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Abstract The authors study the coincidence theory for pairs of maps from the Torus

to the Klein bottle. Reidemeister classes and the Nielsen number are computed, and it

is shown that any given pair of maps satisfies the Wecken property. The 1-parameter

Wecken property is studied and a partial negative answer is derived. That is for all pairs

of coincidence free maps a countable family of pairs of maps in the homotopy class is

constructed such that no two members may be joined by a coincidence free homotopy.
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1 Introduction

In this paper, we study various coincidence point properties for pairs of maps from the 2-

dimensional torus into the Klein bottle. Much of this work is an extension of the ideas developed

in [8, 9] for self-coincidences of maps on the torus and on the Klein bottle. As was done in [9],

we try to understand how Nielsen theoretic properties for these maps compare with those of

maps from the torus into itself. One objective of this work is to present a computation of the

Nielsen theoretic data for pairs of maps from the torus, denoted by T in this paper, to the Klein

bottle, denoted by K. We compute the Reidemeister classes, characterize defective classes and

give a formula for the Nielsen coincidence number. This formula appears as Theorem 3.1 in

Section 3 of the paper.

Given the formula for the Nielsen coincidence number we then verify that the Wecken

property holds. That is, for each homotopy class of pairs of maps we produce a representative

that realizes the Nielsen coincidence number. The result is stated as Theorem 4.1 in Section 4.

This result has been obtained independently in [2], using different methods, where they study

completely maps from torus to an arbitrary closed surface. Let us also point out that every

map f : T → K has the Wecken property with respect to roots. This follows from a result of

Kneser [12], that the geometric degree is equal to the absolute degree, and the absolute degree

is the root Nielsen number for maps from the torus to the Klein bottle [3, Theorem 2].

The second direction of this paper is a study of the 1-parameter Wecken problem for co-

incidences from the torus to the Klein bottle. This problem, following the work in [9], can
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be described as follows: Can one find a pair H, G of homotopies from f1 to f2 and g1 to g2

respectively, such that #Coin(H( · , t), G( · , t)) = MC[f1, g1] for all t ∈ [0, 1]? We refer to this

as the 1-parameter minimal coincidence problem or simply the minimal coincidence problem

when the context is clear. We note that this problem, when specialized to the case where the

domain space and target are the same, both g1 and g2 are the identity and the homotopy G

remains constant is known as the 1-parameter fixed point problem and has been considered in

[14, 11, 4, 7, 6]. Results in the last citation are partially generalized to the coincidence setting

in [10].

In [7–9] the authors study the 1-parameter minimal coincidence problem, and also the related

restricted minimal coincidence problem in the setting of surface mappings. That is, when we

have g1 = g2 and all homotopies under consideration keep the second leg fixed at the map g1.

In [9] we see that this problem is much more difficult for self-coincidences on the Klein bottle

than it was for the torus. The fact that the torus has a multiplicative structure was crucial

in resolving the minimal coincidence problem, and also implies that the restricted problem is

equivalent. For the Klein bottle we needed also to take into account liftings of maps to the

torus and were able to solve the restricted minimal coincidence problem. This difficultly will

persist when we consider coincidences from T to K in this paper.

The results on the 1-parameter problem presented in this work is a solution to the restricted

minimal coincidence problem for pairs of maps from T to K under the assumption that each

pair is coincidence free. The result is stated in Theorem 5.1 of Section 5.

A brief summary of the structure of the four sections in this paper is as follows. In Section

2 we classify homotopy classes of pairs of maps (base point homotopies and free homotopy,

respectively) from the torus T to the Klein bottle K. In Section 3 we compute the Reidemeister

classes and the Nielsen coincidence number for all homotopy classes. The formula given for the

Nielsen number is for a class of maps which are defined in Section 2. The proof of Lemma

2.2 shows how to transform an arbitrarily given map into this class to obtain the value of the

Nielsen number in general. In Section 4 we establish the Wecken property for all coincidences

from T to K. In Section 5 we consider the 1-parameter Wecken problem and show that the

restricted problem has a negative solution in the case when the Nielsen coincidence number is

equal to zero.

2 A Classification of Maps, and Pairs of Maps,

from the Torus to the Klein Bottle

The purpose of this section is to give a characterization for the induced map on fundamental

group for all maps from the 2-dimensional torus, denoted by T , into the Klein bottle K. Let

π1(K, y0) be the group having the presentation π1(K, y0) = 〈α, β | R = αβαβ−1〉 and let a, b

denote generators for the free Abelian group π1(T, x0).

Lemma 2.1 The homomorphism induced in the fundamental group by a map f : T → K

is of the form f#(a) = αr1βs1 , f#(b) = αr2βs2 , where one of the conditions below holds:

( I ) s1 and s2 are both even,

(II) (a) s1 odd, s2 even and r2 = 0, or (b) s1 even, s2 odd and r1 = 0, or (c) s1, s2 odd
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and r1 = r2.

Proof Since a commutes with b we must have that f#(a) commutes with f#(b). Using

the relation R we obtain that

f#(a)f#(b) = αr1βs1αr2βs2 = αr1+(−1)s1r2βs1+s2 ,

f#(b)f#(a) = αr2βs2αr1βs1 = αr2+(−1)s2r1βs1+s2 .

Therefore we must have

r1 + (−1)s1r2 = r2 + (−1)s2r1

or

(1 − (−1)s2)r1 = (1 − (−1)s1)r2.

The result follows by a routine analysis of this last equation.

With f# as in Lemma 2.1 we say that the map f is of type I if f# satisfies case ( I ) and is

of type II(a), type II(b), type II(c) when f# satisfies, respectively, case (II)a, (II)b, (II)c. By

type II we mean one of the last three types.

Lemma 2.1 gives an algebraic description of the set of based point preserving homotopy

classes of maps from T to K. As a consequence we can also deduce the following corollary for

the set of free homotopy classes. This will be useful to establish the Wecken property for maps

from T to K.

Corollary 2.1 The set of base point preserving homotopy classes of maps from T to K

is in one-to-one correspondence with the homomorphism given in Lemma 2.1. The set of free

homotopy classes of maps are classified as follows:

(a) Maps of type I are in one-to-one correspondence with homomorphisms where r1 ≥ 0.

(b) Maps of type II(a) are in one-to-one correspondence with homomorphisms where r1 is

equal to 0 or 1.

(c) Maps of type II(b) are in one-to-one correspondence with homomorphisms where r2 is

equal to 0 or 1.

(d) Maps of type II(c) are in one-to-one correspondence with homomorphisms where r =

r1 = r2 is equal to 0 or 1.

Proof The correspondence with the set of base point homotopy class of maps is clear,

since the spaces involved are Eilenberg-MacLane spaces K(π, 1)′s. The set of free homotopy

classes of maps are in one-to-one correspondence with the set of conjugacy classes of the ho-

momorphisms. For case (a) we use conjugation by β to obtain the result. The other three

cases are similar. Using the relation αβαβ−1 = 1 on π1(K) we obtain α−1β2s+1 = β2s+1α and

hence α−1αrβ2s+1α = αr−2β2s+1. This implies that after we conjugate the homomorphism by

a suitable power of α, the exponent of α becomes either zero or one, and the result follows.

Now we will consider pair of maps f, g : T → K. Our goal is to study the coincidence

theory of the homotopy class of the pairs of maps. To reduce the amount of work in some

arguments it will be useful to divide the set of all pairs (f, g) into as few cases as possible. By

Lemma 2.1 each map is of type I, II(a), II(b) or II(c), and so we have 16 possible cases. By
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observing that coin(f, g) = coin(g, f), for the Wecken problem it is clear that the order of the

functions is not relevant. So we can reduce the number of cases to 10. Still a further reduction

can be done. The Nielsen theory (meaning the Reidemeister classes, Nielsen number, Wecken

property) is completely determined for (h2 ◦ f ◦ h1, h2 ◦ g ◦ h1) if we know the answer for (f, g),

where h1 ∈ Homeo(T ) and h2 ∈ Homeo(K). The following lemma is to be used later to reduce

the number of cases which we need to consider.

Lemma 2.2 In order to decide if the Wecken property holds for maps from T to K it

suffices to consider pairs of maps (f, g) in one of the following four cases:

(1) Both maps are of type I,

(2) One map is of type I and the other is of type II(a),

(3) Both maps are of type II(a),

(4) One map is of type II(a) and the other is of type II(b).

Furthermore, we can assume that a map f of type II(a) satisfies r1 = 0, and that in the

cases (3) and (4) that the other map g satisfies ri ∈ {0, 1} as in Corollary 2.1.

Proof If we compose the homeomorphism of the torus given by the matrix

[
5 3
3 2

]

with a map of type II(a) we obtain a map of type II(c). Similarly, compose with a map of

type II(c) to obtain a map of type II(b), and with a map of type II(b) to obtain a map of

type II(a). Type I remains unchanged by composition with such a homeomorphism, so we can

reduce the 10 cases to the four cases claimed. To prove the furthermore part we first observe

that composition by the above torus homeomorphism preserves the property given in Corollary

2.1 that, for maps of type II, the value of ri is equal to 0 or 1. Now let f be of type II(a) with

f#(a) = αr1β2s1+1, f#(b) = β2s2 . If we denote w = αr1β then using the relations for the Klein

bottle we see that f#(a) = (w)2s1+1, f#(b) = (w)2s2 . Let h : K → K be the homeomorphism

of the Klein bottle which induces the homomorphism h#(α) = α, h#(β) = α−r1β. Then the

composition h ◦ f induces in the fundamental group the homomorphism (h ◦ f)#(a) = β2s1+1,

(h ◦ f)#(b) = β2s2 . Thus, if all maps of type II(a) have r1 = 1, then apply h to convert to 0.

Finally, note that a map of type II(b) may now have r2 = −1, but conjugation by α corrects

to 1. So the result follows.

Remark 2.1 For the 1-parameter problems (both the minimal coincidence problem and

the restricted minimal coincidence problem) it is not so clear how to reduce the question in

terms of homotopy classes of the pair. This analysis will be done later in Section 5.

Our strategy will be to study maps from T → K in terms of certain maps from T → T . Let

p : T → K be an orientable covering of K, which is a 2-fold covering. Denote by θ the deck

transformation which corresponds to the element β ∈ π1(K, y0). The maps of type I are also

known as orientation true maps (see [13]). They are the ones which lift to a map f̃ : T → T

with respect to the orientable covering p : T → K. The maps of type II do not lift, but for

any such map, denoted by f , there is a two-fold covering φ : T → T such that f ◦ φ admits

a lift. Each two-fold covering corresponds to a subgroup of index two of π1(T ), and there are
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exactly three possibilities for such coverings. They correspond to the subgroups of π1(T ) given

by G1 = 〈a2, b〉, G2 = 〈a, b2〉 and G3 = 〈a2, ab〉. These subgroups are the kernel of the three

possible non trivial homomorphisms from π1(T ) → Z2. We use the coverings corresponding to

these subgroups G1, G2 and G3 to lift the composite of the covering with the map f in the

three cases; s1 odd and s2 even, s1 even and s2 odd, and s1, s2 odd, respectively. We denote

by p1 : T → T the 2-fold covering which corresponds to the subgroup G1. Finally we will make

use of another finite covering. Consider the 4-fold covering p2 : T → T which corresponds to

the subgroup 〈a2, b2〉 ⊂ Z ⊕Z. Denote by γa, γb the deck transformations which correspond to

the elements a, b ∈ π1(T, x0), respectively.

Remark 2.2 There are homeomorphisms h1, h2 : T → T such that hi#(G1) = Gi+1,

i = 1, 2. Namely let h1(a) = b, h1(b) = a and h2(a) = a, h2(b) = ab. Therefore there are

homeomorphisms h : T → T which takes Gi to Gj for any i, j ∈ {1, 2, 3}.

3 Coincidence Reidemeister Classes and

the Nielsen Number of a Pair of Maps

In this section, we compute the coincidence Reidemeister classes, the coincidence Reide-

meister number and the coincidence Nielsen number N(f, g) of a pair of maps f, g : T → K.

Then some Nielsen theoretic properties can be compared with those of maps from the torus

into itself. We will establish that when R(f, g) is finite, then the Nielsen number is equal to

the Reidemeister number and all Nielsen coincidence classes have index either +1 or −1. The

converse is not true, namely we can have Reidemeister number infinite but the Nielsen number

different from zero. This is something that does not happen for self coincidences of the torus.

For simplicity of presentation we only present the calculations for pairs of maps as given by

Lemma 2.2. There is no theoretical difficulty to write the formulas given below for any of the

16 cases for pairs of maps.

In order to study Reidemeister classes we need to introduce some new terminology for

Reidemeister classes for coincidences which appears for maps between manifolds where at least

one of them is not orientable. For fixed points this notion was considered in [5].

Definition 3.1 A Reidemeister class [α] is said to be defective, if there exists a loop γ in

the domain such that α = g#(γ)α (f#(γ)−1) and for some α ∈ [α], sign(γ) · sign(f#(γ)) = −1.

Remark 3.1 Since T is orientable sign(γ) = 1, so we reduce to consideration of loops

whose image under f is orientation reversing. On the other hand from the equality α =

g#(γ)α(f#(γ)−1) it follows that sign(g#(γ)) = sign((f#(γ))). If one of the maps is of type I,

the image of γ by the other map has also sign 1, therefore α cannot be defective. Thus, for

a pair of maps of type I, or one of type I and the other of type II(a), there are no defective

Reidemeister classes. These are cases (1) and (2) given in Lemma 2.2. In the remaining two

cases in Lemma 2.2 there is the possibility of defective Reidemeister classes. The details will

be addressed below.

In order to compute the Reidemeister classes in the four cases given in Lemma 2.2 we

introduce the following notation:
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Case (1) f#(a) = αr1β2s1 , f#(b) = αr2β2s2 and g#(a) = αt1β2v1 , g#(b) = αt2β2v2 .

Case (2) f#(a) = β2s1+1, f#(b) = β2s2 and g#(a) = αt1β2v1 , g#(b) = αt2β2v2 .

Case (3) f#(a) = β2s1+1, f#(b) = β2s2 and g#(a) = αt1β2v1+1, g#(b) = β2v2 .

Case (4) f#(a) = β2s1+1, f#(b) = β2s2 and g#(a) = β2v1 , g#(b) = αt2β2v2+1.

Remark 3.2 These four cases will also be used in the proof of the Wecken property given

in Section 4. But, as a result of Lemma 2.2, we will have the further restriction that ti is either

0 or 1 in Cases (3) and (4).

We now proceed with the characterization of the Reidemeister classes in Cases (1) and (2).

We define two subsets H, H1 ⊂ π1(K), and as a notation vH (resp. vH1) refers to a set of the

form vw where w ∈ H (resp. H1).

For Case (1), let

H = {α(t1−r1)k+(t2−r2)lβ(2v1−2s1)k+(2v2−2s2)l | k, l ∈ Z},

H1 = {α(−t1−r1)k+(−t2−r2)lβ(2v1−2s1)k+(2v2−2s2)l | k, l ∈ Z}.

It is not difficult to see that H and H1 are subgroups. For case (2), we similarly define subsets

H, H1 ⊂ π1(K). Let

H = {αt1k+t2l+ǫkr1β(2v1−2s1−1)k+(2v2−2s2)l | k, l ∈ Z},

H1 = {α−t1k−t2l+ǫkr1β(2v1−2s1−1)k+(2v2−2s2)l | k, l ∈ Z},

where ǫk is zero if k is even and 1 if k is odd.

Proposition 3.1 For a pair of maps f, g : T → K the Reidemeister class of a generic

element αmβn is given as follows:

Case (1) αmβnH if n is even, and αmβnH1 if n is odd.

Case (2) αmβnH if n is even, and αmβnH1 if n is odd.

Proof In Case (1), by definition, a generic element of the Reidemeister class has the form

(αt1β2v1)k(αt2β2v2)lαmβn(αr2β2s2)−l(αr1β2s1)−k,

which by straightforward calculation, using the relation αβ = βα−1, is identified with αmβnH

when n is even, and with αmβnH1 when n is odd.

In Case (2), a generic element of the Reidemeister class is of the form

(αt1β2v1 )k(αt2β2v2)lαmβn(β2s2 )−l(β2s1+1)−k

and the same calculation reduces to αmβnH when n is even, and αmβnH1 when n is odd.

Remark 3.3 In Case (1) we can have H ⊂ Z ⊕ Z a subgroup of finite index but not H1.

This will imply that the number of Reidemeister classes is infinite but the Nielsen number is

not zero. This does not happen for self-maps of the torus.

Now let us consider a pair of maps in the two Cases (3) and (4). For a given integer n, let

|n|2 denote the highest integer ℓ such that 2ℓ divides |n|.
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Proposition 3.2 For a pair of maps f, g : T → K the Reidemeister class of a generic

element αmβn and the defective classes are given as follows:

Case (3) αm′

βn′

is in the same class as the element αmβn if and only if either m′ = m and

n′−n = 2p(v1− s1)+2q(v2− s2), where p is even and q is an arbitrary integer, or m′ = t1 −m

and n′ − n = 2p(v1 − s1) + 2q(v2 − s2), where p is odd and q arbitrary. Defective classes exist

if and only if t1 is even and |v1 − s1|2 ≥ |v2 − s2|2, and the defective classes are those given by

the elements α
t1

2 βn).

Case (4) αm′

βn′

is in the same class as the element αmβn if and only if either m′ = m and

n′ −n = p(2v1 − 2s1 − 1)+ q(2v2 − 2s2 + 1), where p is arbitrary and q is even, or m′ = t2 −m

and n′ −n = p(2v1 − 2s1 − 1)+ q(2v2 − 2s2 + 1), where p is arbitrary and q is odd. In this case

defective classes exist if and only if t2 is even. The defective Reidemeister classes are those

given by the elements α
t1

2 βn. Further, two such elements (given by n and n′) are in the same

defective class if and only if n′ is congruent to n mod the g.c.d. of 2v1−2s1−1 and 2v2−2s2+1.

Proof The two cases are similar. We give the argument for Case (3) here and leave the

other to the reader.

Using the relation αβ = βα−1 the image of an arbitrary element apbq can be represented

by f#(apbq) = β(p(2s1+1)+2qs2) and g#(apbq) = β(p(2v1+1)+2qv2) if p is even and g#(apbq) =

αt1β(p(2v1+1)+2qv2) if p is odd. But in π1(K) the element

g#(apbq) αmβn (f#(apbq))−1

is equal to αmβ(n+2p(v1−s1)+2q(v2−s2)) or α(−m+t1)β(n+2p(v1−s1)+2q(v2−s2)) for p even or odd,

respectively. This establishes the first part. In order to find the defective classes we must

have that m = m′ and that f#(apbq) is an orientation reversing element. As a result, p must

be odd, and so m = t1 − m. Thus, m = t1
2 . In addition, we must find p and q such that

2p(s1 − v1) + 2q(s2 − v2) = 0. This is possible with p odd if and only if |s1 − v1|2 ≥ |v2 − s2|2

and the result follows.

Based on the proposition given above we will describe all the Reidemeister classes for Cases

(3) and (4). For Case (3), let k = g.c.d.(s1 − v1, s2 − v2) and (s1 − v1, s2 − v2) = k(w, z). The

set of integers {2p(s1 − v1) + 2q(s2 − v2)} can be described as follows:

The set {2p(s1 − v1) + 2q(s2 − v2)} is the same as the set {2k(pw + qz)}. Since (w, z) are

relatively primes, there exist x, y such that xw + yz = 1. If z is even then x is necessarily odd.

If z is odd then we claim that there is a solution with x even and another solution with x odd.

To see this observe that the equation x0w + y0z = 0 has the solution (z,−w). Hence if (x, y)

is a solution of the equation xw + yz = 1, then (x + z, y − w) is also a solution and one of the

two solutions satisfies our hypothesis. So we have the cases:

(a) If p is even and s2−v2

k
is even, we get {2p(s1 − v1) + 2q(s2 − v2)} is equal to 4kZ;

(b) If p is even and s2 − v2 is odd, we get {2p(s1 − v1) + 2q(s2 − v2)} is equal to 2kZ;

(c) If p is odd, we get {2p(s1− v1)+2q(s2 − v2)} is equal to 2kZ, independent of the parity

of s2 − v2.

Similarly, for Case (4), in order to describe the set {p(2v1 − 2s1 − 1) + q(2v2 − 2s2 + 1)} let

k = g.c.d.(2v1 − 2s1 − 1, 2v2 − 2s2 + 1) and (2v1 − 2s1 − 1, 2v2 − 2s2 + 1) = k(w, z). Because z
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is odd, from the above analysis we conclude that the set {p(2v1 − 2s1 − 1) + q(2v2 − 2s2 + 1)}

is 2kZ for p odd or even. Consequently, we may summarize as follows:

Corollary 3.1 The elements αm′

βn′

in the Reidemeister class of a given element αmβn

are those values m′, n′ which satisfy one of the conditions below:

For Case (3) :

( I ) m′ = m and n′ = n + 4kZ if s2−v2

k
is even, or

( II ) m′ = m and n′ = n + 2kZ if s2 − v2 is odd, or

(III) m′ = −m + t1 and n′ = n + 2kZ;

For Case (4) :

( I ) m′ = m and n′ = n + 2kZ, or

( II ) m′ = −m + t1 and n′ = n + 2kZ.

Remark 3.4 Although there are defective Reidemeister classes, we will see later that all

defective Nielsen classes for maps from T to K are inessential.

Now we will compute the Nielsen coincidence number for a pair of maps. Since N(f, g) =

N(g, f) we have 10 possibilities to consider for the pairs, as [f ], [g] run through the four cases

given by Lemma 2.1. The Nielsen number is presented here for all these cases, instead of just

the four cases given by Lemma 2.2, so as to have explicit formulae for the Nielsen number for

any given pair of maps. On the other hand, and in order to save on notation, we will borrow

the notation set up at the beginning of this section based on Lemma 2.2. For maps of types

II(b),(c) we make the obvious substitution in the notation.

Theorem 3.1 The value of the Nielsen coincidence number N(f, g) is as follows:

( 1 ) Both maps are of type I,

|(r1 − t1)(s2 − v2) − (r2 − t2)(s1 − v1)| + |(r1 + t1)(s2 − v2) − (r2 + t2)(s1 − v1)|,

( 2i ) f is of type II(a) and g is of type I

|2t1(v2 − s2) − t2(2v1 − 2s1 − 1)|,

( 2ii ) f is of type II(b) and g is of type I

|t1(2v2 − 2s2 − 1) − 2t2(v1 − s1)|,

(2iii) f is of type II(c) and g is of type I

|2t1(2v2 − 2s2 − 1) − 2t2(2v1 − 2s1 − 1)|.

In the remaining cases, that is when both maps are of type II, N(f, g) = 0.

Proof (1) First consider the case when both f and g are of type I. Recall the orientable

double covering p : T → K and the corresponding deck transformation θ given in the previous

section. Consider f̃ : T → T a lift of f and g̃1, g̃2 the two lifts of g.

By a routine argument one can show that coin(f, g) is the disjoint union of coin(f̃ , g̃1) and

coin(f̃ , g̃2), and that the intersection of coin(f̃ , g̃1) with coin(f̃ , g̃2) is empty since the two lifts
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g1, g2 have no coincidence. Further, a Nielsen class of (f, g) is entirely contained in one of

the two sets coin(f̃ , g̃1), coin(f̃ , g̃2). Let C be a Nielsen class of (f, g) which, without loss

of generality, we assume that it is also a Nielsen class of coin(f̃ , g̃1). The index of C as a

Nielsen class of (f, g) is the same as the index as a Nielsen class of (f̃ , g̃1) since these maps are

orentation true (see [5] for more details). Hence N(f, g) = N(f̃ , g̃1) + N(f̃ , g̃2), and the result

follows directly from the formulas for the Nielsen number for torus maps (see [1]).

(2i) Let f be of type II(a) and let g be of type I. Consider the double covering of T which

corresponds to the subgroup G1 = 〈a2, b〉, and denote by p1 : T → T the projection. Let f̃

be a lift of f ◦ p1 and let g̃1, g̃2 : T → T be the two distinct lifts of g ◦ p1. These two lifts

g̃1, g̃2 : T → T are the composite of p1 with the two lifts of g : T → K. Certainly x ∈ coin(f, g)

if and only if p−1
1 (x) contains a point in coin(f̃ , g̃1) ∪ coin(f̃ , g̃2). Observe that g̃i sends the

points of a fibre p−1
1 (x) into a single point and f̃ does not, and so the Nielsen number N(f, g)

is equal to 1
2 (N(f̃ , g̃1) + N(f̃ , g̃2)). As N(f̃ , g̃1) = N(f̃ , g̃2), a straightforward calculation leads

to the desired result.

The proofs of cases (2ii) and (2iii) in the theorem are similar and left to the reader. We

now proceed to the last part, illustrating with one representative case. Suppose one map is

of type II(a) and the other is of type II(b). From Lemma 2.2 we will assume that f is given

by f#(a) = β2s1+1, f#(b) = β2s2 and g#(a) = β2v1 , g#(b) = αt2β2v2+1. We take the 4-fold

covering p2 : T → T which corresponds to the subgroup 〈a2, b2〉 and the 2-fold covering of K

which corresponds to the subgroup α, β2. As in the previous cases the Nielsen number of the

pair (f, g) is a linear combination of the Nielsen number of the various lifts to the torus. A

routine check on the matrices of the lifts of (f, g) shows that the first horizontal line is zero for

each such lift. So each entry is zero and the result follows.

Remark 3.5 The conclusion N(f, g) = 0 for the cases stated in the theorem above, also

will follow from the work in the next section where it will be proved that for the said pairs the

pair can be deformed to be coincidence free.

4 Wecken Property

The purpose of this section is to give a proof of the following Wecken theorem for pairs of

maps from the torus to the Klein bottle.

Theorem 4.1 Any pair (f, g) : T → K satisfies MC[f, g] = N(f, g), i.e. the Nielsen

number is equal to the minimum number of coincidence points in the homotopy class of the

pair.

In order to prove the Wecken property for all pairs of maps, we will use Corollary 2.1 and

Lemma 2.2 of Section 2 to reduce the problem to the 4 cases given in Section 3. Recall that for

Cases (3) and (4) we can assume that ti is either 0 or 1.

As in [9] the proofs divide into two types. When N(f, g) > 0 we show that for most maps

the linear model carried by lifts to the torus will have N(f, g) coincidence points. The one

exception to this appears in the first proposition below. In case of N(f, g) = 0 we convert to a

root problem to show that the pair can be made coincidence free. Also, we will use the same
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notational convention as used in [9] for the covering of K and the deck transformation θ.

We begin by considering the case where both maps are of type I (This is Case (1) in Lemma

2.2).

Proposition 4.1 Let f, g : T → K be a pair of maps of type I. Then MC[f, g] = N(f, g).

Proof Let us consider f̃ , g̃ : T → T the lifts of f, g, respectively. Consider the linear

transformations Tf , Tg : R2 → R2 which covers up to homotopy the maps f̃ , g̃, respectively.

First suppose that the Lefschetz numbers L(f̃ , g̃) and L(f̃ , θg̃) are both non-zero, where θ

is the deck transformation which corresponds to the orientable covering of K. The number

of coincidence points of the induced maps T f , T g : T → T by the linear transformations

Tf , Tg : R2 → R2, which have matrices M1, M2, is the number of solution of the system

M1(x1, x2) ≡ M2(x1, x2) mod Z × Z, which is also the modulus of the Lefschetz number

L(f̃ , g̃). Similarly the number of coincidence points of the pair T f , θT g : T → T reduces

to solving the system M1(x1, x2) ≡ M̃2(x1, x2) + (0, 1
2 ) mod Z × Z, where M̃2 is the matrix

obtained from the matrix M2 by changing the sign of the first column. But the number of

solutions of the latter system is given by the modulus of the Lefschetz number L(f̃ , θg̃). Since

N(f, g) = |L(f̃ , g̃)| + |L(f̃ , θg̃)| the result follows.

Now suppose that at least one of the Lefschetz numbers L(f̃ , g̃) or L(f̃ , θg̃) is zero. Without

loss of generality let us assume that L(f̃ , g̃) = 0. Consider the deviation map defined by

h(z) = f̃(z) · (g̃(z))−1,

where · represents a multiplication defined on the torus. By [15, Theorem 1] the degree of h is

zero, so it induces in the fundamental group a homomorphism whose image has rank at most

one. With hθ = f̃ · (θg̃)−1 the theorem just cited also yields |L(f̃ , θg̃)| = | deg(hθ)|.

Now we deform h so that its entire image lies on a geodesic simple closed curve which

represents the image of the fundamental group. Choose a nowhere zero direction field on

T which is transverse to this curve, and also the similarly obtained curve in the case that

deg(hθ) = 0. Now consider the two maps T f and ǫ ◦ T g, where ǫ is a small deformation of the

identity on R2 which is determined by the direction field. Now it is easy to see that the pair

ǫ◦T g, T f has no coincidence points. Generic properties of matrices ensure that ǫ◦T g, θT f have

exactly | deg(hθ)| coincidence points. This completes Case (1).

Now we divide the remaining pairs into two families. The pairs where the N(f, g) 6= 0

and those where N(f, g) = 0. According to Theorem 3.1 we have that the former corresponds

to those in Case (2) of Lemma 2.2 with Nielsen number different from zero, while the latter

corresponds to Case (2) with Nielsen number zero together with Cases (3) and (4).

Proposition 4.2 Let f, g : T → K be a pair of maps corresponding to Case (2). Then

MC[f, g] = N(f, g).

Proof From Lemma 2.2 the map f induces in the fundamental group a homomorphism

of the form f#(a) = β2s1+1, f#(b) = β2s2 .

Let (f̃ , g̃) : T → T be a lift of the pair (f, g) as given in the proof of Theorem 3.1(2i). Also,

as seen in that proof we do not need to consider the other lift of g corresponding to the deck
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transformation θ. The lifts f̃ and g̃, respectively, have the following models given by linear

transformations of R2 with respective matrices
[

0 0
2s1 + 1 s2

]
and

[
2t1 t2
2v1 v2

]
.

When N(f, g) 6= 0, then N(f̃ , g̃) = N(f, g) and by a routine calculation, which is left to the

reader to check, one gets that the above models have the same number of coincidence points as

given by the Nielsen number in Theorem 3.1.

For the remainder of the proof we assume that N(f, g) = 0. This implies that L(f̃ , g̃) = 0.

As in the previous proposition we consider the deviation map h(z) = f̃(z) · (g̃(z))−1. Let γa

denote the deck transformation corresponding to p1. Since g is type I, g̃ sends both points in

p−1
1 (z) to a single point and so we have g̃(γa(z)) = g̃(z). On the other hand f is of type II and so

the lift f̃ satisfies f̃(γa(z)) = θ(f̃(z)). Now, since the image of f̃ is along the curve b this reduces

to f̃(γa(z)) = f̃(z) · (eπi, 1), as in coordinates the action of θ is given by θ(x, y) = (x+ 1
2 , 1− y).

Together these imply the deck transformation equation

h(γa(z)) = h(z) · (eπi, 1).

Let a1, b1 be generators for the fundamental group of the torus which are lifts of a, b respec-

tively. Consider a fundamental domain X for the action of γa on T , bordered by b1 and γa(b1).

In coordinates the action of γa is by γa(x, y) = (x, y + 1
2 ). Let σa denote the unique proper arc

in X which is also contained in the loop a1. Considering the matrices for f̃ and g̃ one sees that,

under the assumption that N(f, g) = 0, the images h(a1) and h(b1) must commute. Hence,

they are both multiples of some primitive word u. As a result we get, up to homotopy, that

the image of σa, and hence the halfspace X , is into a 1-dimensional subspace determined by u.

So deform h on this halfspace so that the image does not contain the points (1, 1) and (eπi, 1)

and extend to the entire torus using the equation h(γa(z)) = h(z) · (eπi, 1). Let h′ denote the

resulting map, and keeping f̃ fixed define g̃′ = h′ · f̃ . Since h′ misses (1, 1) and (eπi, 1) neither

of the pairs (f̃ , g̃′) nor (f̃ , θg̃′) contain a coincidence point. Hence, (f, g′) is coincidence free, so

the result follows.

The following proposition covers Cases (3) and (4), where N(f, g) = 0 for all pairs considered

in these two cases.

Proposition 4.3 Suppose that f is of type II(a) and g is either type II(a) or II(b). Then

we can deform the pair (f, g) to be coincidence free.

Proof We first consider Case (3) where, by Lemma 2.2, we have two subcases to consider.

Namely: ( i) t1 = 0 so g#(a) = β2v1+1, g#(b) = β2v2 and (ii) t1 = 1 so g#(a) = α1β2v1+1,

g#(b) = β2v2 .

Let p1 : T → T be the double cover as in the previous proposition, and let γa denote the

corresponding deck transformation. Lifting f and g to the torus we again consider the deviation

h(z) = f̃(z) · (g̃(z))−1. Since both maps are type II(a) we have that f̃(γa(z)) = θ(f̃(z)) and

g̃(γa(z)) = θ(g̃(z)). So following Case I in [9] we obtain the deck transformation equation

h(γa(z)) = θf̃(z) · (θg̃(z))−1 = θ(h(z)) · (eπi, 1).
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For Case (3i) let b1 be a simple closed curve in the lifted domain torus such that p1#(b1) = b.

Consider a fundamental domain for the action of γa which is bounded by the loops b1 and

γa(b1). As both f and g map the generator b into some power of β, it follows from the deck

transformation equation that h(γa(z)) = h(z). Deform h on this halfspace so that the image

does not contain the points (1, 1) and (eπi, 1) and extend to the entire torus using the deck

transformation equation for this case. The result for Case (3i) now follows.

Case (3ii) is much more direct. We claim that the map g in question is freely homotopic to

a map g′ such that the image of g′ lies in the loop {(t, 1
2 ), 0 ≤ t ≤ 1} in K. Denote by β′ the

homotopy class of this loop. To see the claim observe that αβ is free homotopic to β′ and β2

is free homtopic to β′2. The isotopy θs which is the rotation of the circle t × S1 of the angle

sπ(1 − 2t) provides the homotopy above and the claim. As a result the images of f and g′ are

disjoint and the result for Case (3ii) follows.

Finally, in Case (4) we have the two similar subcases: (i) t2 = 0 and (ii) t2 = 1. Let

p2 : T → T denote the 4-fold cover corresponding to the subgroup 〈a2, b2〉 and let γa and

γb denote the deck transformations corresponding to a2 and b2, respectively. Lifting f and

g to the torus we consider the deviation h(z) = f̃(z) · (g̃(z))−1 this time satisfying the deck

transformation equations

h(γa(z)) = θf̃(z) · (g̃(z))−1 = h(z) · (eπi, 1),

since the image of f is in β, and

h(γb(z)) = f̃(z) · (θg̃(z))−1,

which in Case (4i) reduces to h(z) · (eπi, 1) as well.

In Case (4i) the image of h lies on the curve b and can be deformed equivariantly to miss

(1, 1), (1, eπi), (eπi, 1) and (eπi, eπi) and the result follows. Case (4ii) is proved in the exact

same manner as case (3ii).

5 1-Parameter Problem for Coincidence

In this section, we will study the 1-parameter problem for coincidence of pair of maps from

T to K. Here we will only consider the case where N(f, g) = 0. The case where N(f, g) 6= 0

is more subtle and presents technical difficulties that we are not able to address at the present

time. For pairs (f, g) such that N(f, g) = 0 we show that in any such homotopy class there

exist pairs of maps which can not be joined by Wecken homotopies. In fact, we produce an

infinite family of pairs in a given homotopy class. To do so we start with some generalities

about this problem in terms of the homotopy classes of the maps. The following proposition is

proved in [9].

Proposition 5.1 Let (f, g) be a pair of maps which satisfies coin(f, g) = N(f, g) and g1 a

map homotopic to g. Then

(a) the restricted minimal coincidence problem has a positive solution for (f, g) if and only

if it has a solution for a pair (f ′, g), where f ′ is homotopic to f .
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(b) there exists f1 homotopic to f such that coin(f1, g1) = N(f, g) and the restricted

minimal coincidence problem has a positive solution for (f, g) if and only if it has a solution

for the pair (f1, g1).

Remark 5.1 (1) For two minimal and homotopic pairs (f, g) and (f ′, g′), the minimal

coincidence problem, has a positive solution for (f, g) if and only if it has a solution for a pair

(f ′, g′). This follows straight from the statement of the minimal coincidence problem.

(2) As with the classical Nielsen theory, the 1-parameter problem in coincidence point the-

ory (this means either the restricted minimal coincidence problem or the minimal coincidence

problem), is completely determined for (f ◦ h, g ◦ h) and for (h ◦ f, h ◦ g) if we know the answer

for (f, g), where h ∈ Homeo(T ), resp. Homeo(K).

The restricted minimal coincidence problem is not symmetric in the variables. So in principle

we will have 6 cases to analyze. Namely:

( a ) The two maps are of type I,

(b1) The two maps are of type I and II(a) for the first and second coordinate, respectively;

(b2) the two maps are of type II(a) and I for the first and second coordinate, respectively,

( c ) The two maps are of type II(a),

(d1) The two maps are of type II(a) and II(b) for the first and second coordinate, respec-

tively;

(d2) the two maps are of type II(b) and II(a) for the first and second coordinate, respectively.

Our results will show at the end, at least for the case of N(f, g) = 0, that the restricted

minimal coincidence problem for a pair (f, g) has a positive solution if and only if it has a

positive solution for the pair (g, f).

Theorem 5.1 Let f, g : T → K be a pair of homotopy class of maps ([f ], [g]) such that

N(f, g) = 0 (this includes Cases (3), (4) and part of Cases (1) and (2)). Then given a map

g ∈ [g] there is a countable family of maps fn, where every fn ∈ [f ] and coin(fn, g) = ∅, such

that for any two pairs (fm, g), (fn, g) with m 6= n there is no a homotopy H between fm, fn

with the property that (H( , t), g) is coincidence free for all t ∈ [0, 1].

Proof As a result of Proposition 5.1, it suffices to show the result for one particular map

g which belongs to the free homotopy class [g]. The proof is then reduced to the six cases

mentioned before the theorem.

Case (a) Fix g : T → K in its homotopy class and let f ∈ [f ] be any map that satisfies the

conclusion of Theorem 4.1. That is, coin(f, g) = ∅. Let f̃ , g̃ be lifts to the two-fold covering

T → K, with corresponding deck transformation θ. Consider the deviation map h : T → T

defined by h(x) = f̃(x) · (g̃(x))−1 using the multiplication on the torus. Since N(f, g) = 0, it

follows that the degree of h is zero, and since the pair is coincidence free the points (1, 1) and

θ(1, 1) do not belong to the image of h. As a result there exists a word v such that h(a)# = vr,

h(b)# = vs. Now proceeding as in [7], for each integer n we define a family of maps hn : T → T

such that hn#(a) = (vB2n)r, hn#(b) = (vB2n)s where B is the commutator [c, d] where c, d are

generators of π1(T ) which project to α, β2 respectively. These generators are chosen so that

they miss both (1, 1) and θ(1, 1). Setting, f̃n(x) = hn(x) · g̃(x) (with f̃ = f̃0), one gets the
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family fn such that each pair (fn, g) is coincidence free. It is known from [7, Proposition 1.2]

that for m 6= n the two maps hm, hn can not be joined by a root free homotopy. Consequently,

the family of pairs of maps (fn, g) gives the desired result.

Remark 5.2 Alternately, we could have used hn#(a) = vr, hn#(b) = (vB2n)s for the

family. The proof of [7, Proposition 1.2] is followed in the same manner. This will be used in

the next case.

Cases (b1) and (b2) Let (f, g) be a pair of maps where f is of type II(a) and g is type I,

which is Case (b2). Just as in the proof of Proposition 4.2, we consider the two-fold covering

p1 : T → T which corresponds to the subgroup 〈a2, b〉, and let a1, b1 be generators for the

fundamental group of the covering torus with p1#(a1) = a2 and p1#(b1) = b. Then the

composites f ◦ p1, g ◦ p1 : T → K admits liftings to the covering p : T → K. As in the proof of

Proposition 4.2 we construct the deviation map h : T → T which is an equivariant map with

respect to the action γa on the domain and θ on the contradomain. With respect to the deck

transformation γa the deviation map satisfies the equation

h(γa(z)) = h(z) · (eπi, 1).

Just as in Case (a) above, the hypothesis that N(f, g) = 0 implies that the degree of h is

zero and, as a result, there exists a word v such that h(a1)# = vr, h(b1)# = vs. Let X be a

fundamental domain for the action of γa and let σa be as in the proof of Proposition 4.2. We

define a family hn so that hn = h on the arc σa and hn#(b1) = (vB2n)s. Extend equivariantly

using the deck transformation equation to get hn#(a1) = vr. Now arguing just as in Case (a)

together with Remark 2.2 we obtain the desired pairs of maps (fn, g).

The proof of Case (b1) is the same and is left to the reader.

Case (c) The two maps are of type II(a). We consider the two subcases: (3i) t1 = 0 and

(3ii) t1 = 1. Consider the lifts of f, g as in the proof of Case (3) of Proposition 4.3 and let

a1, b1 be lifts of a, b respectively.

For Case (3i) the deviation map h sends a1 to an even power 2k of d and b1 to some power

l of d, where d is as in Proposition 4.3. As both f and g map b into some power of β, it follows

from the deck transformation equation that h(γa(z)) = h(z).

Define a family of maps so that hn#(a1) = (d)2k and hn#(b1) = (dB2n)l, which are seen to

be equivariant maps as a1 sent to an even power of d is compatible with h(γa(z)) = h(z). So

they define a family of maps from T to K. The result follows just as in the previous Case (b2).

In Case (3ii) the deviation map h in this case sends b1 to dl as above, and leads to the

transformation equation

h(γa(z)) = θf̃(z) · (θg̃(z))−1 = θ(h(z)) · (eπi, 1).

Fix a fundamental region X for the action of γa and as before, let σa = X ∩a1. Define a family

hn by hn(σa) = h(σa) and hn(b1) = (dB2n)l and extend to the domain torus using the deck

transformation equation. The result follows just as in the previous case.

Cases (d1) and (d2) We focus on Case (d1) where the map f is of type II(a) and g of type

II(b). Consider the 4-fold covering which corresponds to the subgroup 〈a2, b2〉. Generators are
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denoted by γa and γb are the deck transformations which correspond to a, b respectively. As

before, let a1, b1 be lifts of a, b respectively.

We can reduce consideration to two cases where for f we can assume r1 = 0. For g we have

(4i) g#(a) = β2s, g#(b) = β2r+1,

or

(4ii) g#(a) = β2s, g#(b) = αβ2r+1.

We now look at the deviation map h = f̃ · (g̃)−1. As in Case (4) of Proposition 4.3 we have

h(γa(z)) = θf̃(z) · (g̃(z))−1 = h(z) · (eπi, 1),

and

h(γb(z)) = f̃(z) · (θg̃(z))−1,

which in Case (4i) reduces to h(z) · (eπi, 1) as before.

Fix a fundamental region X for the action of the group generated by γa and γb and as

before, let σa = X ∩ a1. Also let σb = X ∩ b1, and let c, d be natural generators for the target

torus.

Case (4i) Write d = d1d2 where θ(d1) = d2 and of course θ(d2) = d1. In this case the

deviation map h takes the form σa 7→ dpd1 and σb 7→ dqd1, where p, q are arbitrary integers

that depend on the given data for the maps f, g. We note that if either, say p, is negative, then

this reduces to d−p′

d−1
2 .

Define a family hn by hn(σa) = h(σa) and hn(σb) = B2ndqd1 and extend to the domain

torus using the deck transformation equation.

Setting f̃n(x) = hn(x) · g̃(x) (with f̃ = f̃0), one gets the family fn such that each pair (fn, g)

is coincidence free.

Suppose that for two given integers n, m, (fn, g) and (fm, g) can be joined by a coincidence

free homotopy. We show that n = m so we have the desired family for the result. By assumption,

hn and hm can be joined by a root free homotopy at 1. The root free homotopy implies that

hn(σb γbσb) = φ hm(σb γbσb) φ−1

for some word φ in the free group generated by c, d.

Using the action of h, and hence any hk, we compute

hk(γbσb) = d−1
1 B2kdqd1d2,

which yields the equation

B2ndqB2ndq+1 = φ B2mdqB2mdq+1 φ−1.

We now compute an invariant of conjugacy classes for the words of the form given in this

equation. This invariant was given in the proof of Theorem 3.10 of [9]. Given a word W in

the free group with generators x, y let t′(W ) denote the total number of transitions between an

x± and a y± that occur in W . Let t(W ) be the minimum of t′(W ′), where W ′ is an arbitrary

conjugate of W . A direct calculation shows that t(B2kdqB2kdq+1) = 16k − l, where l = 1 or

l = 5 depending on the value of k and q. Thus, when n 6= m we conclude that no such φ exists.
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Remark 5.3 We could have also defined a family by choosing hn so that hn(σb) = h(σb)

and hn(σa) = B2ndpd1, or by using B2n in both coordinates. Due to the symmetry of this case

the argument is exactly the same.

Case (4ii) This case is not symmetric due to the fact that the image of h(a1) is in d, while

h(b1) includes c. But, if we restrict the family to the type hn(σb) = h(σb) and hn(σa) = B2ndpd1

we get the conclusion by a proof identical to the one used in Case (4i).
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[1] Bogatyi, S., Gonçalves, D. L. and Zieschang, H., The minimal number of roots of surface mappings and
quadratic equations on free groups, Math. Z., 236, 2001, 419–452.

[2] Bogatyi, S., Kudryavtseva, E. A. and Zieschang, H., On coincidence points of mappings of a torus to a
surface, Transl. Steklov Inst. Math., 247(4), 2004, 9–27.

[3] Brooks, R. B. S. and Odenthal, C., Nielsen numbers for roots of maps of aspherical manifolds, Pacific J.

Math., 170, 1995, 405–420.

[4] Dimovski, D. and Geoghegan, R., One-parameter fixed point theory, Forum Math., 2, 1990, 125–154.

[5] Dobrenko, R. and Jezierski, J., The coincidence Nielsen number on nonorientable manifolds, Rocky Moun-

tain J. Math., 23, 1993, 67–87.

[6] Geoghegan, R. and Nicas, A., Lefschetz-Nielsen fixed point theory and Hochschild homology traces, Amer.

J. of Math., 116(2), 1994, 397–446.
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