rk(F )

∫

M

∫ B

L exp
(
− ṘTM

2

)
. (3.25)

Proposition 3.1 One has

lim
T→+∞

∫ +∞

d

Trs[N exp(−tD2
bT

)P
(1,+∞)
T ]

dt

t
= 0. (3.26)
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Proof This follows from Theorem 3.3 directly.

Now we write
∫ d

0

(
Trs[N exp(−tD2

bT
)P

(1,+∞)
T ] − a−1√

t
− n

2
χ(F ) + χ′(F )

)dt

t

=

∫ d

0

(
Trs[N exp(−tD2

bT
)] − a−1√

t
− n

2
χ(F )

)dt

t

−
∫ d

0

(Trs[N exp(−tD2
bT

)P
[0,1]
T ] − χ′(F ))

dt

t
. (3.27)

From Theorem 3.4, one deduces that

lim
T→+∞

∫ d

0

(Trs[N exp(−tD2
bT

)P
[0,1]
T ] − χ′(F ))

dt

t
= 0. (3.28)

To study the first term in the right-hand side of (3.27), we observe first that for any T ≥ 0,

e−TfD2
bT

eTf = (Db + T ĉ(∇f))2. (3.29)

Thus, one has

Trs[N exp(−tD2
bT

)] = Trs[N exp(−t(Db + T ĉ(∇f))2)]. (3.30)

By (3.30), one writes
∫ d

0

(
Trs[N exp(−tD2

bT
)] − a−1√

t
− n

2
χ(F )

)dt

t

= 2

∫ √
d

0

(
Trs[N exp(−(tDb + tT ĉ(∇f))2)] − a−1

t
− n

2
χ(F )

)dt

t

= 2

∫ √
d

1√
T

(
Trs[N exp(−(tDb + tT ĉ(∇f))2)] − a−1

t
− n

2
χ(F )

)dt

t

+ 2

∫ 1√
T

0

(
Trs[N exp(−(tDb + tT ĉ(∇f))2)] − a−1

t
− n

2
χ(F )

)dt

t

= 2

∫ √
dT

1

(
Trs

[
N exp

(
−
( t√

T
Db + t

√
T ĉ(∇f)

)2)]
−

√
T

t
a−1 −

n

2
χ(F )

)dt

t

+ 2

∫ 1√
T

0

(
Trs[N exp(−(tDb + tT ĉ(∇f))2)] − a−1

t
− n

2
χ(F )

)dt

t
. (3.31)

In view of Theorem 3.6, we write
∫ 1√

T

0

(
Trs[N exp(−(tDb + tT ĉ(∇f))2)] − a−1

t
− n

2
χ(F )

)dt

t

=

∫ 1√
T

0

(
Trs[N exp(−(tDb + tT ĉ(∇f))2)] − 1

t

∫

M

∫ B

L exp(−B(tT )2)rk(F )

− tT

2

∫

M

θ(F, bF )

∫ B

d̂f exp(−B(tT )2) −
n

2
χ(F )

)dt

t

+

∫ 1√
T

0

(1

t

∫

M

∫ B

L exp(−B(tT )2)rk(F ) − a−1

t

)dt

t

+

∫ 1√
T

0

tT

2

∫

M

θ(F, bF )

∫ B

d̂f exp(−B(tT )2)
dt

t
. (3.32)
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By [4, Definitions 3.6, 3.12 and Theorem 3.18], one has, as T → +∞,

∫ 1√
T

0

tT

2

∫

M

θ(F, bF )

∫ B

d̂f exp(−B(tT )2)
dt

t

=
1

2

∫ √
T

0

∫

M

θ(F, bF )

∫ B

d̂f exp(−Bt2)dt

→ 1

2

∫ +∞

0

∫

M

θ(F, bF )

∫ B

d̂f exp(−Bt2)dt

=
1

2

∫

M

θ(F, bF )(∇f)∗ψ(TM,∇TM ). (3.33)

By [4, (3.58)] we have, for any T ≥ 0,

∫

M

∫ B

(L exp(−BT ) − L exp(−B0))

= −
√
Tf

∫

M

∫ B

(exp(−BT ) − exp(−B0))

+

∫

M

f

2

∫ T

0

(∫ B

(exp(−Bt) − exp(−B0))
) dt√

t
. (3.34)

From (3.34), one deduces easily that

lim
T→0+

1√
T

∫

M

∫ B

(L exp(−BT ) − L exp(−B0)) = 0. (3.35)

From [4, (3.54)], (3.35) and the integration by parts, we have

∫ 1√
T

0

(1

t

∫

M

∫ B

L exp(−B(tT )2)rk(F ) − a−1

t

)dt

t

= −T rk(F )

∫ T

0

∫

M

∫ B

(L exp(−Bt) − L exp(−B0))d
1√
t

= −
√
T rk(F )

∫

M

∫ B

(L exp(−BT ) − L exp(−B0)) − T rk(F )

∫

M

∫ T

0

f
∂

∂t

∫ B

exp(−Bt)dt

= −
√
T rk(F )

∫

M

∫ B

L exp(−BT ) +
√
Ta−1 − T rk(F )

∫

M

f

∫ B

exp(−BT )

+ T rk(F )

∫

M

f

∫ B

exp(−B0). (3.36)

From Theorems 3.6, 3.7, (3.35), [4, Theorem 3.20], [4, (7.72) and (7.73)] and the dominate

convergence, one finds that as T → +∞,

∫ 1√
T

0

(
Trs[N exp(−(tDb + tT ĉ(∇f))2)] − 1

t

∫

M

∫ B

L exp(−B(tT )2)rk(F )

− tT

2

∫

M

θ(F, bF )

∫ B

d̂f exp(−B(tT )2) −
n

2
χ(F )

)dt

t

=

∫ 1

0

(
Trs

[
N exp

(
−
( t√

T
Db + t

√
T ĉ(∇f)

)2)]
−

√
T

t

∫

M

∫ B

L exp(−B
(t
√

T )
2)rk(F )
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− t
√
T

2

∫

M

θ(F, bF )

∫ B

d̂f exp(−B(t
√

T )2) −
n

2
χ(F )

)dt

t

→
∫ 1

0

( 1

1 − e−2t2
((1 + e−2t2)χ′(F ) − ne−2t2χ(F ))

+
rk(F )

2t2

∑

x∈B

(−1)ind(x)(n− 2 ind(x)) − n

2
χ(F )

)dt

t

=
1

2

(
χ′(F ) − n

2
χ(F )

) ∫ 1

0

(1 + e−2t

1 − e−2t
− 1

t

)dt

t
. (3.37)

On the other hand, by Theorems 3.7, 3.8 and the dominate convergence, we have, as T →
+∞,

∫ √
Td

1

(
Trs

[
N exp

(
−
( t√

T
Db + t

√
T ĉ(∇f)

)2)]
−

√
T

t
a−1 −

n

2
χ(F )

)dt

t

=

∫ √
Td

1

(
Trs

[
N exp

(
−
( t√

T
Db + t

√
T ĉ(∇f)

)2)]
− χ′(F )

)dt

t

+
1

2
χ′(F ) log(Td) + a−1

√
T
( 1√

Td
− 1
)
− n

4
χ(F ) log(Td)

=

∫ +∞

1

( 1

1 − e−2t2
((1 + e−2t2)χ′(F ) − ne−2t2χ(F )) − χ′(F )

)dt

t

+
1

2

(
χ′(F ) − n

2
χ(F )

)
log(Td) +

a−1√
d
−
√
Ta−1 + o(1)

=
(
χ′(F ) − n

2
χ(F )

) ∫ +∞

1

e−2t

1 − e−2t

dt

t
+

1

2

(
χ′(F ) − n

2
χ(F )

)
log(Td)

+
a−1√
d
−
√
Ta−1 + o(1). (3.38)

Combining (3.11), (3.21), (3.23)–(3.28), (3.31)–(3.33) and (3.36)–(3.38), one deduces, by

setting T → +∞, that

log
(P detH

∞ (bRS
(M,F,gT M ,bF ))

bM
(M,F,bF ,−X)

)

≃ −2 rk(F )TrB
s [f ]T +

(
χ′(F ) − n

2
χ(F )

)
logT

−
(
χ′(F ) − n

2
χ(F )

)
log π −

∫

M

θ(F, bF )(∇f)∗ψ(TM,∇TM )

+ 2
√
T rk(F )

∫

M

∫ B

L exp(−BT ) − 2
√
T a−1 + 2T rk(F )

∫

M

f

∫ B

exp(−BT )

− 2T rk(F )

∫

M

f

∫ B

exp(−B0) −
(
χ′(F ) − n

2
χ(F )

) ∫ 1

0

(1 + e−2t

1 − e−2t
− 1

t

)dt

t

−
(
χ′(F ) − n

2
χ(F )

)∫ +∞

1

2 e−2t

1 − e−2t

dt

t
−
(
χ′(F ) − n

2
χ(F )

)
log(Td) − 2a−1√

d

+ 2
√
Ta−1 + 2T rk(F )

∫

M

f e(TM,∇TM ) +
2a−1√
d

− (Γ′(1) − log d)
(
χ′(F ) − n

2
χ(F )

)
+ o(1)
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= 2T rk(F )

∫

M

f
(∫ B

exp(−BT ) −
∑

x∈B

(−1)ind(x)δx

)

−
(
χ′(F ) − n

2
χ(F )

)(∫ 1

0

(1 + e−2t

1 − e−2t
− 1

t

)dt

t
+

∫ +∞

1

2 e−2t

1 − e−2t

dt

t

)

−
(
χ′(F ) − n

2
χ(F )

)
(log π + Γ′(1)) + 2

√
T rk(F )

∫

M

∫ B

L exp(−BT )

−
∫

M

θ(F, bF )(∇f)∗ψ(TM,∇TM ) + o(1). (3.39)

By [4, Theorem 3.20] and [4, (7.72)], one has

lim
T→+∞

2T rk(F )

∫

M

f
(∫ B

exp(−BT ) −
∑

x∈B

(−1)ind(x)δx

)
= −

(
χ′(F ) − n

2
χ(F )

)
, (3.40)

lim
T→+∞

2
√
T rk(F )

∫

M

∫ B

L exp(−BT ) = 2
(
χ′(F ) − n

2
χ(F )

)
. (3.41)

On the other hand, by [4, (7.93)], one has

∫ 1

0

(1 + e−2t

1 − e−2t
− 1

t

)dt

t
+

∫ +∞

1

2 e−2t

1 − e−2t

dt

t
= 1 − log π − Γ′(1). (3.42)

From (3.39)–(3.42), we get (3.7), which completes the proof of Theorem 3.1.

Remark 3.2 We have used the strategy outlined in [5, Appendix] to prove Theorem 3.1,

instead of using that in [4, Section 7]. In particular, we avoid the explicit use of [4, Theorem

3.9] which is crucial in [4, Section 7], though we still make use of the variation formulas (cf. [4,

(3.54) and (3.58)]).

Remark 3.3 By Theorem 3.6, one deduces that

lim
T→+∞

∫ 1

0

(
Trs

[
N exp

(
−
( t√

T
Db + t

√
T ĉ(∇f)

)2)]

−
√
T

t

∫

M

∫ B

L exp(−B
(t
√

T )
2)rk(F )

− t
√
T

2

∫

M

θ(F, bF )

∫ B

d̂f exp(−B(t
√

T )2) −
n

2
χ(F )

)dt

t
= 0. (3.43)

Combining this with (3.37), one gets

∫ 1

0

(1 + e−2t

1 − e−2t
− 1

t

)dt

t
= 0. (3.44)

4 Asymptotics of the Symmetric Bilinear

Torsion of the Witten Complex

In this section, we prove Theorems 3.2 and 3.4.

We make the same assumptions and use the same notations as in Section 3.
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4.1 Some formulas related to Db

Recall that bF is a nondegenerate symmetric bilinear form on a complex flat vector bundle F

over an oriented closed Riemannian manifoldM . Then it determines a nondegenerate symmetric

bilinear form 〈 , 〉b on Ω∗(M,F ) (cf. (2.17)).

Recall that the formal adjoint dF∗
b of dF with respect to the symmetric bilinear form 〈 , 〉b

has been defined in (2.19), and Db is the operator defined by

Db = dF + dF∗
b . (4.1)

Let

ωF
b = ωb

(
F,∇F

)
=
(
bF
)−1 ∇F bF (4.2)

be defined as in [11].

Let ∇ = ∇Λ∗(T∗M)⊗F be the tensor product connection on Λ∗(T ∗M) ⊗ F obtained from

the Levi-Civita connection ∇TM associated to gTM and the flat connection ∇F on F .

For any X ∈ TM , let X∗ ∈ T ∗M corresponds to X via gTM . Recall that

c(X) = X∗ − iX , ĉ(X) = X∗ + iX (4.3)

denote the Clifford actions on Λ∗(T ∗M), where X∗ and iX are the exterior and interior multi-

plications respectively (cf. [4, Section 4]).

For any oriented orthonormal basis e1, . . . , en of TM , set

c(ωF
b ) =

n∑

i=1

c(ei)ω
F
b (ei), ĉ(ωF

b ) =
n∑

i=1

ĉ(ei)ω
F
b (ei). (4.4)

With these definitions and notations one verifies easily that (cf. [11, (92)])

dF + dF∗
b =

n∑

i=1

c(ei)∇ei
+

1

2
c(ωF

b ) − 1

2
ĉ(ωF

b ). (4.5)

Recall that gF is a Hermitian metric on F . Together with gTM it determines an inner

product 〈 , 〉g on Ω∗(M,F ) (cf. [4, (2.2)] and [5, (2.3)]).

Let dF∗
g be the formal adjoint of dF with respect to 〈 , 〉g.

Set as in [4] and [5]

ωF
g = ωg(F,∇F ) = (gF )−1∇F gF . (4.6)

Then ωF
g is a one form taking values in the self-adjoint elements in End(F ). Moreover,

∇F,u = ∇F +
1

2
ωF

g (4.7)

is a Hermitian connection on F with respect to gF (cf. [4, Section 4] and [5, Section 2]). Let

∇u be the associated tensor product connection on Λ∗(T ∗M) ⊗ F .

By [4, (4.25)], one has

Dg := dF + dF∗
g =

n∑

i=1

c(ei)∇u
ei
− 1

2
ĉ(ωF

g ) =
n∑

i=1

c(ei)∇ei
+

1

2
c(ωF

g ) − 1

2
ĉ(ωF

g ). (4.8)
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From (4.5) and (4.8), one gets

dF + dF∗
b = dF + dF∗

g +
1

2
c(ωF

b ) − 1

2
ĉ(ωF

b ) − 1

2
c(ωF

g ) +
1

2
ĉ(ωF

g ). (4.9)

Write ωF
b as

ωF
b = ωF

b,1 + ωF
b,2, (4.10)

where ωF
b,1 (resp. ωF

b,2) takes values in self-adjoint (resp. skew-adjoint) elements (with respect

to gF ) in End(F ).

From (4.9), one gets the decomposition of Db into self-adjoint and skew-adjoint parts (with

respect to 〈 , 〉g) as follows:

dF + dF∗
b =

(
dF + dF∗

g +
1

2
ĉ(ωF

g ) − 1

2
ĉ(ωF

b,1) +
1

2
c(ωF

b,2)
)

+
(
− 1

2
c(ωF

g ) +
1

2
c(ωF

b,1) −
1

2
ĉ(ωF

b,2)
)
. (4.11)

4.2 Witten deformation and some basic estimates

Let f : M → R be a Morse function on M . We make the assumption that the Riemannian

metric gTM and f verify the condition (3.1). We also assume that gF , like bF , is flat near the

set of critical points of f .

Following Witten [35], for any T ∈ R, set

dF
T = e−TfdF eTf , δF

b,T = eTfdF∗
b e−Tf , δF

g,T = eTfdF∗
g e−Tf . (4.12)

Set

D̃b,T = dF
T + δF

b,T = Db + T ĉ(df), D̃g,T = dF
T + δF

g,T = Dg + T ĉ(df). (4.13)

Observe that the skew-adjoint part of D̃b,T is the same as that of D̃b.

Let ‖ ‖0 be the L2 norm on Ω∗(M,F ) associated to 〈 , 〉g. For any q > 0, let ‖ ‖q be a fixed

q-Sobolev norm on Ω∗(M,F ).

Proposition 4.1 For any open neighborhood U of B, there exist T0 > 0, C > 0, c > 0 such

that for any s ∈ Ω∗(M,F ) with supp(s) ⊂M \ U and T ≥ T0, one has

‖D̃b,T s‖2
0 ≥ C(‖s‖2

1 + (T − c)‖s‖2
0). (4.14)

Proof From (4.11) and (4.13), one sees that the formal adjoint D̃∗
b,T of D̃b,T is given by

D̃∗
b,T =

(
Dg + T ĉ(df) +

1

2
ĉ(ωF

g ) − 1

2
ĉ(ωF

b,1) +
1

2
c(ωF

b,2)
)

−
(
− 1

2
c(ωF

g ) +
1

2
c(ωF

b,1) −
1

2
ĉ(ωF

b,2)
)
. (4.15)

For simplicity, we denote

AF =
1

2
ĉ(ωF

g ) − 1

2
ĉ(ωF

b,1) +
1

2
c(ωF

b,2),

BF = −1

2
c(ωF

g ) +
1

2
c(ωF

b,1) −
1

2
ĉ(ωF

b,2).

(4.16)
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Then one computes

D̃∗
b,T D̃b,T = (Dg +AF )2 + (Dg +AF )BF −BF (Dg +AF ) − (BF )2

+ T ([Dg +AF , ĉ(df)] + ĉ(df)BF −BF ĉ(df)) + T 2|df |2, (4.17)

where by [ , ] we denote the super bracket in the sense of Quillen [27].

Since it is easy to check (cf. [4, (5.17)]) that

[Dg, ĉ(df)] =

n∑

i=1

c(ei)ĉ(∇TM
ei

∇f) − ωF
g (∇f), (4.18)

where ∇f ∈ Γ(TM) is the gradient vector field of f with respect to gTM , is of order zero, the

coefficient of T in the right-hand side of (4.17) is of order zero.

Also, it is clear that there is c0 > 0 such that for any x ∈M \ U ,

|df(x)| ≥ c0. (4.19)

From (4.17) and (4.19), one gets Proposition 4.1 easily, as

‖D̃b,T s‖2
0 = 〈D̃b,T s, D̃b,T s〉 = 〈D̃∗

b,T D̃b,T s, s〉. (4.20)

Proposition 4.2 For any c > 0, there exists Tc > 0 such that for any T ≥ Tc, z ∈ C with

|z| = c, z 6∈ Spec(D̃2
b,T ).

Proof For any p ∈ B, let y = (y1, · · · , yn) be the coordinate system of p as in (3.1), in an

open ball Up of radius 4a, around p. We also assume that both bF and gF are flat on each Up,

p ∈ B. The existence of a > 0 is clear.

By (4.9), one then has

Db = Dg on UB =
⋃

p∈B

Up. (4.21)

Let γ : R → [0, 1] be a smooth function such that γ(x) = 1 if |x| ≤ a, while γ(x) = 0 if

|x| ≥ 2a.

For any T > 0 and p ∈ B, set

αp,T =

∫

Up

γ(|y|)2 exp(−T |y|2)dy1 ∧ · · · ∧ dyn,

ρp,T =
γ(|y|)
√
αp,T

exp
(
− T |y|2

2

)
dy1 ∧ · · · ∧ dynf (p),

(4.22)

where nf (p) = ind(p) is the Morse index of f at p. Then ρp,T ∈ Ωnf (p)(M) is of unit length

with compact support contained in Up.

Set

ET =
⊕

p∈B

{ρp,T ⊗ hp : p ∈ B, hp ∈ Fp}. (4.23)
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Let E⊥
T be the orthogonal complement to ET in L2(Ω∗(M,F )) with respect to 〈 , 〉g, with

L2(Ω∗(M,F )) being the L2 completion of Ω∗(M,F ). Then one has the orthogonal decomposi-

tion

L2 (Ω∗(M,F )) = ET ⊕ E⊥
T . (4.24)

Let pT , p⊥T be the orthogonal projections from L2(Ω∗(M,F )) onto ET , E⊥
T respectively.

Following [3, Section 9b)] (cf. [36, (5.19)]), set

D̃b,T,1 = pT D̃b,T pT , D̃b,T,2 = pT D̃b,T p
⊥
T ,

D̃b,T,3 = p⊥T D̃b,T pT , D̃b,T,4 = p⊥T D̃b,T p
⊥
T .

(4.25)

From (4.17), (4.20), (4.21), (4.25) and proceed as in [3, Section 9] and [36, Proof of Propo-

sition 5.6], one can prove in the same way that there exist T0 > 0, C > 0 such that for any

T ≥ T0, one has

D̃b,T,1 = 0, (4.26)

‖D̃b,T,2s‖0 ≤ ‖s‖0

T
, ‖D̃b,T,3s

′‖0 ≤ ‖s′‖0

T
(4.27)

for any s ∈ E⊥
T ∩H1(M,F ), s′ ∈ ET , where H1(M,F ) is the Sobolev space with respect to the

Sobolev norm ‖ ‖1 on Ω∗(M,F ), and

‖D̃b,T,4s‖0 ≥ C
√
T‖s‖0 (4.28)

for any s ∈ E⊥
T ∩ H1(M,F ).

Now for any λ ∈ C, T ≥ T0 and s ∈ Ω∗(M,F ), by (4.26)–(4.28), we have (cf. [36, (5.26)])

‖(λ− D̃b,T )s‖0 ≥ 1

2
‖λpT s− D̃b,T,2p

⊥
T s‖0 +

1

2
‖λp⊥T s− D̃b,T,3s− D̃b,T,4p

⊥
T s‖0

≥ 1

2

((
|λ| − 1

T

)
‖pT s‖0 +

(
C
√
T − |λ| − 1

T

)
‖p⊥T s‖0

)
. (4.29)

From (4.29), one sees easily that there exist C0 > 0, T ′
0 ≥ T0 such that for any T ≥ T ′

0 and

λ ∈ C with |λ|2 = c, one has

‖(λ2 − D̃2
b,T )s‖0 = ‖(λ+ D̃b,T )(λ − D̃b,T )s‖0 ≥ C0‖s‖0, (4.30)

from which Proposition 4.2 follows.

From now on, we take c = 1, Tc=1 as in Proposition 4.2 and assume T ≥ T1.

Let Ω̃∗
[0,1],T (M,F ) be defined as in (2.23) with respect to D̃b,T . Let P̃

[0,1]
T be the orthogonal

projection from L2(Ω∗(M,F )) onto Ω̃∗
[0,1],T (M,F ).

For any p ∈ B, let [Wu(p)]∗ admit a Hermitian metric such that |Wu(p)∗| = 1. Let

[Wu(p)]∗ ⊗ Fp carry the tensor product metric from the above one with gFp . Let C∗(Wu, F )

carry a Hermitian metric through the orthogonal direct sum of the Hermitian metrics on

[Wu(p)]∗ ⊗ Fp’s.

Let JT : C∗(Wu, F ) → Ω∗(M,F ) be the isometry defined by that for any p ∈ B, h ∈ Fp

and y the coordinate system as above in Up,

JT (Wu(p)∗ ⊗ h) (y) = ρp,T ⊗ h. (4.31)
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From (4.11) and (4.21), one can proceed in exactly that same way as in [4, Theorem 8.8]

and [5, Theorem 6.7] to get the following result.

Theorem 4.1 There exists c > 0 such that as T → +∞, for any s ∈ C∗(Wu, F ),

(P̃
[0,1]
T JT − JT )s = O(e−cT )s uniformly on M. (4.32)

4.3 Proof of Theorem 3.4

From Theorem 4.1, one gets immediately that

dim Ω̃∗
[0,1],T (M,F ) ≥ #B. (4.33)

By (4.21) and proceeding as in [36, Proof of Proposition 5.5], one sees that indeed, (4.33)

holds in equality.

Since P̃
[0,1]
T preserves the Z-grading of Ω∗(M,F ) (as D̃2

b,T does), by applying (4.32) in each

grade and by (4.33) with equality, one then gets, for any 0 ≤ i ≤ n,

dim Ω̃i
[0,1],T (M,F ) = rk(F )Mi = rk(F ) · #{p ∈ B : ind(p) = i}. (4.34)

On the other hand, since the number c in Proposition 4.2 can be chosen arbitrarily small,

one sees that when T → +∞, one has

Tr[D̃2
b,T P̃

[0,1]
T ] → 0. (4.35)

Now consider the isomorphism rT : Ω∗(M,F ) → Ω∗(M,F ) defined by rT (s) = eTfs. Then

it induces a map preserving the corresponding symmetric bilinear forms, as well as the inner

products,

rT : (Ω∗(M,F ), 〈 , 〉b) 7→ (Ω∗(M,F ), 〈 , 〉bT
),

rT : (Ω∗(M,F ), 〈 , 〉g) 7→ (Ω∗(M,F ), 〈 , 〉gT
),

(4.36)

with 〈 , 〉gT
obtained from gTM and gF

T = e−2TfgF (cf. [4, (5.1)]). Moreover, one verifies

directly that

rT D̃b,T = DbT
rT . (4.37)

From (4.34)–(4.37), one gets Theorem 3.4 immediately.

4.4 Proof of Theorem 3.2

We still assume that T ≥ Tc=1, where Tc=1 verifies Proposition 4.2.

Let eT : C∗(Wu, F ) → Ω∗
[0,1],T (M,F ) be defined by

eT = rT P̃
[0,1]
T JT . (4.38)

Recall that C∗(Wu, F ) carries a symmetric bilinear form determined in (2.13) and (2.14),

while Ω∗
[0,1],T (M,F ) carries the induced symmetric bilinear form 〈 , 〉bT

. Let e#T be the adjoint

of eT with respect to these two symmetric bilinear forms.
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Proposition 4.3 There exists c > 0 such that as T → +∞,

e
#
T eT = 1 +O(e−cT ). (4.39)

In particular, when T > 0 is large enough, eT : C∗(Wu, F ) → Ω∗
[0,1],T (M,F ) is a Z-graded

isomorphism.

Proof By the definition of eT and e#T , one has that for any s, s′ ∈ C∗(Wu, F ),

〈e#T eT s, s
′〉bT

= 〈eT s, eT s
′〉bT

= 〈P̃ [0,1]
T JT s, P̃

[0,1]
T JT s

′〉b. (4.40)

On the other hand, from (4.22) and (4.31), one sees directly that

〈JT s, JT s
′〉b = 〈s, s′〉b. (4.41)

From Theorem 4.1, (4.40), and (4.41), one gets (4.39).

From Theorem 3.4 and (4.39), one sees that when T > 0 is large enough, eT is an isomor-

phism.

Recall that the quasi-isomorphism P∞ : (Ω∗(M,F ), dF ) → (C∗(Wu, F ), ∂) has been defined

in (3.2). Let P∞,T : Ω∗
[0,1],T (M,F ) → C∗(Wu, F ) be the restriction of P∞ on Ω∗

[0,1],T (M,F ).

By (3.3), one has

∂P∞,T = P∞,T d
F . (4.42)

By Theorem 4.1 and (4.42), one can proceed in exactly the same way as in [5, Proof of

Theorem 6.11] (cf. [36, Section 6.4]), to get the following analogue of [5, Theorem 6.11].

Proposition 4.4 There exists c > 0 such that as T → +∞, one has

P∞,T eT = eTF
( π
T

)N
2 −n

4

(1 +O(e−cT )), (4.43)

where F acts on [Wu(p)]∗ ⊗ Fp with p ∈ B by multiplication by f(p), and N is the number

operator acting on [Wu(p)]∗ ⊗ Fp with p ∈ B by multiplication by ind(p). In particular, for

T > 0 large enough, P∞,T eT ∈ End(C∗(Wu, F )) is one to one.

From (4.42) and Propositions 4.3, 4.4, one sees that when T > 0 is large enough,

P∞,T : (Ω∗
[0,1],T (M,F ), dF ) → (C∗(Wu, F ), ∂) (4.44)

is a cochain isomorphism.

From Proposition 2.2 and (4.44), one finds

P
[0,1],detH
T (bdetH∗(Ω∗

[0,1],T
(M,F ),dF ))

bM
(M,F,bF ,−X)

=

n∏

i=0

det(P#
∞,TP∞,T |Ωi

[0,1],T
(M,F ))

(−1)i+1

, (4.45)

where P#
∞,T is the adjoint of P∞,T with respect to the symmetric bilinear forms 〈 , 〉b.

From Propositions 4.3 and 4.4, one deduces that as T → +∞,

det(P#
∞,TP∞,T |Ωi

[0,1],T
(M,F )) = det(eT e

#
T P

#
∞,TP∞,T |Ωi

[0,1],T
(M,F )) · det−1(eT e

#
T |Ωi

[0,1],T
(M,F ))

= det((P∞,T eT )#P∞,T eT |Ci(W u,F )) · det−1(e#T eT |Ci(W u,F ))

= det
(
(1 +O(e−cT ))#

( π
T

)N−n/2

e2TF(1 +O(e−cT ))|Ci(W u,F )

)

· det−1((1 +O(e−cT ))|Ci(W u,F )). (4.46)
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From (4.45) and (4.46), one gets (3.11) immediately.

The proof of Theorem 3.2 is completed.

5 Proof of Theorem 3.3

In this section we prove Theorem 3.3.

In view of (4.36), we may restate Theorem 3.3 as follows.

Theorem 5.1 For any t > 0,

lim
T→+∞

Trs[N exp(−tD̃2
b,T )P̃

(1,+∞)
T ] = 0, (5.1)

where P̃
(1,+∞)
T = Id − P̃

[0,1]
T . Moreover, for any d > 0, there exist c > 0, C > 0 and T0 ≥ 1

such that for any t ≥ d and T ≥ T0,

|Trs[N exp(−tD̃2
b,T )P̃

(1,+∞)
T ]| ≤ c exp(−Ct). (5.2)

Set

cb,g = 1 + 2 max
x∈M

{∣∣∣
(
− 1

2
c(ωF

g ) +
1

2
c(ωF

b,1) −
1

2
ĉ(ωF

b,2)
)
(x)
∣∣∣
}
. (5.3)

By the decomposition formula (4.11) and by (4.13), one sees that for any λ ∈ C with

|Im(λ)| = cb,g, λ− D̃b,T is invertible.

Let Γ = Γ1 ∪ Γ2 be the union of two contours defined by

Γ1 = {x±
√
−1 cb,g : 2 ≤ x ≤ +∞}∪ {2 +

√
−1 y : −cb,g ≤ y ≤ cb,g},

Γ2 = {x±
√
−1 cb,g : −∞ ≤ x ≤ −2} ∪ {−2 +

√
−1 y : −cb,g ≤ y ≤ cb,g}.

We orient Γ anti-clockwise.

By Proposition 4.2, one sees that there exists T0 > 0 such that for any T ≥ T0,

Trs[N exp(−tD̃2
b,T )P̃

(1,+∞)
T ] =

1

2π
√
−1

Trs

[
N

∫

Γ

e−tλ2

λ− D̃b,T

dλ
]
. (5.4)

Let C > 0 be the constant verifying (4.28). Following [3, (9.113)], for any T ≥ 1, set

UT =
{
λ ∈ C : 1 ≤ |λ| ≤ C

√
T

4

}
. (5.5)

From (4.26)–(4.28), (5.4) and (5.5), one can proceed as in [3, Section 9e] to show that there

exists T1 ≥ T0 such that for any T ≥ T1, λ ∈ UT , λ − D̃b,T is invertible. Moreover, for any

integer p ≥ n+ 2, there exists C′ > 0 such that if T ≥ T1, λ ∈ UT , the following analogue of [3,

(9.142)] holds:

|Trs[N(λ− D̃b,T )−p] − λ−pχ′(F )| ≤ C′
√
T

(1 + |λ|)p+1. (5.6)

From (5.6), one can proceed as in [3, Sections 9g, 9h], with an obvious modification, to

complete the proof of Theorem 5.1.
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6 Proof of Theorem 3.5

In this section, we provide a proof of Theorem 3.5, which computes the asymptotics, as

t→ 0, of Trs[N exp(−tD2
bT

)] for fixed T ≥ 0.

Since T ≥ 0 is fixed, we may well assume that T = 0.

One way to prove Theorem 3.5 is to apply the method developed in [11, Sections 7 and

8], which deals directly with the operator D2
b . Here we will prove it as an application of the

corresponding result for D2
g established in [4, Theorem 7.10]. The basic idea is very simple: we

use Duhamel principle to express the heat operator of D2
b by using the heat operator of D2

g,

then one can use the results for D2
g to obtain the required results for D2

b (Indeed, this idea will

also be used in later sections for other local index estimates as well).

Set

ωF = ωF
g − ωF

b . (6.1)

From (6.1), one can rewrite (4.9) as

dF + dF∗
b = dF + dF∗

g +
1

2
ĉ(ωF ) − 1

2
c(ωF ). (6.2)

From (6.2), one sees that

Bb,g := D2
b −D2

g = (dF + dF∗
b )2 − (dF + dF∗

g )2 (6.3)

is a differential operator of first order.

By Duhamel principle, one deduces that for any t > 0,

e−tD2
b= e−tD2

g+

n∑

k=1

(−1)ktk
∫

∆k

e−t1tD2
gBb,ge

−t2tD2
g · · ·Bb,ge

−tk+1tD2
gdt1· · · dtk

+ (−1)n+1tn+1

∫

∆n+1

e−t1tD2
gBb,ge

−t2tD2
g · · ·Bb,ge

−tn+1tD2
gBb,ge

−tn+2tD2
b dt1· · ·dtn+1, (6.4)

where ∆k, 1 ≤ k ≤ n+ 1, is the k-simplex defined by t1 + · · ·+ tk+1 = 1, t1 ≥ 0, · · · , tk+1 ≥ 0.

Proposition 6.1 As t→ 0+, one has

tn+1

∫

∆n+1

Trs[Ne−t1tD2
gBb,ge

−t2tD2
g · · ·Bb,ge

−tn+2tD2
b ]dt1 · · · dtn+1 → 0. (6.5)

Proof For any r > 0, let ‖ ‖r denote the Schatten norm defined for any linear operator A

by

‖A‖r = (Tr[(A∗A)
r
2 ])

1
r . (6.6)

Recall the basic properties of ‖ ‖r (cf. [31]) that

( i ) If A is of trace class, then

|Tr[A]| ≤ ‖A‖1, ‖A‖ ≤ ‖A‖1. (6.7)

( ii ) For any r > 0 and compact operator A and any bounded operator B,

‖AB‖r ≤ ‖B‖ ‖A‖r, ‖BA‖r ≤ ‖B‖ ‖A‖r. (6.8)
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(iii) (Hölder inequality) For any p, q, r > 0 with 1
r = 1

p + 1
q ,

‖AB‖r ≤ ‖A‖p‖B‖q. (6.9)

Lemma 6.1 For any r > 0, one has as t→ 0+ that

‖ exp(−tD2
b )‖r = O

( 1

t
n
2

)
. (6.10)

Proof Since Bb,g is of order one, by [14, Lemma 2.8] and [16, Lemma 1], there exists a

(fixed) constant C > 0 such that for any u > 0, t > 0 with ut ≤ 1,

‖ exp(−utD2
g)Bb,g‖u−1 ≤ C(ut)−

1
2

(
Tr
[
exp

(
−
tD2

g

2

)])u

. (6.11)

From (6.8), (6.9) and (6.11), one sees that for any k ≥ 1 and (t1, · · · , tk+1) ∈ ∆k \
{t1 · · · tk+1 = 0},

‖e−t1tD2
gBb,ge

−t2tD2
g · · ·Bb,ge

−tk+1tD2
g‖1

≤ ‖e−t1tD2
gBb,g‖t−1

1
· · · ‖e−tktD2

gBb,g‖t−1
k
‖e−tk+1tD2

g‖t−1
k+1

≤ Ckt−
k
2 (t1 · · · tk)−

1
2

(
Tr
[
e−

tD2
g

2

])t1+···+tk(Tr[e−tD2
g ])tk+1

≤ Ckt−
k
2 (t1 · · · tk)−

1
2 Tr
[
e−

tD2
g

2

]
. (6.12)

Thus for any k ≥ 1, t > 0, one has

∥∥∥tk
∫

∆k

e−t1tD2
gBb,ge

−t2tD2
g · · ·Bb,ge

−tk+1tD2
gdt1 · · ·dtk

∥∥∥
1

≤ (2C
√
t )kTr

[
e−

tD2
g

2

] ∫

∆k

d
√
t1 · · · d

√
tk

≤ (2C
√
t )kTr

[
e−

tD2
g

2

]
. (6.13)

From (6.4) and (6.13), one sees that at least for 0 < t ≤ min{1, 1
8C2 }, one has

e−tD2
b = e−tD2

g +

+∞∑

k=1

(−1)ktk
∫

∆k

e−t1tD2
gBb,ge

−t2tD2
g · · ·Bb,ge

−tk+1tD2
gdt1 · · · dtk. (6.14)

From (6.6), (6.13) and (6.14), one gets (6.10) easily.

The proof of Lemma 6.1 is completed.

From (6.8)–(6.10) and proceeding as in (6.12) and (6.13), one deduces that when t > 0 is

small enough,

∣∣∣tn+1

∫

∆n+1

Trs[Ne−t1tD2
gBb,ge

−t2tD2
g · · ·Bb,ge

−tn+2tD2
b ]dt1 · · · dtn+1

∣∣∣ = O(t
1
2 ), (6.15)

which completes the proof of Proposition 6.1.

To compute the local index contribution to other terms in (6.4), we give the following

formula for Bb,g.
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Theorem 6.1 The following identity holds:

D2
b = D2

g +
1

2

n∑

i, j=1

c(ei)ĉ(ej)(∇u
ei
ωF (ej)) −

1

2

n∑

i, j=1
i6=j

c(ei)c(ej)(∇u
ei
ωF (ej))

+
1

2

n∑

i=1

(∇u
ei
ωF (ei)) +

n∑

i=1

ωF (ei)∇u
ei

+
1

4
(ĉ(ωF ) − c(ωF ))2

− 1

4
[ĉ(ωF ) − c(ωF ), ĉ(ωF

g )]. (6.16)

Proof From (4.8) and (6.3), one has

D2
b −D2

g = (dF + dF∗
b )2 − (dF + dF∗

g )2

= (dF + dF∗
g +

1

2
ĉ(ωF ) − 1

2
c(ωF ))2 − (dF + dF∗

g )2

=
1

2
[d+ dF∗

g , ĉ(ωF ) − c(ωF )] +
1

4
(ĉ(ωF ) − c(ωF ))2

=
1

2

[ n∑

i=1

c(ei)∇u
ei
− 1

2
ĉ(ωF

g ), ĉ(ωF ) − c(ωF )
]

+
1

4
(ĉ(ωF ) − c(ωF ))2. (6.17)

Now we compute (cf. [4, (4.33)])

[ n∑

i=1

c(ei)∇u
ei
, ĉ(ωF )

]
=

n∑

i,j=1

c(ei)ĉ(ej)(∇u
ei
ωF (ej)), (6.18)

[ n∑

i=1

c(ei)∇u
ei
, c(ωF )

]
=

n∑

i,j=1
i6=j

c(ei)c(ej)(∇u
ei
ωF (ej)) −

n∑

i=1

(∇u
ei
ωF (ei)) − 2ωF (ei)∇u

ei
. (6.19)

From (6.17)–(6.19), we get (6.16).

To compute the local index, let a > 0 be the injectivity radius of (M, gTM ). Take x ∈ M

and let e1, · · · , en be an orthonormal basis of TxM . We identify the open ball BTxM (0, a
2 )

with the open ball BM (x, a
2 ) in M using geodesic coordinates. Then y ∈ TxM, |y| ≤ a

2 ,

represents an element of BM (0, a
2 ). For y ∈ TxM , |y| ≤ a

2 , we identify TyM , Fy to TxM , Fx

by parallel transport along the geodesic t ∈ [0, 1] → ty with respect to the connections ∇TM ,

∇F,u respectively.

Let ΓTM,x, ΓF,u,x be the connection forms for ∇TM , ∇F in the considered trivialization of

TM . By [1, Proposition 4.7], one has

ΓTM,x
y =

1

2
RTM

x (y, · ) +O(|y|2),

ΓF,u,x
y = O(|y|).

(6.20)

Following [4, (4.20)], for any t > 0, we introduce the Getzler rescaling

ct(ei) =
ei

t
1
4

∧ − t
1
4 iei

, ĉt(ei) =
êi

t
1
4

∧ + t
1
4 ibei

, y →
√
t y, (6.21)

where we have written e∗i∧ in [4, (4.20)] as ei∧ for the sake of simplicity.



Symmetric Bilinear Torsions 411

From (6.3), (6.16), one verifies easily that under the Getzler rescaling Gt defined in (6.21),

one has, as t→ 0+,

Gt(tBb,g) =
√
t
(1

2

n∑

i, j=1

ei ∧ êj(∇u
ei
ωF (ej)) −

1

2

n∑

i, j=1

ei ∧ ej(∇u
ei
ωF (ej))

+

n∑

i=1

ωF (ei)
∂

∂yi
+

1

4
( ω̂F − ωF )2 − 1

4
[ ω̂F − ωF , ω̂F

g ]
)

+O(t). (6.22)

On the other hand, by [4, (11.1)], one has

Gt(N) =
1

2
√
t

n∑

i=1

ei ∧ êi +O(1) =
1√
t
L+O(1). (6.23)

From (6.22), (6.23) and proceeding as in [4, Section 4], and [17, 18], one deduces that for

any 1 < k ≤ n, (t1, · · · , tk+1) ∈ ∆k,

lim
t→0+

tkTrs[Ne−t1tD2
gBb,ge

−t2tD2
g · · ·Bb,ge

−tk+1tD2
g ] = 0, (6.24)

while for k = 1, 0 ≤ t1 ≤ 1, one has

lim
t→0+

tTrs[Ne−t1tD2
gBb,ge

−(1−t1)tD
2
g ] = lim

t→0+
tTrs[NBb,ge

−tD2
g ]

=
1

2

∫

M

∫ B

Tr
[ n∑

i, j=1

ei ∧ êj(∇u
ei
ωF (ej))

+
1

2
[ωF , ω̂F

g − ω̂F ]
]
L exp

(
− ṘTM

2

)
. (6.25)

Now it is clear that

Tr[ωF , ω̂F
g − ω̂F ] = 0, (6.26)

while by [4, (4.73)] and using the notation in [4, Section 4] one has

n∑

i, j=1

ei ∧ êjTr[(∇u
ei
ωF (ej))] = ∇TMϕTr[ωF ], (6.27)

from which, by [4, (3.10)] and [4, (3.53)], one gets

∫

M

∫ B n∑

i, j=1

ei ∧ êjTr[(∇u
ei
ωF (ej))]L exp

(
− ṘTM

2

)

=

∫

M

∫ B

∇TM
(
(ϕTr[ωF ])L exp

(
− ṘTM

2

))
= 0. (6.28)

From (6.25), (6.26) and (6.28), one gets, for any 0 ≤ t1 ≤ 1,

lim
t→0+

tTrs[Ne−t1tD2
gBb,ge

−(1−t1)tD
2
g ] = 0. (6.29)

From (6.4), (6.5), (6.24), (6.29) and [4, Theorem 7.10], one gets (3.16).

The proof of Theorem 3.5 is completed.

Remark 6.1 The method developed in this section, combined with the method in [4,

Section 4], can be used to give an alternate proof of Theorem 2.1.
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7 Proof of Theorem 3.6

We first restate Theorem 3.6 as follows.

Theorem 7.1 There exist 0 < d ≤ 1, C > 0 such that for any 0 < t ≤ d, 0 ≤ T ≤ 1
t ,

∣∣∣Trs[N exp(−(tDb + T ĉ(∇f))2)] − 1

t

∫

M

∫ B

L exp(−BT 2)rk(F )

− T

2

∫

M

θ(F, bF )

∫ B

d̂f exp(−BT 2) − n

2
χ(F )

∣∣∣ ≤ Ct. (7.1)

Set, in view of (4.6),

θ(F, gF ) = Tr[ωF
g ] = Tr[(gF )−1∇F gF ]. (7.2)

By [5, Theorem A.1], one has, under the same conditions as in Theorem 7.1,

∣∣∣Trs[N exp(−(tDg + T ĉ(∇f))2)] − 1

t

∫

M

∫ B

L exp(−BT 2)rk(F )

− T

2

∫

M

θ(F, gF )

∫ B

d̂f exp(−BT 2) − n

2
χ(F )

∣∣∣ ≤ C′t (7.3)

for some constant C′ > 0.

Thus, in order to prove (7.1), one need only to prove that under the conditions of Theorem

7.1, there exists constant C′′ > 0 such that
∣∣∣Trs[N exp(−(tDb + T ĉ(∇f))2)] − Trs[N exp(−(tDg + T ĉ(∇f))2)]

− T

2

∫

M

(θ(F, bF ) − θ(F, gF ))

∫ B

d̂f exp(−BT 2)
∣∣∣ ≤ C′′t. (7.4)

For t > 0, T ≥ 0, set

Ab,t,T = tDb + T ĉ(∇f), Ag,t,T = tDg + T ĉ(∇f), (7.5)

Ct,T = A2
b,t,T −A2

g,t,T . (7.6)

Then by (6.2) and (6.3) one has

Ct,T = (tDb + T ĉ(∇f))2 − (tDg + T ĉ(∇f))2 = t2Bb,g + tT [Db −Dg, ĉ(∇f)]

= t2Bb,g +
tT

2
[ĉ(ωF ) − c(ωF ), ĉ(∇f)] = t2Bb,g + tTωF (∇f). (7.7)

By (7.6) and the Duhamel principle, one has

e−A2
b,t,T = e−A2

g,t,T +

n∑

k=1

(−1)k

∫

∆k

e−t1A2
g,t,TCt,T e−t2A2

g,t,T · · ·Ct,T e−tk+1A2
g,t,T dt1 · · ·dtk

+ (−1)n+1

∫

∆n+1

e−t1A2
g,t,TCt,T e−t2A2

g,t,T · · ·Ct,T e−tn+2A2
b,t,T dt1 · · · dtn+1. (7.8)

Lemma 7.1 There exists C0 > 0 such that for any T ≥ 0, s ∈ Ω∗(M,F ), one has

‖Bb,gs‖2
0 ≤ C0(‖s‖2

0 + ‖(Dg + T ĉ(∇f))s‖2
0). (7.9)
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Proof Since both bF and gF by assumption are flat near the set B of critical points of the

Morse function f , by (6.3) and (6.16) we find that there exists δ > 0 such that

Bb,g = 0 (7.10)

on
⋃

x∈B

BM
x (2δ), where for each x ∈ B, BM

x (2δ) ⊂M is the ball of radius 2δ centered at x.

Let ψ ≥ 0 be a function on M such that supp(ψ) ⊂ M \ ⋃
x∈B

BM
x (δ) while ψ ≡ 1 on

M \ ⋃
x∈B

BM
x (3

2δ). Then by (7.10) and the standard elliptic estimate, there exists C1 > 0 such

that for any s ∈ Ω∗(M,F ),

‖Bb,gs‖2
0 = ‖Bb,g(ψs)‖2

0 ≤ C1(‖ψs‖2
0 + ‖Dg(ψs)‖2

0). (7.11)

Also, by (4.18) and (4.19) it is clear that there exists C2 > 0 such that for any T ≥ 0 and

y ∈M \ ⋃
x∈B

BM
x (δ),

T [Dg, ĉ(∇f)] + T 2|∇f |2 ≥ −C2. (7.12)

From (7.11) and (7.12), one deduces that there exists C3 > 0 such that for any T ≥ 0 and

any s ∈ Ω∗(M,F ), one has

‖Dg(ψs)‖2
0 ≤ C2‖ψs‖2

0 + 〈(Dg + T ĉ(∇f))2(ψs), ψs〉g
= C2‖ψs‖2

0 + ‖(Dg + T ĉ(∇f))(ψs)‖2
0

≤ C3(‖s‖2
0 + ‖(Dg + T ĉ(∇f))s‖2

0). (7.13)

From (7.11) and (7.13), one gets (7.9).

By (7.5), Lemma 7.1 and proceeding as in [14, Lemma 2.8] and [16, Lemma 1], one finds

that there exists C4 > 0 such that for any t > 0, u > 0 verifying ut2 ≤ 1 and T ≥ 0,

‖ exp(−uA2
g,t,T )Bb,g‖u−1 ≤ C4u

− 1
2 t−1

(
Tr
[
exp

(
−
A2

g,t,T

2

)])u

. (7.14)

Similarly, as

ωF = 0 (7.15)

on
⋃

x∈B

BM
x (2δ), one deduces that there exists C5 > 0 such that for any u > 0, t > 0, T ≥ 0,

‖ exp(−uA2
g,t,T )TωF (∇f)‖u−1 ≤ C5u

− 1
2

(
Tr
[
exp

(
−
A2

g,t,T

2

)])u

. (7.16)

From (6.8), (6.9), (7.7), (7.14), (7.16) and proceeding as in (6.12), one sees that for any

k ≥ 1 and t > 0, ti > 0 for 1 ≤ i ≤ k + 1 with
k+1∑
i=1

ti = 1, one has

‖e−t1A2
g,t,TCt,T e−t2A2

g,t,T · · ·Ct,T e−tk+1A2
g,t,T ‖1 ≤ (C4 + C5)

ktk(t1 · · · ttk
)−

1
2 Tr[e−

A2
g,t,T
2 ]. (7.17)
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From (7.17) and proceeding as in (6.13), one has, for any k ≥ 1 and t > 0,

∥∥∥
∫

∆k

e−t1A2
g,t,TCt,T e−t2A2

g,t,T · · ·Ct,T e−tk+1A2
g,t,T dt1 · · · dtk

∥∥∥
1
≤(2(C4+C5)t)

kTr[e−
A2

g,t,T
2 ]. (7.18)

From (7.8) and (7.18), one sees that at least for 0 < t ≤ min{1, 1
4(C4+C5)

} and T ≥ 0 with

tT ≤ 1, one has

e−A2
b,t,T = e−A2

g,t,T +

+∞∑

k=1

(−1)k

∫

∆k

e−t1A2
g,t,TCt,T e−t2A2

g,t,T · · ·Ct,T e−tk+1A2
g,t,T dt1 · · · dtk. (7.19)

From (6.6), (7.18), (7.19) and [4, (12.34)], one finds that for any 0 < t ≤ min{1, 1
4(C4+C5)

}
and T ≥ 0 with tT ≤ 1, one has that for any r > 0, there exists C6 > 0 such that

‖ exp(−A2
b,t,T )‖r ≤ C6

tn
. (7.20)

From (7.14), (7.16) and (7.20), one can proceed as in (6.12) and (6.15) to see that there

exists C7 > 0 such that for any t > 0 small enough and T ∈ [0, 1
t ],

∣∣∣
∫

∆n+1

Trs[Ne−t1A2
g,t,TCt,T e−t2A2

g,t,T · · ·Ct,T e−tn+2A2
b,t,T ]dt1 · · · dtn+1

∣∣∣ ≤ C7t. (7.21)

Now for any x ∈M , we introduce the coordinates and identification around x as in Section

6, and use the Getzler rescaling introduced in (6.21), with t there replaced by t2 here. By using

(7.7), one has

Gt2(Ct,T ) = Gt2(t
2Bb,g) + tTωF (∇f). (7.22)

From (6.21)–(6.29), (7.22) and proceeding as in [4, Section 13], one deduces that there exist

C8 > 0, 0 < d ≤ 1 such that for any 1 < k ≤ n, 0 < t ≤ d, T ≥ 0 with tT ≤ 1,
∣∣∣
∫

∆k

Trs[Ne−t1A2
g,t,TCt,T e−t2A2

g,t,T · · ·Ct,T e−tk+1A2
g,t,T ]dt1 · · · dtk

∣∣∣ ≤ C8t, (7.23)

while for k = 1 one has for any 0 < t ≤ d, T ≥ 0 with tT ≤ 1 and 0 ≤ t1 ≤ 1,

∣∣∣Trs[Ne−t1A2
g,t,TCt,T e−(1−t1)A2

g,t,T ] − T

∫

M

∫ B

Tr[ωF (∇f)]L exp(−BT 2t)
∣∣∣ ≤ C8t. (7.24)

Now from [4, (3.9), (3.52)–(3.53)], (2.26), (4.2), (6.1) and (7.2), one deduces that
∫

M

∫ B

Tr[ωF (∇f)]L exp(−BT 2)

=

∫

M

∫ B

i∇f (Tr[ωF ])L exp(−BT 2)

=

∫

M

∫ B

Tr[ωF ]i∇f (L) exp(−BT 2) +

∫

M

∫ B

Tr[ωF ]L i∇f (exp(−BT 2))

=
1

2

∫

M

∫ B

Tr[ωF ]∇̂f exp(−BT 2) − 1

2

∫

M

∫ B

Tr[ωF ]L∇TM (exp(−BT 2))

=
1

2

∫

M

Tr[ωF ]

∫ B

∇̂f exp(−BT 2) − 1

2

∫

M

Tr[ωF ]

∫ B

∇TM (L(exp(−BT 2)))

=
1

2

∫

M

(θ(F, gF ) − θ(F, bF ))

∫ B

∇̂f exp(−BT 2). (7.25)
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From (7.8), (7.21) and (7.23)–(7.25), one gets (7.4), which completes the proof of Theorem

7.1.

8 Proof of Theorem 3.7

In view of (3.18) and [5, Theorem A.2], in order to prove Theorem 3.7, we need only to

prove that for any T > 0,

lim
t→0+

(Trs[N exp(−A2
b,t, T

t

)] − Trs[N exp(−A2
g,t, T

t

)]) = 0. (8.1)

First of all, by (7.18), there exists 0 < C0 ≤ 1 such that when 0 < t ≤ C0, one has

∥∥∥
∫

∆k

e
−t1A2

g,t, T
t Ct, T

t
e
−t2A2

g,t, T
t · · ·Ct, T

t
e
−tk+1A2

g,t, T
t dt1 · · · dtk

∥∥∥
1
≤
( t

2C0

)k

Tr[e−
A2

g,t, T
t

2 ]. (8.2)

Thus we have the absolute convergent expansion formula

e
−A2

b,t, T
t −e

−A2

g,t, T
t =

+∞∑

k=1

(−1)k

∫

∆k

e
−t1A2

g,t, T
t Ct, T

t
e
−t2A2

g,t, T
t · · ·Ct, T

t
e
−tk+1A2

g,t, T
t dt1 · · · dtk. (8.3)

Since T > 0 is fixed, by [4, (12.34) and (15.22)], there exists C1 > 0 such that for 0 < t ≤ C0,

Tr[e−
A2

g,t, T
t

2 ] ≤ C1

tn
. (8.4)

From (8.2) and (8.4), one sees that

+∞∑

k=n

(−1)k

∫

∆k

e
−t1A2

g,t, T
t Ct, T

t
e
−t2A2

g,t, T
t · · ·Ct, T

t
e
−tk+1A2

g,t, T
t dt1 · · ·dtk (8.5)

is uniformly absolute convergent for 0 < t ≤ C0.

Let ψ ≥ 0 be the function on M defined in Section 7. Then by definition one has

Ct, T
t

= ψCt, T
t

= Ct, T
t
ψ = ψCt, T

t
ψ. (8.6)

From (8.3) one sees that for each k ≥ 1 and any T > 0, 0 < t ≤ C0 and (t1, · · · , tk+1) ∈ ∆k,

since
k+1∑
i=1

ti = 1, there is j ∈ [1, k + 1] such that tj ≥ 1
k+1 . We here deal with the case where

j = k + 1; the other cases can be dealt with similarly.

From (6.8), (6.9), (7.7), (7.14), (7.16), (8.6) and proceeding as in (6.12), one has, for any

(t1, · · · , tk+1) ∈ ∆k \ {t1 · · · tk+1 = 0},

|Trs[Ne
−t1A2

g,t, T
t Ct, T

t
e
−t2A2

g,t, T
t · · ·Ct, T

t
e
−tk+1A2

g,t, T
t ]|

= |Trs[Ne
−t1A2

g,t, T
t Ct, T

t
e
−t2A2

g,t, T
t · · ·Ct, T

t
ψe

−tk+1A2

g,t, T
t ]|

≤ C2‖e
−t1A2

g,t, T
t Ct, T

t
‖t−1

1
‖e−t2A2

g,t, T
t Ct, T

t
‖t−1

2
· · · ‖e−tkA2

g,t, T
t Ct, T

t
‖t−1

k
‖ψe

−tk+1A2

g,t, T
t ‖t−1

k+1

≤ C3t
k(t1 · · · tk)−

1
2 Tr[e−

A2

g,t, T
t

2 ]‖ψe
− tk+1

2 A2

g,t, T
t ‖ (8.7)
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for some positive constants C2 > 0, C3 > 0.

From (8.4), (8.7) and the assumption that tk+1 ≥ 1
k+1 , one gets

∣∣∣
∫

∆k

Trs[Ne
−t1A2

g,t, T
t Ct, T

t
e
−t2A2

g,t, T
t · · ·Ct, T

t
e
−tk+1A2

g,t, T
t ]dt1 · · · dtk

∣∣∣

≤ C4t
k−n‖ψe

− 1
2(k+1)

A2

g,t, T
t ‖ (8.8)

for some constant C4 > 0.

By (8.8) one need to estimate

‖ψe
− 1

2(k+1)
A2

g,t, T
t ‖ = ‖ψe

− 1
2(k+1)

A2

g,t, T
t (ψe

− 1
2(k+1)

A2

g,t, T
t )∗‖ 1

2

= ‖ψe
− 1

k+1A2

g,t, T
t ψ‖ 1

2

≤
√∫

M

Tr[ψ(x)S t√
k+1

, 1√
k+1

T
t
(x, x)ψ(x)]dvolx, (8.9)

where as in [4, Section 14], St, T
t
(x, y) for x, y ∈ M denotes the kernel of exp(−A2

g,t, T
t

) with

respect to the Riemannian volume dvolgT M .

Now since Supp(ψ) ⊂ M \ ⋃
x∈B

Bx(δ), by [4, Proposition 14.1], one sees that there exist

C5, C6 > 0 such that

∫

M

Tr[ψ(x)S t√
k+1

, 1√
k+1

T
t
(x, x)ψ(x)]dvolx ≤ C5 exp

(
− C6

t2

)
. (8.10)

From (8.3), (8.5), (8.8)–(8.10) and the dominate convergence, we get (8.1), which completes

the proof of Theorem 3.7.

9 Proof of Theorem 3.8

In view of (3.19) and [5, Theorem A.3], in order to prove Theorem 3.8, we need only to

prove that there exist c > 0, C > 0, 0 < C0 ≤ 1 such that for any 0 < t ≤ C0, T ≥ 1,

|Trs[N exp(−A2
b,t, T

t

)] − Trs[N exp(−A2
g,t, T

t

)]| ≤ c exp(−CT ). (9.1)

First of all, one can choose C0 > 0 small enough so that for any 0 < t ≤ C0, T > 0, by

(8.3), we have the absolute convergent expansion formula

e
−A2

b,t, T
t −e

−A2

g,t, T
t =

+∞∑

k=1

(−1)k

∫

∆k

e
−t1A2

g,t, T
t Ct, T

t
e
−t2A2

g,t, T
t · · ·Ct, T

t
e
−tk+1A2

g,t, T
t dt1 · · · dtk, (9.2)

from which one has

Trs[N exp(−A2
b,t, T

t

)] − Trs[N exp(−A2
g,t, T

t

)]

=

+∞∑

k=1

(−1)k

∫

∆k

Trs[Ne
−t1A2

g,t, T
t Ct, T

t
e
−t2A2

g,t, T
t · · ·Ct, T

t
e
−tk+1A2

g,t, T
t ]dt1 · · ·dtk. (9.3)
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Thus, in order to prove (9.1), we need only to prove

+∞∑

k=1

∣∣∣
∫

∆k

Trs[Ne
−t1A2

g,t, T
t Ct, T

t
e
−t2A2

g,t, T
t · · ·Ct, T

t
e
−tk+1A2

g,t, T
t ]dt1 · · ·dtk

∣∣∣

=
+∞∑

k=1

∣∣∣
∫

∆k

Trs[Ne
−(t1+tk+1)A

2

g,t, T
t Ct, T

t
e
−t2A2

g,t, T
t · · ·Ct, T

t
]dt1 · · · dtk

∣∣∣

≤ c exp(−CT ). (9.4)

Let ψ ≥ 0 be the function on M defined in Section 7. By (8.6), we have for any t > 0,

T ≥ 1, (t1, · · · , tk+1) ∈ ∆k \ {t1 · · · tk+1 = 0},

Trs[Ne
−(t1+tk+1)A2

g,t, T
t Ct, T

t
e
−t2A2

g,t, T
t · · ·Ct, T

t
]

= Trs[Nψe
−(t1+tk+1)A2

g,t, T
t Ct, T

t
ψe

−t2A2

g,t, T
t Ct, T

t
· · ·ψe

−tkA2

g,t, T
t Ct, T

t
]. (9.5)

We first state a refinement of the estimates (6.11), (7.14) and (7.16).

Lemma 9.1 There exists C1 > 0 such that for any 0 < u ≤ 1, 0 < t ≤ 1, T ≥ 1, one has

‖ψe
−uA2

g,t, T
t Ct, T

t
‖u−1 ≤ C1u

− 1
2 t(Tr[e

− 1
2 A2

g,t, T
t ])u‖ψe

−u
4 A2

g,t, T
t ‖. (9.6)

Proof From (7.9), (7.15) and (7.16), one sees that there exists a constant C2 > 0 such that

C∗
t, T

t

Ct, T
t
≤ C2t

2(1 +A2
g,t, T

t

). (9.7)

From (6.8) and (9.7), one gets

‖ψe
−uA2

g,t, T
t Ct, T

t
‖u−1 ≤ ‖ψe

− 3u
4 A2

g,t, T
t ‖u−1‖e−

u
4 A2

g,t, T
t Ct, T

t
‖

≤ C3u
− 1

2 t‖ψe
−u

4 A2

g,t, T
t ‖‖e−

u
2 A2

g,t, T
t ‖u−1

∥∥∥e
−u

4 A2

g,t, T
t

(
1 +

u

4
A2

g,t, T
t

) 1
2
∥∥∥

≤ C4u
− 1

2 t(Tr[e
− 1

2A2

g,t, T
t ])u‖ψe

−u
4 A2

g,t, T
t ‖ (9.8)

for some positive constants C3 > 0, C4 > 0.

The proof of Lemma 9.1 is completed.

Lemma 9.2 There exist 0 < c1 ≤ 1, C5 > 0, C6 > 0 such that for any 0 < u ≤ 1,

0 < t ≤ c1, T ≥ 1, one has

‖ψe
−uA2

g,t, T
t ‖ ≤ C5 exp(−C6uT ). (9.9)

Proof From (4.13) and (7.5), one has

A2
g,t, T

t

= t2
(
Dg +

T

t2
ĉ(∇f)

)2

= t2D̃2
g, T

t2
. (9.10)

Since T ≥ 1, it is known (cf. [29]) that there exist 0 < c1 ≤ 1, c2 > 0, c3 > 0 such that for

any 0 < t ≤ c1, the spectrum of D̃2
g, T

t2
splits into two parts:

Spec(D̃2
g, T

t2
) ⊂

[
0, exp

(
− c2T

t2

)]⋃[c3T
t2

,+∞
)
. (9.11)
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For 0 < t ≤ c1 and T ≥ 1 let Q
[0,1]
T

t2

denote the orthogonal projection from L2(Ω∗(M,F )) to

the direct sum of the eigenspaces of D̃2
g, T

t2
corresponding to the eigenvalues lying in [0, 1]. Let

Q
[1,+∞)
T

t2

= Id −Q
[0,1]
T

t2

. Then it is known that (cf. [4, (7.20)]) Im(Q
[0,1]
T

t2

) is a finite dimensional

space.

Now we write

‖ψe
−uA2

g,t, T
t ‖ = ‖ψe

−uA2

g,t, T
t (Q

[0,1]
T

t2

+Q
[1,+∞)
T

t2

)‖

≤ ‖ψe
−uA2

g,t, T
t Q

[0,1]
T

t2

‖ + ‖ψe
−uA2

g,t, T
t Q

[1,+∞)
T

t2

‖. (9.12)

From (9.10) and (9.11), one sees that

‖ψe
−uA2

g,t, T
t Q

[1,+∞)
T

t2

‖ ≤ ‖e−uA2

g,t, T
t Q

[1,+∞)
T

t2

‖ ≤ exp(−c3uT ). (9.13)

From (9.11) one has

‖ψe
−uA2

g,t, T
t Q

[0,1]
T

t2

‖≤‖ψ(e
−uA2

g,t, T
t − Id)Q

[0,1]
T

t2

‖+‖ψQ[0,1]
T

t2

‖≤‖ψQ[0,1]
T

t2

‖+C7 exp
(
− c4T

t2

)
(9.14)

for some positive constants c4 > 0, C7 > 0.

For any T > 0, let JT be the map defined in (4.31) where we assume without loss of

generality that the radius 4a there verifies 4a ≤ δ. Then one has

ψJ T

t2
= 0. (9.15)

By (9.15) and [4, Theorem 8.8] and [5, Theorem 6.7], an analogue of which has been proved

in Theorem 4.1, one sees that there exist C8 > 0, c5 > 0 such that

‖ψQ[0,1]
T

t2

J T

t2
‖ ≤ C8 exp

(
− c5T

t2

)
. (9.16)

From (9.16) one deduces easily that there exist C9 > 0, c6 > 0 such that

‖ψQ[0,1]
T

t2

‖ ≤ C9 exp
(
− c6T

t2

)
. (9.17)

From (9.12)–(9.14) and (9.17), one gets (9.9).

The proof of Lemma 9.2 is completed.

From Lemmas 9.1 and 9.2, one deduces that for any 0 < t ≤ min{C0, c1}, T ≥ 1 and

(t1, · · · , tk+1) ∈ ∆k \ {t1 · · · tk+1 = 0},

‖ψe
−(t1+tk+1)A

2

g,t, T
t Ct, T

t
ψe

−t2A2

g,t, T
t Ct, T

t
· · ·ψe

−tkA2

g,t, T
t Ct, T

t
‖1

≤ ‖ψe
−(t1+tk+1)A

2

g,t, T
t Ct, T

t
‖(t1+tk+1)−1 · · · ‖ψe

−tkA2

g,t, T
t Ct, T

t
‖t−1

k

≤ (C1C5t)
k((t1 + tk+1)t2 · · · tk)−

1
2 Tr[e

− 1
2A2

g,t, T
t ] exp

(
− C6T

4

)
. (9.18)

By [4, (15.22)], one sees that there exists C10 > 0 such that for any 0 < t ≤ min{C0, c1},
T ≥ 1,

Tr[e
− 1

2A2

g,t, T
t ] ≤ C10

T
n
2

tn
. (9.19)
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From (9.5), (9.18) and (9.19), one sees that there exists C11 > 0 such that for any k ≥ 1,

∣∣∣
∫

∆k

Trs[Ne
−t1A2

g,t, T
t Ct, T

t
e
−t2A2

g,t, T
t · · ·Ct, T

t
e
−tk+1A2

g,t, T
t ]dt1 · · · dtk

∣∣∣

≤ C11(2C1C5t)
k T

n
2

tn
exp

(
− C6T

4

)
, (9.20)

from which one sees that there exist 0 < c7 ≤ min{C0, c1}, C12 > 0, C13 > 0 such that for any

0 < t ≤ c7 and T ≥ 1,

∣∣∣
+∞∑

k=n

∫

∆k

Trs[Ne
−t1A2

g,t, T
t Ct, T

t
e
−t2A2

g,t, T
t · · ·Ct, T

t
e
−tk+1A2

g,t, T
t ]dt1· · · dtk

∣∣∣≤C12 exp(−C13T ). (9.21)

On the other hand, for any 1 ≤ k < n, proceeding as in (8.8), one sees that for any 0 < t ≤ c7,

T ≥ 1,

∣∣∣
∫

∆k

Trs[Ne
−t1A2

g,t, T
t Ct, T

t
e
−t2A2

g,t, T
t · · ·Ct, T

t
e
−tk+1A2

g,t, T
t ]dt1 · · ·dtk

∣∣∣

≤ C14t
k−n‖ψe

− 1
2(k+1)

A2

g,t, T
t ‖ (9.22)

for some constant C14 > 0.

Now since Supp(ψ) ⊂ M \ ⋃
x∈B

Bx(δ), by [4, Proposition 15.1], one sees that there exist

C15, C16 > 0 such that for any 0 < t ≤ c7, T ≥ 1,

∫

M

Tr[ψ(x)S 1√
k+1

t, 1√
k+1

T
t
(x, x)ψ(x)]dvolx ≤ C15 exp

(
− C16T

t2

)
. (9.23)

From (8.9), (9.22) and (9.23), one sees immediately that there exist C17 > 0, C18 > 0 such

that for any 1 ≤ k ≤ n− 1, 0 < t ≤ c7 and T ≥ 1,

∣∣∣
∫

∆k

Trs[Ne
−t1A2

g,t, T
t Ct, T

t
e
−t2A2

g,t, T
t · · ·Ct, T

t
e
−tk+1A2

g,t, T
t ]dt1 · · ·dtk

∣∣∣ ≤ C17e
−C18T . (9.24)

From (9.3), (9.21) and (9.24), one gets (9.1).

The proof of Theorem 3.8 is completed.

10 Euler Structure and the Burghelea-Haller Conjecture

In this section, we recall several symmetric bilinear torsions introduced by Burghelea-Haller

[10, 11] which are defined by using the Euler structure introduced by Turaev [34]. We then

apply our main result, Theorem 3.1, to prove a conjecture due to Burghelea and Haller [11,

Conjecture 5.1].

Some applications on comparisons of various torsions are also included.

10.1 Euler and coEuler structures

Let M be a closed oriented smooth manifold, with dimM = n. We assume the vanishing

of the Euler-Poincaré characteristics of M , that is, χ(M) = 0. The set of Euler structures with

integral coefficients, Eul(M ;Z), introduced by Turaev [34], is an affine version of H1(M ;Z).
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Let X ∈ Γ(TM) be a non-degenerate vector field on M which means X : M → TM is

transversal to the zero section. Denote its set of zeros by zero(X). For every x ∈ zero(X), there

is a well-defined Hopf index INDX(x) ∈ {±1}.
Any Euler structure can be represented by a pair (X, c) where c ∈ C

sing
1 (M ;Z) is a singular

1-chain satisfying

∂c = e(X) :=
∑

x∈zero(X)

INDX(x)x. (10.1)

Since χ(M) = 0, the existence of c is clear.

Lemma 10.1 (cf. [11, Lemma 2.1]) Let M be a closed smooth manifold with χ(M) = 0,

let e ∈ Eul(M ;Z) be an Euler structure, and let x0 ∈ M be a base point. Suppose X is a

non-degenerate vector field on M with zero(X) 6= ∅. Then there exists a collection of paths σx,

σx(0) = x0, σx(1) = x, x ∈ zero(X), such that

e =
[
X,

∑

x∈zero(X)

INDX(x)σx

]
. (10.2)

The set of coEuler structures Eul∗(M ;C) is an affine version of Hn−1(M ;C).

Let gTM as before be a Riemannian metric on M with the associated Levi-Civita connection

denoted by ∇TM .

Any coEuler structure can be represented by (gTM , α) for some α ∈ Ωn−1(M) such that

dα = e(TM,∇TM ), (10.3)

where e(TM,∇TM ) is the Euler form defined in (2.27). Since χ(M) = 0, the existence of α is

clear.

If [X, c] ∈ Eul(M ;Z) and [gTM , α] ∈ Eul∗(M ;C), we say that [gTM , α] is dual to [X, c] if

for any closed one form ω ∈ Ω1(M) which vanishes in a neighborhood of zero(X),

∫

M

ω ∧ (X∗ψ(TM,∇TM ) − α) =

∫

c

ω, (10.4)

where ψ(TM,∇TM ) is the Mathai-Quillen current (cf. [22]) associated with gTM defined in [4,

Definition 3.6].

For any [X, c] ∈ Eul(M ;Z) and gTM , the existence of α is proved in [10, 11].

10.2 A proof of the Burghelea-Haller conjecture

We make the same geometric assumptions as in Section 3. We also assume χ(M) = 0 as in

the previous subsection.

Recall that we have the Thom-Smale cochain complex (C∗(Wu, F ), ∂) associated to a Morse

function f and a Riemannian metric gTM verifying conditions in Section 3.1.

Let x0 ∈M be a fixed base point.

Let e be an Euler structure.

For every critical point x ∈ B of f choose a path σx with σx(0) = x0 and σx(1) = x so that[
∇f, ∑

x∈B

(−1)ind(x)σx

]
is a representative of e (cf. Lemma 10.1).
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Let bx0 be a nondegenerate symmetric bilinear form on the fiber Fx0 over x0. For x ∈ B

define a nondegenerate symmetric bilinear form bx on Fx by parallel transport of bx0 along σx

with respect to ∇F . The collection of symmetric bilinear forms {bx}x∈B defines a nondegenerate

symmetric bilinear form on the Thom-Smale cochain complex (C∗(Wu, F ), ∂), which in turn

defines an induced symmetric bilinear form on detH∗(C∗(Wu, F ), ∂).

Since χ(M) = 0, one sees easily that the above induced symmetric bilinear form on

detH∗(C∗(Wu, F ), ∂) does not depend on the choices of {σx}x∈B, x0 and bx0 . It depends

only on F , e and ∇f . We call it the Milnor-Turaev symmetric bilinear torsion and denote it by

τ
∇f
F,e .

On the other hand, let bF be a nondegenerate symmetric bilinear form on the flat vector

bundle F .

For any α ∈ Ωn−1(M) such that dα = e(TM,∇TM ), following Burghelea and Haller [10, 11],

we define

τan
F,gT M ,bF ,α = bRS

(M,F,gTM ,bF ) · exp
(∫

M

θ(F, bF ) ∧ α
)

(10.5)

and call it the Burghelea-Haller symmetric bilinear torsion.

By [11, Theorem 4.2], we know that τan
F,gT M ,bF ,α does not depend on the choice of gTM and

the smooth deformations of bF . Thus we now denote it by τan
F,bF ,α.

We can now state the following equivalent version of the Burghelea-Haller conjecture (cf.

[11, Conjecture 5.1]).

Theorem 10.1 If e =
[
∇f, ∑

x∈B

(−1)ind(x)σx

]
and (gTM , α) are dual in the sense of (10.4),

then we have

P detH
∞ (τan

F,bF ,α) = τ
∇f
F,e . (10.6)

Proof By [11, Theorem 4.2], we may well assume that bF is flat near B. Then θ(F, bF ) = 0

near B.

By (10.4), one has
∫

M

θ(F, bF )(X∗ψ(TM,∇TM ) − α) =

∫

c

θ(F, bF ), (10.7)

where c =
∑

x∈B

(−1)ind(x)σx.

From Theorem 3.1 and (10.7), noting X = ∇f , we have

P detH
∞ (τan

F,bF ,α) = P detH
∞ (bRS

(M,F,gT M ,bF )) · exp
( ∫

M

θ(F, bF ) ∧ α
)

= bM(M,F,bF ,−X) · exp
(
−
∫

M

θ(F, bF )X∗ψ(TM,∇TM )
)
· exp

(∫

M

θ(F, bF ) ∧ α
)

= bM(M,F,bF ,−X) · exp
( ∫

M

θ(F, bF ) ∧ (α−X∗ψ(TM,∇TM ))
)

= bM(M,F,bF ,−X) · exp
(
−
∫

c

θ(F, bF )
)
. (10.8)

By [11, (46)], we have

τX
F,e = bM(M,F,bF ,−X) · exp

(
−
∫

c

θ(F, bF )
)
. (10.9)
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By (10.8) and (10.9), we get (10.6).

The proof of Theorem 10.1 is completed.

Remark 10.1 Some non-trivial special cases of Theorem 10.1 has already been proved in

[11]. Moreover Braverman-Kappeler proved in [9] that when dim M is odd, (10.6) holds up to

a numerical factor of absolute value one. This later result was generalized to the case of even

dimensional manifolds in the second version of [11].

As was pointed out in [11], the following result is a direct consequence of Theorem 10.1.

Corollary 10.1 The Burghelea-Haller torsion τan
F,bF ,α does not depend on bF and the rep-

resentative α.

10.3 Comparison of b
RS
(M,F,gT M ,bF ) with the usual Ray-Singer torsion

We still assume χ(M) = 0.

Let gF be a Hermitian metric on F . Then one can construct the Ray-Singer analytic torsion

as an inner product on detH∗(M,F ), or equivalently as a metric on the determinant line (cf.

[4]). We denote the resulting inner product by bRS
(M,F,gTM ,gF ).

In this section, we prove the following comparison result between bRS
(M,F,gT M ,bF ) and

bRS
(M,F,gTM ,gF ), which is also a consequence of [8, (5.13)] and [9, Theorem 1.4].

It is clear that the absolute value of the ratio of the symmetric bilinear form and the inner

product is well-defined.

Proposition 10.1 If dimM is odd, then the following identity holds:

∣∣∣
bRS
(M,F,gTM ,bF )

bRS
(M,F,gT M ,gF )

∣∣∣ = 1. (10.10)

Proof Let e be an Euler class associated to ∇f in the sense of Lemma 10.1. Let T∇f
F,e be

the Redemeister inner product induced from the Euler structure e. Then one verifies easily that

∣∣∣
τ
∇f
F,e

T
∇f
F,e

∣∣∣ = 1. (10.11)

Let [gTM , α], α ∈ Ωn−1(M), be dual to the Euler structure e in the sense of (10.4).

From (10.5), (10.6), (10.11) and [4, Theorem 0.2], one deduces that

∣∣∣
bRS
(M,F,gTM ,bF )

bRS
(M,F,gTM ,gF )

∣∣∣ =
∣∣∣ exp

(∫

M

(θ(F, gF ) − θ(F, bF )) ∧ α
)∣∣∣. (10.12)

Note that the left-hand side of (10.12) does not depend on the Euler structure e.

By choosing different Euler structures, one sees that for any real closed form γ ∈ Ωn−1(M)

whose image in H∗(M,R) lies in H∗(M,Z),

Re
(∫

M

(θ(F, gF ) − θ(F, bF )) ∧ γ
)

= 0. (10.13)

Then it is easy to see that (10.13) should also hold for any real closed form γ ∈ Ωn−1(M). As

a consequence, we get the following equality in H1(M,R)

Re[θ(F, bF )] = [θ(F, gF )]. (10.14)
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Since that dimM is odd implies e(TM,∇TM ) = 0, by (10.3), (10.12) and (10.14), we get

(10.10).

The proof of Proposition 10.1 is completed.

Remark 10.2 In the general case that dimM need not be odd, by the consideration in the

proof of [11, Theorem 5.9], one sees that there exists an anti-linear involution JF : F → F such

that

(JF )2 = IdF , bF (JFu, v) = bF (u, JF v), bF (u, JFu) ≥ 0, u, v ∈ F. (10.15)

Then

gF (u, v) := bF (u, JF v), u, v ∈ F, (10.16)

defines a Hermitian metric on F . From (10.16), we get

(gF )−1∇F gF = (JF )−1((bF )−1∇F bF )JF + (JF )−1∇FJF . (10.17)

From (10.17), one gets

θ(F, bF ) = θ(F, gF ) − Tr[(JF )−1∇F JF ], (10.18)

from which we get

Re(θ(F, bF )) = θ(F, gF ), (10.19)

which provides a direct proof of (10.14).
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