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1 Introduction

We consider the following reversible system with respect to the involution G : (z,y,u,v) —

(_33, Y, —u, U)

i = Ay (y,u,v) + R (z,y,u,v),
¥ = Aa(y,u,v) + R*(z,y,u,0), (L1)
o= Ly(y,u,v) + R*(z,y,u,v),
0 = La(y,u,v) + R*(z,y,u,v),

where A1, Ao, L1, Lo, R! (1 <1 < 4) are functions of class C? defined on a neighborhood of
T" x D x {0} x {0} with an open set D C R™ and R'’s are small perturbation terms. Let X be
the vector field of (1.1), i.e.

0 0 0 0
X=(A h— 4+ H— +(L H—+ (L Hh—.
The reversibility of the system (1.1) with respect to the involution G : (z,y,u,v)— (—z,y, —u,v)

means that

(1.2)

DG-X=—-XoG, DG:= (aG 0G 0G 8G).

dx’ oy’ ou’

When the system (1.1) does not have the perturbation terms R! (1 < I < 4), the system
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(1.1) becomes

If we further assume

A2(y,070) = O; Ll(y70a0) = 07 L?(ya070) :07

J. Zhang

the system (1.3) will have an invariant subspace {u = 0,v = 0}. This subspace is foliated by a
family of invariant tori T x {yo} x {0} x {0} and the flow of (1.3) restricted on each torus is

:E(t) = X9 + Al(y(), 0, O)t.

We consider the linear approximation of the system (1.3) at the invariant torus T™ x {yo} X

{0} x {0},

T =w,

y = A2y(y0, 0 O)( - yO) + AQU(yOa 07 O)U + A2U (y07 Oa O)Ua
U—Lly(y )( _yO)+L1U(y05070)u+Lh)(yOvOaO)va
= La2y(y0,0,0)(y — o) + L2u(y0,0,0)u + L2y (y0,0,0)v,

where w = A1(y0,0,0). By (1.2), we have

A (y, —u,v) = A1 (y,u,v),
Az(y, —u,v) = =As2(y, u,v),
Ly(y, —u,v) = Li(y, u, v),
La(y, —u,v) = —La(y, u,v),

which in turn implies that
A2y(y70a0) = 07 AQU(ya07O) = Oa
Llu(y7 0; 0) = 07
Lzy(y,0,0) = Oa Lgv(y,0,0) = 0

(1.4)

If the matrix A1y (yo,0,0) is nonsingular, the function ¢ : yo — Ai(y0,0,0) is a local diffeo-

morphism. Therefore ¢~! exists and is also a function of class C¢ defined on an open set

© = ¢(D) C R™. Define

Aw) = L1 (67 (), 0,0),
B(w) = Lzu(¢™ ' (w),0,0),
Cw) = L1y(¢™" (), 0,0),
D(w) = Azu(¢™" (), 0,0)
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and 0 Dw) 0
Aw)=|Cw) 0 Aw)
0 Bw) 0

In a small neighborhood of the set {y = yo, v = 0, v = 0}, (1.1) can be viewed as a small
perturbation of (1.4), that is, the system (1.1) can be rewritten as
‘Cb :w+f1(x7y’u7v7w)7
= Cw)y + Aw + f2(z,y,u,0,0), '

0= B(w)u + f4(x,y,U,U,W);

where (z,y,u,v) € T" x R™ x RP x R?, w is an independent parameter varying over a positive
measure set © C R™, and the variables (y,u,v) vary on a small neighborhood of the origin of
the space R™ x RP x R?. Notice that here our variable y is actually y — yo in the equation (1.4).
The reversibility of the system (1.5) with respect to G : (z,y,u,v) — (—x,y, —u, v) means that

[loG=f foG=—f’ [PeG=f* floG=—f" (16)

If we denote Z = (x,y,u,v),

@ P

D(w)u 27w

H29= ey + awp | TH9= iz | o
B(w)u f4(Z,w)

the system (1.5) can be written as
7 = L(Z,w) + F(Z,w). (1.8)

In this article, we state our result for (1.5), or equivalently for (1.8), instead of the original
system (1.1).

If the system (1.5) is a Hamiltonian system, the persistence of the lower dimensional tori has
been studied extensively. For instance, if all eigenvalues of (4 4 ) are not purely imaginary and
C =0, D =0, Moser [10], Graff [6] and Zehnder [19] proved that, for any w = (w1, ,w,) € O

satisfying the Diophantine condition
[(k,w)| >7lkl™", 7>n—1, keZ"\{0},

there is an w* close to w such that (1.5) at w* has an invariant n-torus with prescribed frequencies
w if the perturbations f! (1 <1 < 4) are sufficiently small; if all the eigenvalues of (% 4) are
simple and purely imaginary and C = 0, D = 0, Melnikov [9] in 1967 annouced that for a
positive Lebesgue measure subset ©,, C ©, (1.5) possesses a lower dimensional invariant torus.
Eliasson [5], Kuksin [7] and Pdschel [11] gave a complete proof. You [18] proved the persistence
of n-dimensional invariant tori for (1.5) under the condition det (% 4) # 0. In particular,

his result can be applied to the case that (% ‘6‘) has multiple eigenvalues. Developing Craig
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and Wayne’s method [4], Bourgain [1] proved the existence of quasi-periodic solutions. Such
approach applies to some PDEs with periodic boundary condition (see [2]). Especially, when
the small perturbations f? (i = 1,2,3,4) are functions of class C¢ (d > 6n + 5) and normal
frequencies ; are simple, Chierchia and Qian [3] showed the persistence and regularity of the
lower n-dimensional elliptic tori.

On the other hand, when the system (1.5) is reversible with respect to the involution G :
(x,y,u,v) — (—x,y, —u,v), Sevryuk studied the persistence of n-dimensional invariant tori for
{p =0} {p=¢q>0}and {x € T",y € R™(m # n),p = q > 0}, respectively. We refer
to [13-16] and references therein. However, in the last two cases, there are two assumptions
required in his results:

(i) C=0,D=0,det(%%)#0, this means ($ 4) has no eigenvalue being zero;

(ii) Any eigenvalue of ( § 4) is simple.

Liu proved the persistence of n-dimensional invariant tori in the reversible system under
small perturbations in the case p < ¢ in [8]. He did not require the assumption on the simplicity
of the eigenvalues of (% 4).

In this paper, motivated by the above papers, we are mainly concerned with the persistence
of the lower dimensional tori of the reversible system (1.5) under some C¢ perturbations f? (i =
1,2,3,4). We show that the lower dimensional tori are persistent under these C? perturbations.

To give the main result of our paper, we need the following conditions.

(1) There is a constant M > 0, such that for the elements of the matrices A, B, C and D,
a;j, bij, ¢i; and d,;, the following inequalities hold for all w € W), = {w € C" : |w — O] < h},
Pas, oy dey o',
Awt I’ dwt I’ Awt 17 Ow!

max max max max <M,
[l]<N2 [l]<N2 [[]<N2 [l|<NZ

where N =n+p+q.
(2) The rank of the matrix A is p, which implies that p < g. Without loss of generality, we
assume det(a;;)1<q j<p 7 0 on Wi,

(3) meas(R1 UR2UR3) =0, where

Ri={weO|(kw =0, keZ"\{0}},
Ry ={w € O | det(i(k,w)Ey — A) =0, k € Z"\ {0}},
R3 = {w € O | det(i{k,w)Ex: —Ey ® AT —A@En) =0, k€ Z"\ {0}}.

Here and hereafter, we set i = v/—1, E; is the j x j identity matrix, and ® is the tensor product
of matrices. <The tensor product of matrices A,,,,, By is an mk x nl matrix: A® B = (a;; B) =
(lllB (LlnB
<amle am.nB> )
In the following, we always assume 1 < K < %, T > N2n,

1

A< NEED) (VT ED)
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and

3—2K 2—kK N2
N24+74+n+1" N24n+74+1’ (N2+1)(N2+n+r+2)}'

For s > 0, let T™ x By := T" x {|y| < s} x {Ju| < s} x {|v| < s} be a neighborhood of
T" x {y = 0} x {u =0} x {v =0}. Now we can state our main result of this paper.

¢ < min {/\7

Theorem 1.1 Suppose that the above assumptions (1)—=(3) hold for the reversible system
(1.5). And assume that f' are of class C and ||f!||ca (I = 1,2,3,4) are bounded in a neigh-
borhood of T"™ x {y =0} x {u =0} x {v =0} x © with d > % Then for any ~v > 0 there are a
pair of positive constants €9 and sg depending on n,p,q, T, M,~y, such that if

1 1 1 €0
1 o =12 Mco =N 2o, =N *lco < 5
50 S0 S0 2

where the norm || - ||co is the mazimum norm on the set T™ X By, X Wh, there exists a differ-
entiable map

®: T" x 0, = T" x R" x R x RY,
with © C © a positive measure set, and a diffeomorphism ¥ : O, — R" such that ®(T" x {w})

is an invariant torus of the system (1.5) with frequencies V(w) at w. Moreover,
meas(© —0©,) — 0, as~y—0.

Remark 1.1 w satisfies the diophantine condition. See (2.8) in the next section for more
details.

2 The KAM Step

The lemma given in [12] is very important to our paper. For easy reference, we list it as

follows.

Lemma 2.1 (see [12]) Suppose f € CP(R¥) for some p > 0 with finite CP norm over
RE. Let 1) be a radial-symmetric, C™ function, having as support the closure of the unit ball
centered at the origin, where ¢ is completely flat and takes value 1 and let K = 12 be its Fourier
transform. For all o > 0, define

fulo) = Ko < fla) =0~ |

R

. K<x_y)f(y)dy-

g

Then there exists a constant ¢ > 1 depending only on p and k such that the following holds.
For any o > 0, the function f,(z) is a real-analytic function on C* such that, if AF denotes

the k-dimensional complex strip of width o
AF ={zeCF:Imzj <o Vj},
then, for all o € N* such that |a| < p, one has

0P f(Re )
> —a

sup |0% fo(z) — (iImx)?| <& |flcr oo

reAE
T€Rs 18]<p—|al
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and, for all0 < s < o,

sup 0% fy — % fs| <€ |fler ool
vEAS (2.1)

Moreover, the Holder norms of f, satisfy, for all0 < q <p <,
|fo = flea <€ [fler oP74.

The function f, preserves periodicity (i.e., if f is T-periodic in any of its variable xj, so is f).
Finally, if f depends on some parameter & € I C R™ and if the Lipschitz semi-norm of f and

its x-deriwvatives are uniformly bounded by |f|gp, then all the above estimates hold with | - |
replaced by | - [P,

Remark 2.1 If f is defined on
T" X Bs, 50,55 := T X {|y| < s1} x {Ju| < s2} x {|Jv| < s3}, s <1,

then one can easily construct a C'-extension Joxt Of frnyBe, sy o5 1O RQ(”"’T"‘), such that
20303

2
|fext|cl(1R2<n+m>) < a|f|cl(1rn X By s,55)

where a is a positive constant depending only on [ and s;.
q
For o, = 0asv — oo (0, > 0), fy, = K, * f, then f,, < f(g<p)asv—oo.

Remark 2.2 If foG = —DG - f, then

fo, oG =—-DG- f,,.

In fact, 1 is a radial-symmetric function, and so is K = zZ .

oG = ﬁ /RMHH K(( .Y, “”0) (”““’y’“’“))f(f, 7.1, ) dF dj i dv
- / K((“”y’“’”) — (79,4, 5))f@ 7.09) dFdgduds
U?,n+p+q R2n+p+q Oy T
(Let 51 = —5, ﬂl = —ﬂ)
Lt / i (L) “CL G0 g, iy ) d djdind
U?,n+p+q R2n+p+q Oy e ,
— DG},

2.1 Main idea of the proof

According to Lemma 2.1, for a sequence of numbers o, — 0 (¥ — 00), we can find a sequence
of analytic reversible systems
Z=L(Z,w)+ F,, (Z,w), (2.2)

(fL f2  f2  f2) is defined on A,, as in Lemma 2.1, and F,, — F as

optJoyrJoy)d oy

where F,, (Z,w)

vV — OQ.

Now we hope to find a mapping @,

7 =®,(Zy,w,), (2.3)
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which commutes with G, such that it transforms the system
Zy = Ly(Zy,wy) + Fo(Zy, wy) (2.4)
to the system (2.2), where F,, and ®, are defined on
Dy s, X Wh, ={Im x| < ry, |y| < su, [u| < su,|v| < s} X Wh,,

and F, — 0 as v — oco. Since ®,, commutes with G and the system (2.2) is reversible from the
remarks of Lemma 2.1, the system (2.4) is also reversible. Taking derivative with respect to ¢
on both side of (2.3), we get

7 =D®, - Z,, (2.5)

where D®,, = g?;. Combining (2.2), (2.4) and (2.5), we get

L(Z,w)+ F,,(Z,w) = D®, - (L,(Z,,w) + Fu(Zy,w)). (2.6)

Once we get @, we want to find two other mappings ¢,(Z,w) and ¢, (w), and therefore we
can find ®,41 = ®,(¢,,1,). We can keep doing so and get a series of functions ®,.. If we can
prove that ®, and D®,, converge as v — oo and ®,, commutes with G, then by taking v — oo
on both sides of (2.6) we get

L(Z,w) + F(Z,w) = DPr * Loo(Zoo,weo), (2.7)
ie. ot F(Z0) o
D(w)u+ f2(Z,w) ~ Do Do (Woo ) Uoo
C(w)y + A(w)v + f3(Z,w) % Coo(Woo ) Yoo + Aco (Woo ) Voo

B(w)u+ f4(Z,w) Boo(Woo ) tioo
S0 P (T™ x {0} x {0} x {0} X {wso}) is the invariant torus of the system (1.5). The frequency
of the system (1.5) restricted on the torus @ (T™ x {0} x {0} x {0} X {weo}) 18 w = Vo (woo )-
2.2 Construction of the function ¢,
For any positive integer K,,, we denote by W, (K,) the complex neighborhood of radius h,

of ©,, (K,), where

0,,(K,) ={we O |for any 0 # |k| < K, and 7 > N?n, w satisfies (2.8) below},

[k, ) >AkI77, [ det(i(k, w)En — Ay)| > y[k[77,

(2.8)
| det(i(k,w)Enz — Exy @ AL + A, @ Ex)| > k|77

Since @, 41 = @y (¢y,1,) and ¥, 1 = ¥, 09, for some ¢, : Dy 6y X Why i (Kpy1) —
Dy, s, and ¥, : Wy, (Kyy1) — Wh, (K,), we have

D, = D®, - Do,.
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Then from (2.6),
L(Za L«J) + fa1,+1 (Z,UJ) = D(I)l/ ) D¢u [Lu-l—l(Zu-l—lawu-l—l) + fl/—‘rl(Zl/—‘rla Wl/—i—l)]- (29)

If, furthermore, ®, satisfies (@, (Ds,, s, xWh, (K,)), ¥,(Wh,(K,))) C A,, and D®, ! exists, we
subtract the equation (2.9) from the equation (2.6), apply D®, ! on both sides of the equation
and get

Do, - [Lv+1(ZV+1aWV+1) + fu+1(Zu+1ku+1)] = Lu(Zuawu) + ﬁV(ZVawl/)a (2-10)
where

F(Zy,wy) = FZy,w,) — DO, N (Fo (Z,w) — F.

Op41

., (Z,w)). (2.11)
Let ®g = ¢ = id and Fy = F,,. According to (2.11) and (2.10), we have
Fo=Fo,.
Suppose that we have finished v steps, and the transformed system is of the form

Zy = Ly(Zy,w,) + F(Zy,w), (2.12)

where the functions F, = (fL, f2, f3, f4) and L, satisfy

- 1~
1 .
£ e W, » S—||f3||7>ru.suxwhy <&y, 2<j<A4, (2.13)
v
(v YANY v 0 v
max 7 max 7 max 7 max 7 < M,,
le|<n2 | Ow? [l <Nz | Owt || <Nz | Owt le|<N2 | Ow?

det(a;’j)1§¢7j§p #0.

In what follows, the notations without subscript mean v-th step, those with subscript “+”
mean (v+ 1)-th step, and those with subscript “++” mean (v+2)-th step. Thus (2.12) becomes

7 = L(Z,w) + F(Z,w), (2.14)

where L and F are defined on Dy.s X Wh.
Since Wi, (K) C Wh, the inequalities (2.13) still hold if we replace Wy, by Wh(K). Assume
that the desired change of variables ¢ defined in a smaller domain D, 5. X Wy, (K4) has the

form

T =Ty + Z hiei<k’m+>,

k<K
M<K
. (2.15)
w=up+ Y (B + Lhye + Rus + Loy el o),
k<K

v=vp 4 > (i Ty + Tfus + v )el )
k<K
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such that ¢ transforms the following system to system (2.14)
Zy =Li(Zy,wy) + Fi(Zy,wy), (2.16)

where (x+,y+,u+,v+) €D

sy and wy € Wy, . Then from (2.11) we can calculate F, and

repeat the same procedure by using L, and F; as L and F. Moreover, when we solve ¢ and

1, we hope that the derived new perturbation terms F, and .7?+ are much smaller than F.
Remember that k is a real number between 1 and %, ¢ is a positive real number and c is a

large positive number. Fixing e, 9, so and My = M, we can define the following numbers by

iteration,

1
k—1_k N241
Evy1 =c""el, T, = sf,, o, =2(N+n)r,, h,=c¢ep ,

r—1 -\
a, =€y, Syy1 = Eal,sl,, K, =1[e,"],

1 1 15\ v+l
My 1 :My+c(n—1)glz/v2+17 Yo :70(5—’— (5) )’

where [z] equals the integer part of x.

¢
Lemma 2.2 If (cgo)¢" D < 1,50 <2, k>1and 1> (>0, for any v € N, we have

Ty Sy
T, < gt s, < gt oand s, <1y

Proof We only prove the first result. The other two results can be proved in a similar

method. From definition, we have

e
,
r=e§ = (" lef) < 2 = 50.
If we have r, < %52, again by definition,
¢ k—1_rk\¢ C(k—1) ¢ C(r=1) ¢ EIC, Ty
Tv+1 = El/—‘,—l = (C 61/) = (CEV) M) < (660) Ep < 7 = 7

Lemma 2.3 If ( < A\, we have

for some constant cg.

Proof Directly calculating the integral, we get

/OO xnef(rfrJr)x do = 1 K”e*(T*TJr)K + n anlef(rfrJr)K
K L (r—ry)?
n! _rK
e — 2

(r=r)mitt

From Lemma 2.2, we know r — 7, > 5. Hence

oo J+1 frn—j
/ 2" T4 < (n+1)! max {ie*(“”)K}
K 0<j<n ritl

)
- 0<j<n

S Co&,
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where ¢ is a constant independent of v and the last inequality comes from the definitions of
K and r.

2.3 Homological equations

From (2.10), (2.14), (2.15) and (2.16), we have

where

wt flop=wy + fL+FL,

Du+ f2o¢ = Dyuy + f2 + F2,

Cy+Av+ fPo¢ = Coyp + Apvy + f3 + 73,
Bu+f4o¢:B+u++fi+.7:4,

(2.17)

Fi= ) ilkwp + fe®ng,

|k|<K
Fi=Y ilkws + f1)(hE + Hyys + Hiug + Hivg)e! 0o+
[k|<K
+ Y Hi(Dyuy + )0 4 3" HE(Cryy + Apvg + f2)el o)
|k <K |k|<K
+ Z HY(Byuy + fi)elkre),
|[k|<K
FE=>" ilk,wy + L1} + Liyy + Luy + Loy )el®m)
[k|<K
+ Z Li(Dyuy + f3)elme) 4 Z R(Chys + Agvy + f)elFes)
|k|<K |k|<K
+ Z I} (Byuy + fi)elthos),
|k|<K
Fi= Y ilkwr + F) 0k + Jiys + Jiug + o )el et
|k|<K
+ Y T Dyug + 1)+ N R (Chyy + Ay + f1)el BT
|k|I<K [k| <K

+ Z J(Biug + f1)elhee),
K<

Omitting all terms of order O(g?), we get

i(k,w)hi = fi, 0<|k| <K,

i(k,w)h = Db} + 2, |k| < K,

i(k,w)hi = Ch} + Ah{ + f2, 0< |k| <K, (2.18)
i(k,w)hj = Bh} + f,  |k| <K,

~3
Chi + Ahg+ fo =0
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and
o f?
i(k,w)H} + H2C= DI} + ( o )k k| < K
af?
i(h, w) HE + HD+ H{B = DI? + (% - )k 0< [k <K,
o
ik, W) Hi + HEA = DIE+ (5=) o [kl < K,
: af°
ik, W) I} + I2C = CHL + AJ} + (a_y)k 0< |k < K,
: 2 1 3 2 2 8JFg (2 19)
Wk, w) I + I; D+ I} B = CHk"'AJk"*'(%)ka k| < K, :
: af°
3. 724 _ g3 3, (91 <
ith, w) I + 124 = CH} + AJ} + ( = )k, 0< |kl <K,
oft
- 1, 124 _ prl 957" <
ith, w)J}+ 0= BJL+ 0 )k, k| < K
: af!
i(k,w)J2 + LD+ J?B=BJ? + (%)k 0< |k| < K,
. o
ik, w)J3 + J2A = B + (a_v)k’ k| < K,
where
~ 1
fi = F1(2,0,0,0,w)e ") da,
k (271') T ( )
afj o 1 8f] —i(k,z)
(8y)k_(27r) Ny ——(2,0,0,0,w)e dz,
afy _ 1 of i)
(au)k_(%')” T Ou Bu (©0,0,0,w)e dz,
afj o 1 8f] —i(k,z)
(81} ko (2m)" Jpn Ov By (©:0,0,0,w)e de
for 1 <1 <4 and 2 < j < 4. The equations (2.18) and (2.19) are usually called homological
equations. From (1.6) we have
f (—Z‘ Y, —u, ):Jﬁ(ﬂ?ay,uﬂ/), f~2(_xvya_uav):_fQ(xvyauvv)v (2 20)
f3( T, Y, —U, )=f3(x,y,u,v), f4(—x,y,—u,v)=—f4(w,y,u,v),
which implies that
o=F Pe=-0t Pa=F A=-0 (2.21)
and
afty  (of? afty  (of? afty  (of?
(83/)71@_ (8y)k’ <8u)7k_(8u)k’ (81})71@_ (81})
aft\  (of? aft\  (of aft\  (of°
(8y )71@_ ( 8y) ’ (8u)7k_ (au)k’ (81} )71@_ ( ov )k’ (222)

oft oft oft oft af oft
(8—y)—k: (8y) (%)—k: (%)k’ (W)_k:_(ﬁ)k'
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Therefore one has

) o o (2.23)
)= Gylo=o ()0
Let
w4 :w+}8, Ap=A4A+ (%—];3)0’ By =B+ (88—];4)0’
) R (2.24)
Ci=C+ (%_J;B)O’ Dy =D+ (88—];2)0'

Now we solve the homological equations (2.18) and (2.19).
For k = 0, we choose
he =0, hi=0, hj=0,
Hy =0, H3=0, Hj=0,
I} =0, I2=0, I3=0,
Jl=0 J2=0, Ji=0.

From condition (2), we know that A = (@ij)1<i,j<p has an inverse matrix A-'. We can define

hy = col.(— (A7 0, ,0).

q—p
If w¢ Ri UR2URs, we have
h f?
he =ilk,w) ' fE | B | = (kW) EN — AT 3 (2.25)
hi f
and
(i(k,w)Ex — A)Z + ZA = F, (2.26)
where
H H? H} (55, (85, (),
T [ A O 22)
e (55, (), &),

2.4 The Commutability of the function ¢ with the involution G

In this subsection, we prove that ¢ commutes with the involution G. Such a property
guarantees that the transformed system (2.16) is also reversible with respect to the involution

G:(x4,ys,uy,vy) — (—x4,y4, —us,vy). We know that ¢ o G = G o ¢ holds if and only if

hly = —hi, Rh%, =h3, K3, =-h}, K, =h} (2.28)
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and
Hy Hp Hj HY, -H?, H,
I,i I,f I,i’ = —Ilk Izk —Iik . (2.29)
Ty JipJi JLy  =I2 3,

By (2.21) and (2.18), we obtain

1<_k hl—k = fik = ﬁl,a

(—Fk,w h2—k = Dh?ik + fzk = Dh3—k - J?l?a

i(—k,w)h3, = Ch2, + Ah*, + f3, = Ch?, + AhY, + f3,
(—k

Jw)ht, = B3, + f, = BR®, — f.

, W

1

1

)
)
)
)

The last three equalities imply that

h, /i
(ifk, W)En = A) | =h% | = | ]2
ht, i

Hence if w ¢ Ry URa, (i(k,w)Exy —.A)~! exits and (2.28) holds.
Similarly, from (2.22) and the homological equation (2.19), it follows that
(i(k,w)Eny — A)Z + ZA=F,
where ) ) 5
HY, —H?, H3,
Z=\|-1, 1*, -I3,
L -, P,
If the matrix equation (2.26) has a unique solution, then Z = Z , which is equivalent to the
equation (2.29).

The following lemma gives the uniqueness of the solution to the matrix equation (2.26).

Lemma 2.4 The matriz equation (2.26) has a unique solution Z if and only if the matriz

Ey ® (i(k,w)Ex — A)T + A® Ey is nonsingular. Moreover, in this case one has
1Z]l < I(Ex @ (i(k,w)Ex — AT + AQEN) | - |,
where || - || is an operator-norm of matrices.

The proof of this lemma can be found in [18]. Therefore, if w ¢ Ry UR2 U R3, we have
poG=Gopand PoG=Go 9.

2.5 Estimates ¢ and ¢! and their derivatives

We will show that ¢ is well-defined and close to the identity on the set D, o, x Wy, (K ).

)

In the sequel, ‘<’ and ‘<’ respectively stand for ‘< ¢’ and ‘< ¢~ !’ with a large positive
constant ¢ independent of iteration steps. An N x M matrix C' = (¢;;) can be viewed as a

linear operator from RM to RY. We denote ||C| = max |c;;|.
i



472 J. Zhang

In order to obtain the estimates of the solutions to the homological equations (2.18) and

(2.19), we need the following two lemmas. The proofs of these two lemmas can be found in [18].
Lemma 2.5 If w € ©,(K), then for any k with 0 < |k| < K, one has
1k @) Ex = A@) "M, (1, w)Eyz — En © AT(@) + A(w) @ Ex) 7 <y FV
Lemma 2.6 Let Wy, (K) be an open complex neighborhood of radius h of ©~(K) with respect
to the sup-norm in C™. Then for any w € Wy (K) we have

@) 7 GGk @) B — Aw) "
Gk, ) B — By @ AT (@) + A(w) 9 En) 7 <y RV, |

for 0 < |k| < K provided that
AEN T max{K, M + 1} < .

Remark 2.3 If

1 T 1+1 —A(N%47+1) Yo

AT T O Mo

and

K— - 247 1
(cso) D) L
we have hEK N+ max{K, M + 1} < 7.
Now we estimate the solutions to the equations (2.18) and (2.19). Since f! are analytic and

||f~l||co are small, we have

OFi
Ha—{)(x+70,070)H§6, 2<j<4

of

|5 000] <o |5

(Z‘+, 0) 07 O)H < g,
from Cauchy’s estimate. Hence we have
fil < e |fl] Sese”™r 2<j<d

and

(D), sertn (), s (), <o, 2<s<a

for (x,y,u,v,w) € D, . By (2.25), (2.27) and (2.30), we obtain, for w € Wj,(K) and 0 < |k| <
K

3

Bkl < [i(k, )| ™" [FL (hd] < Gk ) By = A7 L 2<5 <4,

j . 1 8fj+1 )
IHL|| < || (i(k, w)Enz — A®Ey + Ey ® A) 7Y - ( o )k 1<j<3,

; o fit1 (2.31)
11 < ik, Bz — A En +Ex @ 47 - |( )k 1<j<3,

j . -~ 8 7+1 '
) < G0k, )Exe ~ ADEy +Ex @ 7| (220 | 1<j<8
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For k = 0, we have
|hg| = R3] = |h§| =0,
|hg|=<es, (2.32)
IHgll =115l =175l =0, 1<j<3.

Denote D;j =D, 4 1, 1(j+1)s: 0 < j < 3, where p = == > 0. Then by (2.31) and (2.32), we

have

. ~ (rp—m)
| > nfethe <+ k@) B — A e
k| <K D2 XWh(K) 0<|k|<K
- ~. (ry—rm)
h i(k,x4) < ilk Er — AL 1 4. (2.33
| 32 e < D M w)Ey = AT, (2:39)

[k|<K 0<|k|<K

I(Ex — A7 <47 ENFT, YO0 < |k < K.

By (2.33) and Lemma 2.6, we get

’ Z Bl eitka+)

K
T 2 i S (ryp—=m) _ _ 2
< TGN el T ) < e N ),
=1

k| <K D2 X Wh (K)
i (ry—mr)
‘ Z et te) < E52:771|]'|N2+TIjlnfl(e"j' ) <y Ll TNV T
* D2 X Wi (K) ,
M<K =
Similarly, one can get
‘ Z (Hiys + Hius + Hioy el o) <yl ¢ T Hn)
k<K Dy x Wi, (K)
‘ > Uhys + us + Loy el Ly leel TSN T Hn),
k| <K Dy x Wi, (K)
k<K Dy x Wi, (K)

In conclusion, we get the following results.

Lemma 2.7 Denote = = Diag(En,s_lEn,s_lEP, 8_1Eq). Then we have
= : — — 2474n
IE(¢ — 1)l pyow, ()< 7~ et TN,
-1 1—<(N2+T+n+1).

||E(D¢_En+N)E_1||'D2><Wh(K)<rY €
Moreover, if 7*151’4&(1\’2*7*") < min{%p, i} (This can be satisfied when £¢ is small enough and

1
C < m), then

#(D2 x Wy (K)) C Ds.
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By (2.24) we know that

wy =w+ (Zi)n . F(2,0,0,0) dz,
A+:A+(271r)n Tn%{f(aaoomd
B+:B+(271T) %J:(xOOO)d
0+=0+(271r) Trnaafyg(asooom,
D+:D+(271T)n . %J:(xOOO)d .

Therefore

wy —wl, laf; —aijl, [0 — bl |efy = cijl, 1df; — dij] <e.

From Cauchy’s estimates it follows that for w € Wi and lI] < N2,

Mwy —w)

7 +

h B ’—< g,

h‘ll 3l(aj; az])’ hl”‘a (bj; —sz)‘
Ow! ’ Ow!

h‘ll al(c;; Cz]) ‘ hl” ’ 0 (d:; dz]) ‘
Ow! ’ Ow!

From these inequalities and (2.36) below, it follows that

M‘«h i
owl, ’
8la{§ al + | |
Yo M‘< It
dut, ol :
L+ a+
Ocy _ o'd; m‘-<sh_|”.
owl, oWl
Let A+ = (a +)1<”<p and
0 Dy 0
.A+ = OJr 0 AJr
0 By 0

Then )
|det Ay| > |det A| — p!l(M + )P~ - 2P > 5|01et,1| >0

provided & < 1(p!2P(M + 1)7)~!| det Al
Define Co = sup |w| + 1. If KN¥+7¢ < (y — 44 )(N!(2Ce (M + 1))N)~L for 0 < |k| < K the
w€eO

following holds

| det(i(k, w )En — AL )| > | det(i(k, w)Eyx — A)| — N12N(|k| + 1)(|k|Co (M + 1))V " Le>qy k|77



Lower Dimensional Invariant Tori in C* Reversible Systems 475

Similarly, if
KN e < (y = 74 (N2(2Ce (M + 1)N) 1,

then
|det(i{k,w)En> — En @ AL + A4 @ En)| > 4 |k[77
and
(ks wi)| > v [k 77
for 0 < |k| < K. Therefore we have proved the following lemma.

Lemma 2.8 Suppose
KN 472 < (N21(2Co (M + 1)) min{(y — 74, | det A|}.
Then for 0 < |k| < K,

det AL #0,

(ks wi)| > v [k[TT,

|det(i(k, w)En — Ap)| > 4[],

| det(i(k,w)En2 —Ex ® AT + AL @ En)| > 74 k|77

Remark 2.4 If

1-X(N2+7) o A\ 1
€g < 1’ < NZ o
2 1
(Cgo)(nq)(p,\(z\r +7)) < 5

then for any v € N, we have
KN*H7e < (N2(2Co(M + 1)V ) min{(y — 74, | det A]}.

Since f! (1 <1< 4)in (1.5) are defined in the domain D, s x Wj,(K), we have to show that

when ¢ is sufficiently small,

¢ Dr+,s+ X Wh+ (KJr) - Dr,s; (m+,y+,u+,v+) = (x,y,U,v), (234)
Y Wi, (Ky) = Wh(Ky), wi—w, (2.35)

where the mappings ¢ and ¢ are defined by (2.15) and the first equality in (2.24) respectively.

Lemma 2.7 leads to (2.34), and (2.35) is a direct consequence of the following lemma.

Lemma 2.9 Suppose that f is a real analytic mapping from Wy (K) into C™. If

h

then f has a real analytic inverse v on W% (K). Moreover,

. h
|9 — 1d|w%(K), ZHD?ﬁ - En”W%(K) <.
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The proof of this lemma can be found in [11]. From this lemma it follows that if

h h
4’ 4’
then v : wy +— w is well-defined on Wy, (K4 ) and (Wh_ (K4)) C Wy (K). Moreover, let

e< h+<

Y(we) = wy +n(ws).

Then
|\77(w+)||w%(1<) <e.

By Cauchy’s estimates, we have

5t

o HW (K<g/f|”, lI| < N2. (2.36)
+ L

To finish one step of KAM iteration, we have to estimate the new perturbation terms fi,
fL(1<1<4)in (2.10) and (2.11).
2.6 Estimates of new perturbation terms fj_ and fj_ 1<1<9)

(a) Estimates of fi and fv}r

Using the first equation in (2.17) and (2.11), we have

fi(eraeraUJraer):f10¢+w_w+_ Z <k W+—|—f> kw+>hk.
[k|<K

fi=rl— (Do) v, — [l )o®y.

From (2.25) and h$ = 0, we have

fi=Floo—fo— > Ree®™ = 3 ik fo + fe o ng

0<|k|<K |k| <K
= }71 o ¢ - TKfl(eraOyOaO) - Z 1<k7}g + f41r>ei<k7x+>hllca
k| <K
where Txk f1(x4,0,0,0) = 3 f1 . Therefore
k<K
1f3lDr, oy 5w, () S IfH 0 b= TicfH(4,0,0,0)lp, ., xw, (5cy)

IS+ M3 o, i) D [Rlllel
[k <K

= Hfl O¢_TKfl(x-'r)07050)||'Drr+.s+XWh+(K+)

— _ 2
+ (e + ||f}r||7p,r+15+X1,\;h+(K+)),y L 1=¢(N*+74n+1)

If 4~ 1l =C(N*+74n+1) « 1 then

ra i — — 24740
||f41r||D7.+,S+xwh+(K+)<Hfl0¢—TKf1(3?+,070,0)||Dr+,5+xwh+(K+) + 472N AL,
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Now we give an estimate of || f1 o ¢ — Tk f*||p XWi, (K1) Set

sy
‘Fl1 = fl O¢—f1($+,y+,U+,'[}+),

F‘Q1 = fl(x+,y+,u+,v+) - f1($+,0,0,0),
F31 = fl(ervOaOvO) _TKfl(ervOaOvO)a

and we have

flog—TirfY(zy,0,0,0) = Fl + F§ + F3.
If (cso)(“_1)(2_“_<(N2+"+T+1)) < %, 5(2)7H7C(N2+n+7+1) <7y and ¢ < ﬁ, we have, by
Lemma 2.7 and the Cauchy’s estimates,

1 f 1D, xwn (¢
LUl A SN

L idllp, . W, (1),

TS

1fH 1D, xwn (1) .
| — 1d||Dr+,s+><Wh+(K+)}

S — 5S4
2 2
{62_<(N +74n) . 62_<(N +7-+n)8+ _1}
< max v,
r—ry S — 54

27((N2+T+n)+(nfl),yfl}

_<max{827c(zv2+r+n+1)771

, €

< e,

||F21||Dr+.s+xwh+(1<+) < P <ea<e",

151D, oy s, () < > ||f1$ei<k’m+>||p7.+,s+xwh+(K+)

|k|>K
< 3 T <2 3T e
|k|>K |k|>K
00
oy Z jnflefj(rfmr) < 6/ xnflef(rfmr)a: dx
iZK K
<&

Now we get

If" o ¢ — T fH <",
that is,

If3llD,, .y xw, <%

Before we prove ||f}_|| < &4, we need to prove ||[D®; | < 2 and |[D¥, | < 2 by induction.

Suppose
1-C(N24r4ntl) —1 1 d o —id
€o Y K 716(N+n) an o = 1d.
When v =0, ||D®¢|| < 2. If |DP,|| < 2 for all j <v —1, we have
v—1
ID®, —Enynl <D [ID®; - Dg; — DP,||
j=1

v—1
2
<2(N +n) E E;_C(N +T+"+1)7j_1
j=1
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v—1

2 j
<2(N +n) Zs(l)_C(N +T+n+1)517j_1
j=1
K(1— 24740 — 1
<8(N+n)50(1 C(N? 47+ +1))%1 <5
—C¢(N24+n+7142)

N2
Therefore, | D®, || < 2 for any v. If 45 le "+ 8(N—1+n), we get

8¢V 1

< (N + )| DBy |- |55

H&wy Wh, 1 Dy oy X Wi, (K,)

0®,_4 H _ Hawu—l
Ow,_1 Ow,

2
fc(N2+n+r+1) YT
v—1 )

+(N—|—n)H

Dy sy XWh,, (K,)

2(N +n) (v, e livzfl

< 2N +n)(e 1+25N21+1) =

l\D|’—‘

v,

So || g(b || < 21is proved for any v. We can also prove || 5% | < 2 by the same method.

We know that (2.10) is well—deﬁned if (2,(Dy,,s, X Wh, (K,)), V¥, (Wh, (K,))) C Ay, . Since

ry > Sy, 2(N +n)r, = 0, and ¢ < x5, we have

g
[T, (Z,w)lp,, ., xWn, (k,) = [P, (Z,w) = Im®, (Re(Z,w))l|p,, ., x Wi, (x.)

it }
< max{2(N + n)ry,,2(N +n)s,,2(N + n)h,} < oy,
[Mm®, (w)[lw,, = [Tm¥, (w) —Im¥, (Re(w))lw,
< (V+n)[[ D, - [Im(w)]]
<2(N +n)h, <o,.

< 0 by 10,1 T, | 2

Therefore (9, (Dy, s, X Wi, (K,)), ¥,(Wh, (K,))) C Ay, and (2.10) is well-defined.

From
D@, — Epynll < Z |D®, —E, x| <2||D®, —E, . n]| <1,
j=1
we get ||[D® 1| < 2.
Now we estimate f}_ If {d > 2, gdc 1< [262(N + n)) | Y| ca] ™! and Cd(qggcfz <
(%) , then by Lemma 2.1

1D (AL, — 12 Mo, sown, () < 2N 4012, — £2, o

o4+ rysg XW}L+(K+)
<N + )| [l cact
= 2N + n) G| fY | s < 7. (2.37)

At last we get ||f}r||D+XWh+(K+) <éeq.

(b) Estimate of f and fjr (1=2,3,4)
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From the last three equalities of (2.17) and the homological equation (2.19), it follows that

fi=F0¢+(D=Dyyuy+ Y (Dhi+ DIy, + DIfuy + DI}vy)e! o+
[k|<K
- Z i(k,w)(h} + Hiyy + Hiuy + Hivy )ellkas)

k<K

= 3 ik o P (8 Hiyy + Hug + Hivg)el )
k<K

— Y [Hi(Dyuy + f3) + Hi(Cyyr + Aoy + f3) + HY(Byuy + f)]e! )
|k|<K

=flo¢p—Txf*—Tk ( J;Q)er—T (an)UJr_TK(%};Q)UJr

= 3 [t T+ SR+ Hiyy + HRug + Hivy) + HL2 + HEfS + HYfL
|k| <K

1 (g 1 ) e+ ) o () e

which implies that, for (x4, y4,uy,vy) € Dy, s, and wy € Wy,

120, ., sowi, i< | 20 6 = T P2 - TK(%—f)y+ - TK(%—T)M - TK(%)MH

F (1fE ]+ IFL| )y et S Wi THnt ) g 2= GNP )

— — 24r4n
T TSN L2+ A+ LD

We first estimate the first term in the above inequality. Similarly to the discussions in part
(a), we have
af? a1 af?

fo¢ TK(f2+—++—+—|—a

> S +) = F2+ B3+ F,

where

F2:f20¢—f2(x+,y+,u+,v+),
- of° af? af°
FS = f(ap,yp,us,vq) — F2(24,0,0,0) — g; y+_8—{tu+_8—{;v+’

. 9f2 9f2 af2
2 2
F3 —(1d—TK)<? (iEJr,O,O,O)-i— iy ++ T ++ v )

If ¢ < m, 75153 25—((N?+n+7+1) <1, (CSO)(K 1)(3—2k—C(N24n+7+1)) <1 and k< 3 ’

we have the following result from Lemma 2.7 and Cauchy’s estimates
62—<(N2+T+’n,)5 EQ—C(N2+T+n)82

yr—ry) T (s —sg)

1F2lD, ... o, ooy < max { Jsien,
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By the mean value theorem and Cauchy’s estimates, we get

2 ES 2
[E5 D, o) <, ()= rh (as)? = sy

Since ¢ < X and k < %, the following holds by Lemma 2.2
(o]
1S 1D, ., o, (acpy Ses Y e MO <es / e ") Ay < e%s < sy
k|>K K

Hence
K - — 217r4n
If211= s+ e TSN FR (121 + (2D

on Dy, 5. x Wh, (Ky).
Similarly, one can obtain
R - — 217r4n
1£3 1D, o, 5w, (<" + 77 TSNHTEO R L+ 1FED,
[ - — 217r4n
1F4 1D, o, 5w, (<€ + 77 TSNHTEO( R L+ LD

If y~ 1l ¢V Hrintl) 1 (cso)(“_1)(1_<(N2+"+T+1)) <1, and k < 3, then

TSy

1 . 1
;(llﬁll +NN+ I fED=e™ < 3E+

Now we estimate fi Since
A=+ D)7 (f2, —f2.,) 00y,
we only need to estimate (D® )~ !( §+ — §++) ody. 1
It d¢ > 2, 2(2(N +n))H1E|| fillcacs®™ " < s0 (i = 2,3,4) and €9 1§ < (1) 77, similarly
to (2.37) we get

—1( 4i i = pi 1
1(DB ) (fh, = fi,) 0 @l < 2N +0)E | o o < Sersi

o+ T4+
To summarize this section, we have the following proposition.

Proposition 2.1 There is a large constant ¢ > 0 such that if

’7_1€N+H_/\(N2+T+1) <c
N RN max{K, M + 1} < ¢,

2 .
KN *7e < ¢ tmin{y — v4, |det(ai)i<ij<pl}s

2—k 3-2 1 .
+H’fn+1, N2+T+';+1, N2+1}, then there exist a G-

commute transformation ¢ and a mapping V¥ : wy — w, such that under this ¢, the system

where € is small enough and ( < min{N2

(2.16) is changed into (2.14). Moreover, the following conclusions hold:
W +[ETT,
(1) [(Fy wi) > v K|
| det(i(k, w)En — Ap)| > v4 k[T,
|det(i(k,wi)Enz — En @ AL + AT @ En)| > 74|k 77,

| det(a;;)1<ij<p| > 0,



Lower Dimensional Invariant Tori in C* Reversible Systems 481
on an open set Wi (K) of R™ for |k| < K;

(2) wi(w), ajj (w), cj; (w) and djj (w) are real analytic in w and satisfy, for || < N2,

M wy — w) 1
dlat | 0 0t 0'df 1
. i i Ul < M+ ceNt = M

At 1" 19wt 17 1 owt I | dwt | — te +

on the complex h-neighborhood of ©, and
!+ I+ I+ !+
O ai; , b, , 8cij‘, d; <M+cgzv21+1 = M,,
ol 1" Towl " Towl 17 Tow! 1~

on the complex h-neighborhood of ©;

(3) The new perturbation terms fi (1 <1< 4) satisfy

_ 1~ _
||f—|1—||'D7~+,3+><Wh+(K+)7 ;||fi”D7.+,s+xwh+(K+)SCSK:€+a 2<5<4

3 Proof of Theorem 1.1
Without loss of generality, we assume that » < 1, s < 1. For any v > 0, we define
Dl/ = Dr,,,s,,a Wl/ = Wh,, (Ku)

Step 1 The choice of ¢
In order to apply Proposition 2.1 for any v > 0, we choose ¢( sufficiently small and sg such
that

2 2
1—C(N?4+74n+3) _—1 1 N@’H*C(N +7+n+2) g 1
€ L ——, € L s
AN 47+ —2r—C(N?
€év2+1 ( T n)%_lMO <1, Eg 2k—C(N +T+n+1)70—1 <1,
£ ! < min{(2(2AN +m)*E (S o) min, so(2(2(N ) E o)),
1 - 1

c£0 < min { (l) <n—1)(mﬂr—1—x(zv2+r+n+1>) ’ (1) (r—1)(2—r—C(NZfntr+1) },

3 2

I\ oA €5

(o) legt < (5)7 @ M <R s <D

We take &y = ¢g = id, fgo =ft i=1,2,3,4.
Step 2 The definition of ©,

Set ©_1 =0, Ag = A and K_1 = 0. From the discussions in Section 2, it follows that for
each v > 0,

[(k,w)[ = [k[7T and

o= N w € O,_1| |det(i(k,w)Ex — Ay)| > 7, |k|~" and
Ky 1<|k|<K, |det(i(k,w)En2 — Enx ® AL + A, @ En)| > 70 |k| ™7
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Now we define -
0,=[)6.
v=0
Step 3 The measure of ©
By the definition of ©,, we have
[ee]
0 -0, [JR (),
v=0
where
R (w) = Ri () URS () UR5 (W)
with
Riw) =[]  Aw€Our| (kW) <vwlkl77},
K, 1<|k|<K,
Ri(m)= () {we€Ou-1]|ldet(i(k,w)Ex — A)| < 7 [k,
KV71<|k|SKU
RY(7,) = (1 {we®, 1]|det(i(k,w)Ey2 — Exy ® AL + A, @ Ex)| < 7, [k| 77}

K, 1<|k|<K,

Before we estimate the measure of the set R”(7,), we need the following lemma.

Lemma 3.1 Let g(t) = g1(t) + ig2(t) : I € R — C be of class C™, Vm € N. Define
Ig={teI||g(t)| < B} with B> 0. If there is a constant d > 0 such that one of the following

conditions holds:
(1) g™ @) >d>0, vtel,
2) lgs™ W >d>0, Vtel,
then
meas Ig < 606%,
where cog =2(2+ 3+ - +m+d ).
The proof of this lemma can be found in [8, 17].

For each k satisfying K, 1 < |k| < K, let

Riai(w) ={w € Oy | [(k,w)| < [k[77},
Riz(w) = {w € O,y | [det(i(k, w)Ex — A)| <[k},

Voly) = {w € 0,1 | |det(i(k,w)En2 —Exy @ AT + A, @ En)| < 70|k}

Now we estimate the measure of the set R};(7,). Let

g(w) = det(i(k,w)En2 — Ex @ AL + A, @ En).
We get
gw) =" (k)Y + Y piw) kW),

ISN2-1
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where the coefficients p;(w) depend on A,, but not on k. Suppose that the real and imaginary
part of g are g; and g, respectively, that is,

9(w) = g1(w) +ig2(w).

If N =0 (mod2), then

g1 = kwN—i— ZRep )
I<N2-1

By (2.36), the choice of £, and Proposition 2.1, it follows that

O wy (w) — w) ’ 1 ’8l

Ow! =3

5 ‘<M <M+¢,

Ow!

k—lg N2+1
0

where ¢ = 2¢ . Without loss of generality, we assume that

k| = max k.

Then %
|]€1| Z v—1

if |k| Z Ku—l-
Hence we have

[t

(@) = (V)Y (1= Ok Y) 2 1,
Owy

if K,_1 > K, with a sufficiently large positive integer K,.. By Lemma 3.1 we have

v

meas Ri5(7v) < éo ( Ik

)m < Gy KR,

where ¢g = N(N + 1) - (diameter of ©)"~!. Similarly, one can get the same estimate when
N = 1(mod?2). The estimates for the other two sets RY;(7,) and RYy(7,) are analogous.

Therefore we have

meas([jR”) ZmeaSR () <3C()’}/NQZ Z k|~ %2

v=1 v= 1|k| K, 1

<3577 Y |KTW = 0(yF7)
|k|> K.

because 7 > N2n.
On the other hand, if ¢ is very small, then Ky > K. By the condition (3) in Theorem 1.1,
it follows that for any fixed Ky,

measR’(y) — 0, as vy — 0.

Hence

meas (0 —0,) — 0, asy—0.

Step 4 The convergences of ®,, D®, and ¥,
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For any v > 0, by the discussions in Section 2, we can find a sequence of G-commute

transformations ¢g, ¢1,- -, ¢,. Let
(I)V:¢OO¢1O"'O¢V,1:DXW—>D0.

Then under ®,, the system (2.4) is changed into (2.2).

By the choice of ¢y and the definition of ¢,, we can conclude that ¢, — 0 as v — oco. If

2
7;153154(N Frnt2) o m, Vv,0€ N, v > p, we can prove the convergence of ®,:
v—1
120 = Dol ow, <D 1 @551 — @5)llp, ow,
Jj=e

v—1
<Y ID;(¢; — id) D, xw,
j=e

v—1
< (N +n) Y [IDD;]l¢; — id]p, xw,
j=e
, 17C(N2+n+‘r) 1 17C(N2+n+‘r)
< 2(N +n) Zmax{vj_lej Vg sj}
Jj=e
v—1 )
< 2(N +n) 2%—16}%(1\7 +rn)
Jj=e
2 EC
< AN + )y ey I < 20, g — oo, (3.1)

Then ¢, is a Cauchy sequence, and has a continuous function ¢, as its limit.

Now we prove that D®,, is a Cauchy sequence.

v—1
ID®, — Dy|Ip,xw, < Y (D11 — DP;)|p, xm,

Jj=e

v—1

<Y (D®;D¢; — D®;)|Ip, xw,
Jj=e
v—1

< (N +n) > |D2;[[1Dd; — Eantpig)llp,xow,
Jj=e
v—1

2 2
< 2(N +n) Zmax{’y;lsjlfcw +n+7+1), 7{15;74(]\7 +n+T+1)sj}

Jj=e
v—1
- 2 TN
<2(N+n)27;15; C(NZ+7+n+1)
Jj=e
N2 E<
< 4(N+n)70_15§,_<( +ntT+l) < ZE’ — 0, o0— +oo. (3.2)

Therefore D®, is a Cauchy sequence, and hence D®, converges to D®.,. Especially when

0 = 0, the inequality (3.2) becomes

~

&
| D®, — E2n+p+q||Du><Wu < ZO-
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Let v tend to infinity. We get

€

[D®o — E2ntpgllDacx0, < 1
Similarly, from (3.1) we get

[~ o, < 5.
Hence if gq is small enough, ®,, must be a diffeomorphism. By the same method we can prove

the convergence of ¥,. The convergences of ®, and D®, yield that

' = Poo 0 i,
on T™ x {0} x {0} x {0} x ©,, where ¢" is the flow of system (1.5) and ¢! the flow of the
system
T = Woo)
=D (Woo)uy
. (3.3)
U = Coo (Woo)Y + Ao (Weo )V,

0 = Boo(Weo ).

Hence, for each w € ©,, the embedding torus @ (T" x {0} x {0} x {0} X {w}) is invariant

under . Moreover, on this torus, we have
T =20+ Weol,
where w = U, (wso ). This completes the proof.
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