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1 Introduction

We consider the following reversible system with respect to the involution G : (x, y, u, v) 7→
(−x, y,−u, v)

ẋ = Λ1(y, u, v) + R1(x, y, u, v),

ẏ = Λ2(y, u, v) + R2(x, y, u, v),

u̇ = L1(y, u, v) +R3(x, y, u, v),

v̇ = L2(y, u, v) +R4(x, y, u, v),

(1.1)

where Λ1, Λ2, L1, L2, R
l (1 ≤ l ≤ 4) are functions of class Cd defined on a neighborhood of

Tn ×D×{0}× {0} with an open set D ⊂ Rn and Rl’s are small perturbation terms. Let X be

the vector field of (1.1), i.e.

X = (Λ1 +R1)
∂

∂x
+ (Λ2 +R2)

∂

∂y
+ (L1 + R3)

∂

∂u
+ (L2 +R4)

∂

∂v
.

The reversibility of the system (1.1) with respect to the involutionG : (x, y, u, v) 7→(−x, y,−u, v)
means that

DG ·X = −X ◦G, DG :=
(∂G
∂x

,
∂G

∂y
,
∂G

∂u
,
∂G

∂v

)
. (1.2)

When the system (1.1) does not have the perturbation terms Rl (1 ≤ l ≤ 4), the system
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(1.1) becomes

ẋ = Λ1(y, u, v),

ẏ = Λ2(y, u, v),

u̇ = L1(y, u, v),

v̇ = L2(y, u, v).

(1.3)

If we further assume

Λ2(y, 0, 0) = 0, L1(y, 0, 0) = 0, L2(y, 0, 0) = 0,

the system (1.3) will have an invariant subspace {u = 0, v = 0}. This subspace is foliated by a

family of invariant tori Tn × {y0} × {0} × {0} and the flow of (1.3) restricted on each torus is

x(t) = x0 + Λ1(y0, 0, 0)t.

We consider the linear approximation of the system (1.3) at the invariant torus Tn ×{y0}×
{0} × {0},

ẋ = ω,

ẏ = Λ2y(y0, 0, 0)(y − y0) + Λ2u(y0, 0, 0)u+ Λ2v(y0, 0, 0)v,

u̇ = L1y(y0, 0, 0)(y − y0) + L1u(y0, 0, 0)u+ L1v(y0, 0, 0)v,

v̇ = L2y(y0, 0, 0)(y − y0) + L2u(y0, 0, 0)u+ L2v(y0, 0, 0)v,

(1.4)

where ω = Λ1(y0, 0, 0). By (1.2), we have

Λ1(y,−u, v) = Λ1(y, u, v),

Λ2(y,−u, v) = −Λ2(y, u, v),

L1(y,−u, v) = L1(y, u, v),

L2(y,−u, v) = −L2(y, u, v),

which in turn implies that

Λ2y(y, 0, 0) ≡ 0, Λ2v(y, 0, 0) ≡ 0,

L1u(y, 0, 0) ≡ 0,

L2y(y, 0, 0) ≡ 0, L2v(y, 0, 0) ≡ 0.

If the matrix Λ1y(y0, 0, 0) is nonsingular, the function φ : y0 7→ Λ1(y0, 0, 0) is a local diffeo-

morphism. Therefore φ−1 exists and is also a function of class Cd defined on an open set

Θ = φ(D) ⊂ Rn. Define

A(ω) = L1v(φ
−1(ω), 0, 0),

B(ω) = L2u(φ−1(ω), 0, 0),

C(ω) = L1y(φ−1(ω), 0, 0),

D(ω) = Λ2u(φ−1(ω), 0, 0)
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and

A(ω) =




0 D(ω) 0
C(ω) 0 A(ω)

0 B(ω) 0


 .

In a small neighborhood of the set {y = y0, u = 0, v = 0}, (1.1) can be viewed as a small

perturbation of (1.4), that is, the system (1.1) can be rewritten as

ẋ = ω + f1(x, y, u, v, ω),

ẏ = D(ω)u+ f2(x, y, u, v, ω),

u̇ = C(ω)y + A(ω)v + f3(x, y, u, v, ω),

v̇ = B(ω)u+ f4(x, y, u, v, ω),

(1.5)

where (x, y, u, v) ∈ T
n × R

n × R
p × R

q, ω is an independent parameter varying over a positive

measure set Θ ⊂ Rn, and the variables (y, u, v) vary on a small neighborhood of the origin of

the space R
n ×R

p ×R
q. Notice that here our variable y is actually y− y0 in the equation (1.4).

The reversibility of the system (1.5) with respect to G : (x, y, u, v) 7→ (−x, y,−u, v) means that

f1 ◦G = f1, f2 ◦G = −f2, f3 ◦G = f3, f4 ◦G = −f4. (1.6)

If we denote Z = (x, y, u, v),

L(Z, ω) =




ω
D(ω)u

C(ω)y +A(ω)v
B(ω)u


 , F(Z, ω) =




f1(Z, ω)
f2(Z, ω)
f3(Z, ω)
f4(Z, ω)


 , (1.7)

the system (1.5) can be written as

Ż = L(Z, ω) + F(Z, ω). (1.8)

In this article, we state our result for (1.5), or equivalently for (1.8), instead of the original

system (1.1).

If the system (1.5) is a Hamiltonian system, the persistence of the lower dimensional tori has

been studied extensively. For instance, if all eigenvalues of ( 0 A
B 0 ) are not purely imaginary and

C = 0, D = 0, Moser [10], Graff [6] and Zehnder [19] proved that, for any ω = (ω1, · · · , ωn) ∈ Θ

satisfying the Diophantine condition

|〈k, ω〉| > γ|k|−τ , τ > n− 1, k ∈ Z
n \ {0},

there is an ω∗ close to ω such that (1.5) at ω∗ has an invariant n-torus with prescribed frequencies

ω if the perturbations f l (1 ≤ l ≤ 4) are sufficiently small; if all the eigenvalues of ( 0 A
B 0 ) are

simple and purely imaginary and C = 0, D = 0, Melnikov [9] in 1967 annouced that for a

positive Lebesgue measure subset Θγ ⊂ Θ, (1.5) possesses a lower dimensional invariant torus.

Eliasson [5], Kuksin [7] and Pöschel [11] gave a complete proof. You [18] proved the persistence

of n-dimensional invariant tori for (1.5) under the condition det ( 0 A
B 0 ) 6= 0. In particular,

his result can be applied to the case that ( 0 A
B 0 ) has multiple eigenvalues. Developing Craig
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and Wayne’s method [4], Bourgain [1] proved the existence of quasi-periodic solutions. Such

approach applies to some PDEs with periodic boundary condition (see [2]). Especially, when

the small perturbations f i (i = 1, 2, 3, 4) are functions of class Cd (d > 6n + 5) and normal

frequencies Ωi are simple, Chierchia and Qian [3] showed the persistence and regularity of the

lower n-dimensional elliptic tori.

On the other hand, when the system (1.5) is reversible with respect to the involution G :

(x, y, u, v) 7→ (−x, y,−u, v), Sevryuk studied the persistence of n-dimensional invariant tori for

{p = 0}, {p = q > 0} and {x ∈ Tn, y ∈ Rm (m 6= n), p = q > 0}, respectively. We refer

to [13–16] and references therein. However, in the last two cases, there are two assumptions

required in his results:

(i) C = 0, D = 0, det ( 0 A
B 0 ) 6= 0, this means ( 0 A

B 0 ) has no eigenvalue being zero;

(ii) Any eigenvalue of ( 0 A
B 0 ) is simple.

Liu proved the persistence of n-dimensional invariant tori in the reversible system under

small perturbations in the case p ≤ q in [8]. He did not require the assumption on the simplicity

of the eigenvalues of ( 0 A
B 0 ).

In this paper, motivated by the above papers, we are mainly concerned with the persistence

of the lower dimensional tori of the reversible system (1.5) under some Cd perturbations f i (i =

1, 2, 3, 4). We show that the lower dimensional tori are persistent under these Cd perturbations.

To give the main result of our paper, we need the following conditions.

(1) There is a constant M > 0, such that for the elements of the matrices A, B, C and D,

aij , bij , cij and dij , the following inequalities hold for all ω ∈ Wh = {ω ∈ Cn : |ω − Θ| < h},

max
|l|≤N2

∣∣∣
∂laij

∂ωl

∣∣∣, max
|l|≤N2

∣∣∣
∂lbij
∂ωl

∣∣∣, max
|l|≤N2

∣∣∣
∂lcij
∂ωl

∣∣∣, max
|l|≤N2

∣∣∣
∂ldij

∂ωl

∣∣∣ ≤M,

where N = n+ p+ q.

(2) The rank of the matrix A is p, which implies that p ≤ q. Without loss of generality, we

assume det(aij)1≤i,j≤p 6= 0 on Wh.

(3) meas(R1 ∪R2 ∪R3) = 0, where

R1 = {ω ∈ Θ | 〈k, ω〉 = 0, k ∈ Z
n \ {0}},

R2 = {ω ∈ Θ | det(i〈k, ω〉EN −A) = 0, k ∈ Z
n \ {0}},

R3 = {ω ∈ Θ | det(i〈k, ω〉EN2 − EN ⊗AT −A⊗ EN ) = 0, k ∈ Z
n \ {0}}.

Here and hereafter, we set i =
√
−1 , Ej is the j×j identity matrix, and ⊗ is the tensor product

of matrices.

(
The tensor product of matrices Amn, Bkl is an mk×nl matrix: A⊗B = (aijB) =

(
a11B ··· a1nB

...
...

am1B ··· amnB

)
.

)

In the following, we always assume 1 < κ < 3
2 , τ > N2n,

λ <
1

(N2 + 1)(N2 + τ + 1)
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and

ζ < min
{
λ,

3 − 2κ

N2 + τ + n+ 1
,

2 − κ

N2 + n+ τ + 1
,

N2

(N2 + 1)(N2 + n+ τ + 2)

}
.

For s > 0, let Tn × Bs := Tn × {|y| < s} × {|u| < s} × {|v| < s} be a neighborhood of

Tn × {y = 0} × {u = 0} × {v = 0}. Now we can state our main result of this paper.

Theorem 1.1 Suppose that the above assumptions (1)–(3) hold for the reversible system

(1.5). And assume that f l are of class Cd and ‖f l‖Cd (l = 1, 2, 3, 4) are bounded in a neigh-

borhood of Tn × {y = 0}× {u = 0} × {v = 0} ×Θ with d > 2
ζ
. Then for any γ > 0 there are a

pair of positive constants ε0 and s0 depending on n, p, q, τ,M, γ, such that if

‖f1‖C0 ,
1

s0
‖f2‖C0,

1

s0
‖f3‖C0 ,

1

s0
‖f4‖C0 <

ε0
2
,

where the norm ‖ · ‖C0 is the maximum norm on the set Tn × Bs0 ×Wh, there exists a differ-

entiable map

Φ : T
n × Θγ → T

n × R
n × R

p × R
q,

with Θγ ⊂ Θ a positive measure set, and a diffeomorphism Ψ : Θγ → R
n such that Φ(Tn×{ω})

is an invariant torus of the system (1.5) with frequencies Ψ(ω) at ω. Moreover,

meas(Θ − Θγ) → 0, as γ → 0.

Remark 1.1 ω satisfies the diophantine condition. See (2.8) in the next section for more

details.

2 The KAM Step

The lemma given in [12] is very important to our paper. For easy reference, we list it as

follows.

Lemma 2.1 (see [12]) Suppose f ∈ Cp(Rk) for some p > 0 with finite Cp norm over

Rk. Let ψ be a radial-symmetric, C∞ function, having as support the closure of the unit ball

centered at the origin, where ψ is completely flat and takes value 1 and let K = ψ̂ be its Fourier

transform. For all σ > 0, define

fσ(x) := Kσ ∗ f(x) = σ−k

∫

Rk

K
(x− y

σ

)
f(y) dy.

Then there exists a constant c̃ ≥ 1 depending only on p and k such that the following holds.

For any σ > 0, the function fσ(x) is a real-analytic function on Ck such that, if ∆k
σ denotes

the k-dimensional complex strip of width σ

∆k
σ := {x ∈ C

k : |Im xj | ≤ σ, ∀ j },

then, for all α ∈ Nk such that |α| ≤ p, one has

sup
x∈∆k

σ

∣∣∣∂αfσ(x) −
∑

|β|≤p−|α|

∂α+βf(Rex)

β!
(i Imx)β

∣∣∣ ≤ c̃ |f |Cp σp−|α|
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and, for all 0 ≤ s ≤ σ,
sup

x∈∆k
σ

|∂αfσ − ∂αfs| ≤ c̃ |f |Cp σp−|α|. (2.1)

Moreover, the Hölder norms of fσ satisfy, for all 0 ≤ q ≤ p ≤ r,

|fσ − f |Cq ≤ c̃ |f |Cp σp−q.

The function fσ preserves periodicity (i.e., if f is T-periodic in any of its variable xj , so is fσ).

Finally, if f depends on some parameter ξ ∈ Π ⊂ Rn and if the Lipschitz semi-norm of f and

its x-derivatives are uniformly bounded by |f |Lip
Cl , then all the above estimates hold with | · |

replaced by | · |Lip.

Remark 2.1 If f is defined on

T
n × Bs1,s2,s3 := T

n × {|y| < s1} × {|u| < s2} × {|v| < s3}, si < 1,

then one can easily construct a Cl-extension fext of fTn×B s1
2

,
s2
2

,
s3
2

to R2(n+m), such that

|fext|Cl(R2(n+m)) ≤ a|f |Cl(Tn×Bs1,s2,s3),

where a is a positive constant depending only on l and si.

For σν → 0 as ν → ∞ (σν > 0), fσν
:= Kσν

∗ f, then fσν

Cq

→ f (q < p) as ν → ∞.

Remark 2.2 If f ◦G = −DG · f, then

fσν
◦G = −DG · fσν

.

In fact, ψ is a radial-symmetric function, and so is K = ψ̂ .

fσν
◦G =

1

σ2n+p+q
ν

∫

R2n+p+q

K
((−x, y,−u, v)− (x̃, ỹ, ũ, ṽ)

σν

)
f(x̃, ỹ, ũ, ṽ) dx̃d ỹ dũ d ṽ

=
1

σ2n+p+q
ν

∫

R2n+p+q

K
((x, y, u, v) − (−x̃, ỹ,−ũ, ṽ)

σν

)
f(x̃, ỹ, ũ, ṽ) dx̃d ỹ dũ d ṽ

(Let x̃1 = −x̃, ũ1 = −ũ.)

=
1

σ2n+p+q
ν

∫

R2n+p+q

K
((x, y, u, v) − (x̃1, ỹ, ũ1, ṽ)

σν

)
f(−x̃1, ỹ,−ũ1, ṽ) dx̃1 d ỹ dũ1d ṽ

= −DG · fσν
.

2.1 Main idea of the proof

According to Lemma 2.1, for a sequence of numbers σν → 0 (ν → ∞), we can find a sequence

of analytic reversible systems

Ż = L(Z, ω) + Fσν
(Z, ω), (2.2)

where Fσν
(Z, ω) = (f1

σν
, f2

σν
, f3

σν
, f4

σν
) is defined on ∆σν

as in Lemma 2.1, and Fσν
→ F as

ν → ∞.

Now we hope to find a mapping Φν

Z = Φν(Zν , ων), (2.3)
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which commutes with G, such that it transforms the system

Żν = Lν(Zν , ων) + Fν(Zν , ων) (2.4)

to the system (2.2), where Fν and Φν are defined on

Drν ,sν
×Whν

= {|Im x| < rν , |y| < sν , |u| < sν , |v| < sν} ×Whν
,

and Fν → 0 as ν → ∞. Since Φν commutes with G and the system (2.2) is reversible from the

remarks of Lemma 2.1, the system (2.4) is also reversible. Taking derivative with respect to t

on both side of (2.3), we get

Ż = DΦν · Żν , (2.5)

where DΦν = ∂Φν

∂Zν
. Combining (2.2), (2.4) and (2.5), we get

L(Z, ω) + Fσν
(Z, ω) = DΦν · (Lν(Zν , ων) + Fν(Zν , ων)). (2.6)

Once we get Φν , we want to find two other mappings φν(Z, ω) and ψν(ω), and therefore we

can find Φν+1 = Φν(φν , ψν). We can keep doing so and get a series of functions Φν . If we can

prove that Φν and DΦν converge as ν → ∞ and Φν commutes with G, then by taking ν → ∞
on both sides of (2.6) we get

L(Z, ω) + F(Z, ω) = DΦ∞ · L∞(Z∞, ω∞), (2.7)

i.e. 


ω + f1(Z, ω)
D(ω)u+ f2(Z, ω)

C(ω)y +A(ω)v + f3(Z, ω)
B(ω)u+ f4(Z, ω)


 = DΦ∞




ω∞

D∞(ω∞)u∞
C∞(ω∞)y∞ +A∞(ω∞)v∞

B∞(ω∞)u∞


 .

So Φ∞(Tn ×{0}× {0}× {0}× {ω∞}) is the invariant torus of the system (1.5). The frequency

of the system (1.5) restricted on the torus Φ∞(Tn × {0}× {0}× {0}× {ω∞}) is ω = Ψ∞(ω∞).

2.2 Construction of the function φν

For any positive integer Kν , we denote by Whν
(Kν) the complex neighborhood of radius hν

of Θγν
(Kν), where

Θγν
(Kν) = {ω ∈ Θ | for any 0 6= |k| ≤ Kν and τ > N2n, ω satisfies (2.8) below},

|〈k, ω〉| > γ|k|−τ , | det(i〈k, ω〉EN −Aν)| > γ|k|−τ ,

| det(i〈k, ω〉EN2 − EN ⊗AT
ν + Aν ⊗ EN )| > γ|k|−τ .

(2.8)

Since Φν+1 = Φν(φν , ψν) and Ψν+1 = Ψν ◦ ψν for some φν : Drν+1,sν+1 ×Whν+1(Kν+1) →
Drν ,sν

and ψν : Whν+1(Kν+1) → Whν
(Kν), we have

DΦν+1 = DΦν ·Dφν .
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Then from (2.6),

L(Z, ω) + Fσυ+1(Z, ω) = DΦν ·Dφν [Lν+1(Zν+1, ων+1) + Fν+1(Zν+1, ων+1)]. (2.9)

If, furthermore, Φν satisfies (Φν(Drν ,sν
×Whν

(Kν)), Ψν(Whν
(Kν))) ⊂ ∆σν

andDΦ−1
ν exists, we

subtract the equation (2.9) from the equation (2.6), apply DΦ−1
ν on both sides of the equation

and get

Dφν · [Lν+1(Zν+1, ων+1) + Fν+1(Zν+1, ων+1)] = Lν(Zν , ων) + F̃ν(Zν , ων), (2.10)

where

F̃ν(Zν , ων) = Fν(Zν , ων) −DΦ−1
ν (Fσν

(Z, ω) −Fσν+1(Z, ω)). (2.11)

Let Φ0 = φ0 = id and F0 = Fσ0 . According to (2.11) and (2.10), we have

F̃0 = Fσ1 .

Suppose that we have finished ν steps, and the transformed system is of the form

Żν = Lν(Zν , ων) + F̃ν(Zν , ων), (2.12)

where the functions F̃ν = (f̃1
ν , f̃

2
ν , f̃

3
ν , f̃

4
ν ) and Lν satisfy

‖f̃1
ν ‖Drν,sν ×Whν

,
1

sν

‖f̃ j
ν‖Drν,sν ×Whν

< εν , 2 ≤ j ≤ 4, (2.13)

max
|ℓ|≤N2

∣∣∣
∂ℓaν

ij

∂ωℓ
ν

∣∣∣, max
|ℓ|≤N2

∣∣∣
∂ℓbνij
∂ωℓ

ν

∣∣∣, max
|ℓ|≤N2

∣∣∣
∂ℓcνij
∂ωℓ

ν

∣∣∣, max
|ℓ|≤N2

∣∣∣
∂ℓdν

ij

∂ωℓ
ν

∣∣∣ ≤Mν,

det(aν
ij)1≤i,j≤p 6= 0.

In what follows, the notations without subscript mean ν-th step, those with subscript “+”

mean (ν+1)-th step, and those with subscript “++” mean (ν+2)-th step. Thus (2.12) becomes

Ż = L(Z, ω) + F̃(Z, ω), (2.14)

where L and F̃ are defined on Dr,s ×Wh.

Since Wh(K) ⊂ Wh, the inequalities (2.13) still hold if we replace Wh by Wh(K). Assume

that the desired change of variables φ defined in a smaller domain Dr+,s+ ×Wh+(K+) has the

form

x = x+ +
∑

|k|≤K

h1
kei〈k,x+〉,

y = y+ +
∑

|k|≤K

(h2
k +H1

ky+ +H2
ku+ +H3

kv+)ei〈k,x+〉,

u = u+ +
∑

|k|≤K

(h3
k + I1

ky+ + I2
ku+ + I3

kv+)ei〈k,x+〉,

v = v+ +
∑

|k|≤K

(h4
k + J1

ky+ + J2
ku+ + J3

kv+)ei〈k,x+〉,

(2.15)
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such that φ transforms the following system to system (2.14)

Ż+ = L+(Z+, ω+) + F+(Z+, ω+), (2.16)

where (x+, y+, u+, v+) ∈ Dr+,s+ and ω+ ∈ Wh+ . Then from (2.11) we can calculate F̃+ and

repeat the same procedure by using L+ and F̃+ as L and F̃ . Moreover, when we solve φ and

ψ, we hope that the derived new perturbation terms F+ and F̃+ are much smaller than F̃ .

Remember that κ is a real number between 1 and 3
2 , ζ is a positive real number and c is a

large positive number. Fixing ε0, γ0, s0 and M0 = M , we can define the following numbers by

iteration,

εν+1 = cκ−1εκ
ν , rν = εζ

ν , σν = 2(N + n)rν , hν = ε
1

N2+1
ν ,

αν = εκ−1
ν , sν+1 =

1

2
ανsν , Kν = [ε−λ

ν ],

Mν+1 = Mν + c(κ−1)ε
1

N2+1
ν , γν = γ0

(1

2
+
(1

2

)ν+1)
,

where [x] equals the integer part of x.

Lemma 2.2 If (cε0)
ζ(κ−1) < 1

2 , s0 <
ε

ζ
0

2 , κ > 1 and 1 > ζ > 0, for any ν ∈ N, we have

rν <
rν−1

2 , sν <
sν−1

2 and sν < rν .

Proof We only prove the first result. The other two results can be proved in a similar

method. From definition, we have

r1 = εζ
1 = (cκ−1εκ

0 )ζ <
εζ
0

2
=
r0
2
.

If we have rν <
rν−1

2 , again by definition,

rν+1 = εζ
ν+1 = (cκ−1εκ

ν )ζ = (cεν)ζ(κ−1)εζ
ν ≤ (cε0)

ζ(κ−1)εζ
ν ≤ εζ

ν

2
=
rν
2
.

Lemma 2.3 If ζ < λ, we have
∫ ∞

K

xne−(r−r+)x dx < c0ε

for some constant c0.

Proof Directly calculating the integral, we get
∫ ∞

K

xne−(r−r+)x dx =
1

r − r+
Kne−(r−r+)K +

n

(r − r+)2
Kn−1e−(r−r+)K

+ · · · + n!

(r − r+)n+1
e−

rK
2 .

From Lemma 2.2, we know r − r+ > r
2 . Hence

∫ ∞

K

xne−(r−r+)x dx ≤ (n+ 1)! max
0≤j≤n

{2j+1Kn−j

rj+1
e−(r−r+)K

}

≤ (n+ 1)! max
0≤j≤n

2j+1
{
ε−λ(n−j)−ζ(j+1)e−

εζ−λ

2

}

≤ c0ε,
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where c0 is a constant independent of ν and the last inequality comes from the definitions of

K and r.

2.3 Homological equations

From (2.10), (2.14), (2.15) and (2.16), we have

ω + f̃1 ◦ φ = ω+ + f1
+ + F1

+,

Du+ f̃2 ◦ φ = D+u+ + f2
+ + F2

+,

Cy + Av + f̃3 ◦ φ = C+y+ + A+v+ + f3
+ + F3

+,

Bu+ f̃4 ◦ φ = B+u+ + f4
+ + F4

+,

(2.17)

where

F1
+ =

∑

|k|≤K

i〈k, ω+ + f1
+〉ei〈k,x+〉h1

k,

F2
+ =

∑

|k|≤K

i〈k, ω+ + f1
+〉(h2

k +H1
ky+ +H2

ku+ +H3
kv+)ei〈k,x+〉

+
∑

|k|≤K

H1
k(D+u+ + f2

+)ei〈k,x+〉 +
∑

|k|≤K

H2
k(C+y+ + A+v+ + f3

+)ei〈k,x+〉

+
∑

|k|≤K

H3
k(B+u+ + f4

+)ei〈k,x+〉,

F3
+ =

∑

|k|≤K

i〈k, ω+ + f1
+〉(h3

k + I1
ky+ + I2

ku+ + I3
kv+)ei〈k,x+〉

+
∑

|k|≤K

I1
k(D+u+ + f2

+)ei〈k,x+〉 +
∑

|k|≤K

I2
k(C+y+ + A+v+ + f3

+)ei〈k,x+〉

+
∑

|k|≤K

I3
k(B+u+ + f4

+)ei〈k,x+〉,

F4
+ =

∑

|k|≤K

i〈k, ω+ + f1
+〉(h4

k + J1
ky+ + J2

ku+ + J3
kv+)ei〈k,x+〉

+
∑

|k|≤K

J1
k (D+u+ + f2

+)ei〈k,x+〉 +
∑

|k|≤K

J2
k (C+y+ + A+v+ + f3

+)ei〈k,x+〉

+
∑

|k|≤K

J3
k (B+u+ + f4

+)ei〈k,x+〉.

Omitting all terms of order O(ε2), we get

i〈k, ω〉h1
k = f̃1

k , 0 < |k| ≤ K,

i〈k, ω〉h2
k = Dh3

k + f̃2
k , |k| ≤ K,

i〈k, ω〉h3
k = Ch2

k + Ah4
k + f̃3

k , 0 < |k| ≤ K,

i〈k, ω〉h4
k = Bh3

k + f̃4
k , |k| ≤ K,

Ch2
0 + Ah4

0 + f̃
3

0 = 0

(2.18)
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and

i〈k, ω〉H1
k +H2

kC = DI1
k +

(∂f̃2

∂y

)

k
, |k| ≤ K,

i〈k, ω〉H2
k +H1

kD +H3
kB = DI2

k +
(∂f̃2

∂u

)

k
, 0 < |k| ≤ K,

i〈k, ω〉H3
k +H2

kA = DI3
k +

(∂f̃2

∂v

)

k
, |k| ≤ K,

i〈k, ω〉I1
k + I2

kC = CH1
k + AJ1

k +
(∂f̃3

∂y

)

k
, 0 < |k| ≤ K,

i〈k, ω〉I2
k + I1

kD + I3
kB = CH2

k + AJ2
k +

(∂f̃3

∂u

)

k
, |k| ≤ K,

i〈k, ω〉I3
k + I2

kA = CH3
k + AJ3

k +
(∂f̃3

∂v

)

k
, 0 < |k| ≤ K,

i〈k, ω〉J1
k + J2

kC = BJ1
k +

(∂f̃4

∂y

)

k
, |k| ≤ K,

i〈k, ω〉J2
k + J1

kD + J3
kB = BJ2

k +
(∂f̃4

∂u

)

k
, 0 < |k| ≤ K,

i〈k, ω〉J3
k + J2

kA = BJ3
k +

(∂f̃4

∂v

)

k
, |k| ≤ K,

(2.19)

where

f̃ l
k =

1

(2π)n

∫

Tn

f̃ l(x, 0, 0, 0, ω)e−i〈k,x〉 dx,

(∂f̃ j

∂y

)

k
=

1

(2π)n

∫

Tn

∂f̃ j

∂y
(x, 0, 0, 0, ω)e−i〈k,x〉 dx,

(∂f̃ j

∂u

)

k
=

1

(2π)n

∫

Tn

∂f̃ j

∂u
(x, 0, 0, 0, ω)e−i〈k,x〉 dx,

(∂f̃ j

∂v

)

k
=

1

(2π)n

∫

Tn

∂f̃ j

∂v
(x, 0, 0, 0, ω)e−i〈k,x〉 dx

for 1 ≤ l ≤ 4 and 2 ≤ j ≤ 4. The equations (2.18) and (2.19) are usually called homological

equations. From (1.6) we have

f̃1(−x, y,−u, v) = f̃1(x, y, u, v), f̃2(−x, y,−u, v) = −f̃2(x, y, u, v),

f̃3(−x, y,−u, v) = f̃3(x, y, u, v), f̃4(−x, y,−u, v) = −f̃4(x, y, u, v),
(2.20)

which implies that

f̃1
−k = f̃1

k , f̃2
−k = −f̃2

k , f̃3
−k = f̃3

k , f̃4
−k = −f̃4

k (2.21)

and
(∂f̃2

∂y

)

−k
= −

(∂f̃2

∂y

)

k
,
(∂f̃2

∂u

)

−k
=
(∂f̃2

∂u

)

k
,
(∂f̃2

∂v

)

−k
= −

(∂f̃2

∂v

)

k
,

(∂f̃3

∂y

)

−k
=
(∂f̃3

∂y

)

k
,
(∂f̃3

∂u

)

−k
= −

(∂f̃3

∂u

)

k
,
(∂f̃3

∂v

)

−k
=
(∂f̃3

∂v

)

k
, (2.22)

(∂f̃4

∂y

)

−k
= −

(∂f̃4

∂y

)

k
,
(∂f̃4

∂u

)

−k
=
(∂f̃4

∂u

)

k
,
(∂f̃4

∂v

)

−k
= −

(∂f̃4

∂v

)

k
.



470 J. Zhang

Therefore one has

f̃2
0 = 0, f̃4

0 = 0,
(∂f̃2

∂y

)

0
= 0,

(∂f̃2

∂v

)

0
= 0,

(∂f̃3

∂u

)

0
= 0,

(∂f̃4

∂y

)

0
= 0,

(∂f̃4

∂v

)

0
= 0.

(2.23)

Let

ω+ = ω + f̃1
0 , A+ = A +

(∂f̃3

∂v

)

0
, B+ = B +

(∂f̃4

∂u

)

0
,

C+ = C +
(∂f̃3

∂y

)

0
, D+ = D +

(∂f̃2

∂u

)

0
.

(2.24)

Now we solve the homological equations (2.18) and (2.19).

For k = 0, we choose

h1
0 = 0, h2

0 = 0, h3
0 = 0,

H1
0 = 0, H2

0 = 0, H3
0 = 0,

I1
0 = 0, I2

0 = 0, I3
0 = 0,

J1
0 = 0, J2

0 = 0, J3
0 = 0.

From condition (2), we know that Ã = (aij)1≤i,j≤p has an inverse matrix Ã−1. We can define

h4
0 = col.

(
− [(Ã)−1f̃3

0 ]T , 0, · · · , 0︸ ︷︷ ︸
q−p

)
.

If ω /∈ R1 ∪R2 ∪R3, we have

h1
k = i〈k, ω〉−1

f̃1
k ,



h2

k

h3
k

h4
k


 = (i〈k, ω〉EN −A)−1



f̃2

k

f̃3
k

f̃4
k


 (2.25)

and

(i〈k, ω〉EN −A)Z̃ + Z̃A = F , (2.26)

where

Z̃ =



H1

k H2
k H3

k

I1
k I2

k I3
k

J1
k J2

k J3
k


 , F =




(
∂ ef2

∂y

)
k

(
∂ ef2

∂u

)
k

(
∂ ef2

∂v

)
k

(
∂ ef3

∂y

)
k

(
∂ ef3

∂u

)
k

(
∂ ef3

∂v

)
k

(
∂ ef4

∂y

)
k

(
∂ ef4

∂u

)
k

(∂ ef4

∂v

)
k


 . (2.27)

2.4 The Commutability of the function φ with the involution G

In this subsection, we prove that φ commutes with the involution G. Such a property

guarantees that the transformed system (2.16) is also reversible with respect to the involution

G : (x+, y+, u+, v+) 7→ (−x+, y+,−u+, v+). We know that φ ◦G = G ◦ φ holds if and only if

h1
−k = −h1

k, h2
−k = h2

k, h3
−k = −h3

k, h4
−k = h4

k (2.28)
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and


H1

k H2
k H3

k

I1
k I2

k I3
k

J1
k J2

k J3
k


 =



H1

−k −H2
−k H3

−k

−I1
−k I2

−k −I3
−k

J1
−k −J2

−k J3
−k


 . (2.29)

By (2.21) and (2.18), we obtain

i〈−k, ω〉h1
−k = f̃1

−k = f̃1
k ,

i〈−k, ω〉h2
−k = Dh3

−k + f̃2
−k = Dh3

−k − f̃2
k ,

i〈−k, ω〉h3
−k = Ch2

−k +Ah4
−k + f̃3

−k = Ch2
−k +Ah4

−k + f̃3
k ,

i〈−k, ω〉h4
−k = Bh3

−k + f̃4
−k = Bh3

−k − f̃4
k .

The last three equalities imply that

(i〈k, ω〉EN −A)



h2
−k

−h3
−k

h4
−k


 =



f̃2

k

f̃3
k

f̃4
k


 .

Hence if ω /∈ R1 ∪R2, (i〈k, ω〉EN −A)−1 exits and (2.28) holds.

Similarly, from (2.22) and the homological equation (2.19), it follows that

(i〈k, ω〉EN −A)Z + ZA = F ,

where

Z =



H1

−k −H2
−k H3

−k

−I1
−k I2

−k −I3
−k

J1
−k −J2

−k J3
−k


 .

If the matrix equation (2.26) has a unique solution, then Z = Z̃, which is equivalent to the

equation (2.29).

The following lemma gives the uniqueness of the solution to the matrix equation (2.26).

Lemma 2.4 The matrix equation (2.26) has a unique solution Z if and only if the matrix

EN ⊗ (i〈k, ω〉EN −A)T + A⊗ EN is nonsingular. Moreover, in this case one has

‖Z‖ ≤ ‖(EN ⊗ (i〈k, ω〉EN −A)T + A⊗ EN )−1‖ · ‖F‖,

where ‖ · ‖ is an operator-norm of matrices.

The proof of this lemma can be found in [18]. Therefore, if ω /∈ R1 ∪ R2 ∪ R3, we have

φ ◦G = G ◦ φ and Φ ◦G = G ◦ Φ.

2.5 Estimates φ and φ−1 and their derivatives

We will show that φ is well-defined and close to the identity on the set Dr+,s+ ×Wh+(K+).

In the sequel, ‘≺’ and ‘≪’ respectively stand for ‘< c’ and ‘< c−1’ with a large positive

constant c independent of iteration steps. An N ×M matrix C = (cij) can be viewed as a

linear operator from RM to RN . We denote ‖C‖ = max
i,j

|cij |.
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In order to obtain the estimates of the solutions to the homological equations (2.18) and

(2.19), we need the following two lemmas. The proofs of these two lemmas can be found in [18].

Lemma 2.5 If ω ∈ Θγ(K), then for any k with 0 < |k| ≤ K, one has

‖(i〈k, ω〉EN −A(ω))−1‖, ‖(i〈k, ω〉EN2 − EN ⊗AT (ω) + A(ω) ⊗ EN )−1‖≺ γ−1|k|N2+τ .

Lemma 2.6 Let Wh(K) be an open complex neighborhood of radius h of Θγ(K) with respect

to the sup-norm in Cn. Then for any ω ∈ Wh(K) we have

|(i〈k, ω〉)−1|, ‖(i〈k, ω〉EN −A(ω))−1‖,
‖(i〈k, ω〉EN2 − EN ⊗AT (ω) + A(ω) ⊗ EN )−1‖≺ γ−1|k|N2+τ ,

(2.30)

for 0 < |k| ≤ K provided that

hKN2+τ max{K,M + 1} ≪ γ.

Remark 2.3 If

λ <
1

(N2 + 1)(N2 + τ + 1)
, ε

1
N2+1

−λ(N2+τ+1)

0 ≪ γ0

M0

and

(cε0)
(κ−1)( 1

N2+1
−λ(N2+τ+1))

<
1

3
,

we have hKN2+τ max{K,M + 1} ≪ γ.

Now we estimate the solutions to the equations (2.18) and (2.19). Since f̃ l are analytic and

‖f̃ l‖C0 are small, we have

∥∥∥
∂f̃ j

∂y
(x+, 0, 0, 0)

∥∥∥ ≤ ε,
∥∥∥
∂f̃ j

∂u
(x+, 0, 0, 0)

∥∥∥ ≤ ε,
∥∥∥
∂f̃ j

∂v
(x+, 0, 0, 0)

∥∥∥ ≤ ε, 2 ≤ j ≤ 4

from Cauchy’s estimate. Hence we have

|f̃1
k | ≤ εe−|k|r, |f̃ j

k | ≤ εse−|k|r, 2 ≤ j ≤ 4

and ∣∣∣
(∂f̃ j

∂y

)

k

∣∣∣ ≤ εe−|k|r,
∣∣∣
(∂f̃ j

∂u

)

k

∣∣∣ ≤ εe−|k|r,
∣∣∣
(∂f̃ j

∂v

)

k

∣∣∣ ≤ εe−|k|r, 2 ≤ j ≤ 4

for (x, y, u, v, ω) ∈ Dr,s. By (2.25), (2.27) and (2.30), we obtain, for ω ∈ Wh(K) and 0 < |k| ≤
K,

|h1
k| < |i〈k, ω〉|−1 · |f̃1

k |, |hj
k| < ‖(i〈k, ω〉EN −A)−1‖ · |f̃ j

k |, 2 ≤ j ≤ 4,

‖Hj
k‖ < ‖(i〈k, ω〉EN2 −A⊗ EN + EN ⊗A)−1‖ ·

∣∣∣
(∂f̃ j+1

∂y

)

k

∣∣∣, 1 ≤ j ≤ 3,

‖Ij
k‖ < ‖(i〈k, ω〉EN2 −A⊗ EN + EN ⊗A)−1‖ ·

∣∣∣
(∂f̃ j+1

∂u

)

k

∣∣∣, 1 ≤ j ≤ 3,

‖Jj
k‖ < ‖(i〈k, ω〉EN2 −A⊗ EN + EN ⊗A)−1‖ ·

∣∣∣
(∂f̃ j+1

∂v

)

k

∣∣∣, 1 ≤ j ≤ 3.

(2.31)
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For k = 0, we have

|h1
0| = |h2

0| = |h3
0| = 0,

|h4
0|≺εs,

‖Hj
0‖ = ‖Ij

0‖ = ‖Jj
0‖ = 0, 1 ≤ j ≤ 3.

(2.32)

Denote Dj = Dr++ 1
2 jρ, 1

4 (j+1)s, 0 ≤ j ≤ 3, where ρ = r−r+

2 > 0. Then by (2.31) and (2.32), we

have

∥∥∥
∑

|k|≤K

h4
kei〈k,x+〉

∥∥∥
D2×Wh(K)

< |h4
0| +

∑

0<|k|≤K

‖(i〈k, ω〉EN −A)−1‖ · ‖f̃4‖ · e|k|
(r+−r)

2 ,

∥∥∥
∑

|k|≤K

hj
kei〈k,x+〉

∥∥∥
D2×Wh(K)

<
∑

0<|k|≤K

‖(i〈k, ω〉EN −A)−1‖ · ‖f̃ j‖ · e|k|
(r+−r)

2 , j 6= 4,

‖(EN −A)−1‖ ≺ γ−1|k|N2+τ , ∀ 0 < |k| < K.

(2.33)

By (2.33) and Lemma 2.6, we get

∥∥∥
∑

|k|≤K

h1
kei〈k,x+〉

∥∥∥
D2×Wh(K)

≺ ε

K∑

j=1

γ−1|j|N2+τ |j|n−1(e|j|
(r+−r)

2 ) ≺ γ−1ε1−ζ(N2+τ+n),

∥∥∥
∑

|k|≤K

hj
kei〈k,x+〉

∥∥∥
D2×Wh(K)

≺ εs

K∑

j=1

γ−1|j|N2+τ |j|n−1(e−|j|
(r+−r)

2 ) ≺ γ−1sε1−ζ(N2+τ+n).

Similarly, one can get

∥∥∥
∑

|k|≤K

(H1
ky+ +H2

ku+ +H3
kv+)ei〈k,x+〉

∥∥∥
D2×Wh(K)

≺ γ−1sε1−ζ(N2+τ+n),

∥∥∥
∑

|k|≤K

(I1
ky+ + I2

ku+ + I3
kv+)ei〈k,x+〉

∥∥∥
D2×Wh(K)

≺ γ−1sε1−ζ(N2+τ+n),

∥∥∥
∑

|k|≤K

(J1
ky+ + J2

ku+ + J3
kv+)ei〈k,x+〉

∥∥∥
D2×Wh(K)

≺ γ−1sε1−ζ(N2+τ+n).

In conclusion, we get the following results.

Lemma 2.7 Denote Ξ = Diag(En, s
−1En, s

−1Ep, s
−1Eq). Then we have

‖Ξ(φ− id)‖D2×Wh(K)≺ γ−1ε1−ζ(N2+τ+n),

‖Ξ(Dφ− En+N )Ξ−1‖D2×Wh(K)≺ γ−1ε1−ζ(N2+τ+n+1).

Moreover, if γ−1ε1−ζ(N2+τ+n) < min{ 1
2ρ,

1
4} (This can be satisfied when ε0 is small enough and

ζ < 1
N2+τ+n+1 ), then

φ(D2 ×Wh(K)) ⊂ D3.
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By (2.24) we know that

ω+ = ω +
1

(2π)n

∫

Tn

f̃1(x, 0, 0, 0) dx,

A+ = A +
1

(2π)n

∫

Tn

∂f̃3

∂v
(x, 0, 0, 0) dx,

B+ = B +
1

(2π)n

∫

Tn

∂f̃4

∂u
(x, 0, 0, 0) dx,

C+ = C +
1

(2π)n

∫

Tn

∂f̃3

∂y
(x, 0, 0, 0) dx,

D+ = D +
1

(2π)n

∫

Tn

∂f̃2

∂u
(x, 0, 0, 0) dx.

Therefore

|ω+ − ω|, |a+
ij − aij |, |b+ij − bij |, |c+ij − cij |, |d+

ij − dij | ≤ ε.

From Cauchy’s estimates it follows that for ω ∈ Wh
4

and |l| ≤ N2,

h|l|
∣∣∣
∂l(ω+ − ω)

∂ωl

∣∣∣≺ ε,

h|l|
∣∣∣
∂l(a+

ij − aij)

∂ωl

∣∣∣, h|l|
∣∣∣
∂l(b+ij − bij)

∂ωl

∣∣∣≺ ε

h|l|
∣∣∣
∂l(c+ij − cij)

∂ωl

∣∣∣, h|l|
∣∣∣
∂l(d+

ij − dij)

∂ωl

∣∣∣≺ ε.

From these inequalities and (2.36) below, it follows that

∣∣∣
∂l(ω+ − ω)

∂ωl
+

∣∣∣≺ εh−|l|,

∣∣∣
∂la+

ij

∂ωl
+

−M
∣∣∣,
∣∣∣
∂lb+ij
∂ωl

+

−M
∣∣∣≺ εh−|l|,

∣∣∣
∂lc+ij
∂ωl

+

−M
∣∣∣,
∣∣∣
∂ld+

ij

∂ωl
+

−m
∣∣∣≺ εh−|l|.

Let Ã+ = (a+
ij)1≤i,j≤p and

A+ =




0 D+ 0

C+ 0 A+

0 B+ 0



 .

Then

| det Ã+| ≥ | det Ã| − p!(M + ε)p−1 · 2pε >
1

2
| det Ã| > 0

provided ε < 1
2 (p!2p(M + 1)p)−1| det Ã|.

Define CΘ = sup
ω∈Θ

|ω| + 1. If KN+τε < (γ − γ+)(N !(2CΘ(M + 1))N )−1, for 0 < |k| ≤ K the

following holds

| det(i〈k, ω+〉EN −A+)|> | det(i〈k, ω〉EN −A)| −N !2N(|k| + 1)(|k|CΘ(M + 1))N−1ε>γ+|k|−τ .
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Similarly, if

KN2+τε < (γ − γ+)(N2!(2CΘ(M + 1))N2

)−1,

then

| det(i〈k, ω+〉EN2 − EN ⊗AT
+ + A+ ⊗ EN )| > γ+|k|−τ

and

|〈k, ω+〉| > γ+|k|−τ

for 0 < |k| ≤ K. Therefore we have proved the following lemma.

Lemma 2.8 Suppose

KN2+τε < (N2!(2CΘ(M + 1))N2

)−1 min{(γ − γ+), | det Ã|}.

Then for 0 < |k| ≤ K,

det Ã+ 6= 0,

|〈k, ω+〉| > γ+|k|−τ ,

| det(i〈k, ω+〉EN −A+)| > γ+|k|−τ ,

| det(i〈k, ω+〉EN2 − EN ⊗AT
+ + A+ ⊗ EN )| > γ+|k|−τ .

Remark 2.4 If

ε
1−λ(N2+τ)
0 ≪ γ0

4
, λ <

1

N2 + τ
,

(cε0)
(κ−1)(1−λ(N2+τ)) <

1

2
,

then for any ν ∈ N, we have

KN2+τε < (N2!(2CΘ(M + 1))N2

)−1 min{(γ − γ+), | det Ã|}.

Since f l (1 ≤ l ≤ 4) in (1.5) are defined in the domain Dr,s ×Wh(K), we have to show that

when ε is sufficiently small,

φ : Dr+,s+ ×Wh+(K+) → Dr,s, (x+, y+, u+, v+) 7→ (x, y, u, v), (2.34)

ψ : Wh+(K+) → Wh(K+), ω+ 7→ ω, (2.35)

where the mappings φ and ψ are defined by (2.15) and the first equality in (2.24) respectively.

Lemma 2.7 leads to (2.34), and (2.35) is a direct consequence of the following lemma.

Lemma 2.9 Suppose that f is a real analytic mapping from Wh(K) into Cn. If

|f − id|Wh(K) ≤ δ <
h

4
,

then f has a real analytic inverse ψ on Wh
4
(K). Moreover,

|ψ − id|Wh
4

(K),
h

4
‖Dψ − En‖Wh

4
(K) ≤ δ.
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The proof of this lemma can be found in [11]. From this lemma it follows that if

ε <
h

4
, h+ <

h

4
,

then ψ : ω+ 7→ ω is well-defined on Wh+(K+) and ψ(Wh+(K+)) ⊂ Wh(K). Moreover, let

ψ(ω+) = ω+ + η(ω+).

Then

‖η(ω+)‖Wh
4

(K) < ε.

By Cauchy’s estimates, we have

∥∥∥
∂lη

∂ωl
+

∥∥∥
Wh

8
(K)

≺ εh−|l|, |l| ≤ N2. (2.36)

To finish one step of KAM iteration, we have to estimate the new perturbation terms f l
+,

f̃ l
+ (1 ≤ l ≤ 4) in (2.10) and (2.11).

2.6 Estimates of new perturbation terms f l

+
and f̃ l

+
(1 ≤ l ≤ 4)

(a) Estimates of f1
+ and f̃1

+

Using the first equation in (2.17) and (2.11), we have

f1
+(x+, y+, u+, v+) = f̃1 ◦ φ+ ω − ω+ −

∑

|k|≤K

i〈k, ω+ + f1
+〉ei〈k,x+〉h1

k.

f̃ l
+ = f l

+ − (DΦ+)−1(f l
σ+

− f l
σ++

) ◦ Φ+.

From (2.25) and h1
0 = 0, we have

f1
+ = f̃1 ◦ φ− f̃1

0 −
∑

0<|k|≤K

f̃1
ke

i〈k,x+〉 −
∑

|k|≤K

i〈k, f̃1
0 + f1

+〉ei〈k,x+〉h1
k

= f̃1 ◦ φ− TK f̃
1(x+, 0, 0, 0)−

∑

|k|≤K

i〈k, f̃1
0 + f1

+〉ei〈k,x+〉h1
k,

where TK f̃
1(x+, 0, 0, 0) =

∑
|k|≤K

f̃1
kei〈k,x〉. Therefore

‖f1
+‖Dr+,s+

×Wh+
(K+) ≤ ‖f̃1 ◦ φ− TK f̃

1(x+, 0, 0, 0)‖Dr+,s+
×Wh+

(K+)

+ (|f̃1
0 | + ‖f1

+‖Dr+,s+
×Wh+

(K+))
∑

|k|≤K

|k||h1
k|e|k|r+

≺ ‖f̃1 ◦ φ− TK f̃
1(x+, 0, 0, 0)‖Dr+,s+

×Wh+
(K+)

+ (ε+ ‖f1
+‖Dr+,s+

×Wh+
(K+))γ

−1ε1−ζ(N2+τ+n+1).

If γ−1ε1−ζ(N2+τ+n+1) ≪ 1, then

‖f1
+‖Dr+,s+

×Wh+
(K+)≺‖f̃1 ◦ φ− TK f̃

1(x+, 0, 0, 0)‖Dr+,s+
×Wh+

(K+) + γ−1ε2−ζ(N2+τ+n+1).
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Now we give an estimate of ‖f̃1 ◦ φ− TK f̃
1‖Dr+,s+

×Wh+
(K+). Set

F 1
1 = f̃1 ◦ φ− f̃1(x+, y+, u+, v+),

F 1
2 = f̃1(x+, y+, u+, v+) − f̃1(x+, 0, 0, 0),

F 1
3 = f̃1(x+, 0, 0, 0)− TK f̃

1(x+, 0, 0, 0),

and we have

f̃1 ◦ φ− TK f̃
1(x+, 0, 0, 0) = F 1

1 + F 1
2 + F 1

3 .

If (cε0)
(κ−1)(2−κ−ζ(N2+n+τ+1)) < 1

2 , ε
2−κ−ζ(N2+n+τ+1)
0 ≺ γ−1

0 and ζ < 2−κ
N2+τ+n+1 , we have, by

Lemma 2.7 and the Cauchy’s estimates,

‖F 1
1 ‖Dr+,s+

×Wh+
≺max

{‖f1‖Dr,s×Wh(K)

r − r+
‖φ− id‖Dr+,s+

×Wh+
(K+),

‖f1‖Dr,s×Wh(K)

s− s+
‖φ− id‖Dr+,s+

×Wh+
(K+)

}

≺max
{ε2−ζ(N2+τ+n)

r − r+
γ−1,

ε2−ζ(N2+τ+n)s+
s− s+

γ−1
}

≺max
{
ε2−ζ(N2+τ+n+1)γ−1, ε2−ζ(N2+τ+n)+(κ−1)γ−1

}

≺ εκ,

‖F 1
2 ‖Dr+,s+

×Wh+
(K+) ≤

1

s− s+
εs+ < εα ≤ εκ,

‖F 1
3 ‖Dr+,s+

×Wh+
(K+) ≤

∑

|k|≥K

‖f̃1
kei〈k,x+〉‖Dr+,s+

×Wh+
(K+)

≤
∑

|k|≥K

|f̃1
k |e|k|r+ ≤ ε

∑

|k|≥K

e−|k|(r−r+)

≺ ε
∑

j≥K

jn−1e−j(r−r+) ≤ ε

∫ ∞

K

xn−1e−(r−r+)x dx

≺ ε2.

Now we get

‖f̃1 ◦ φ− TK f̃
1‖≺ εκ,

that is,

‖f1
+‖Dr+,s+

×Wh+
≺ εκ.

Before we prove ‖f̃1
+‖ < ε+, we need to prove ‖DΦ−1

ν ‖ < 2 and ‖DΨ−1
ν ‖ < 2 by induction.

Suppose

ε
1−ζ(N2+τ+n+1)
0 γ−1

0 ≪ 1

16(N + n)
and Φ0 = id.

When ν = 0, ‖DΦ0‖ < 2. If ‖DΦj‖ < 2 for all j ≤ ν − 1, we have

‖DΦν − EN+n‖ ≤
ν−1∑

j=1

‖DΦj ·Dφj −DΦj‖

≺ 2(N + n)

ν−1∑

j=1

ε
1−ζ(N2+τ+n+1)
j γ−1

j
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≺ 2(N + n)
ν−1∑

j=1

ε
1−ζ(N2+τ+n+1)κj

0 γ−1
j

≺ 8(N + n)ε
κ(1−ζ(N2+τ+n+1))
0 γ−1

0 <
1

2
.

Therefore, ‖DΦν‖ < 2 for any ν. If γ−1
0 ε

N2

N2+1
−ζ(N2+n+τ+2)

0 ≪ 1
8(N+n) , we get

∥∥∥
∂Φν

∂ων

∥∥∥
Whν+1

≤ (N + n)‖DΦν−1‖ ·
∥∥∥
∂φν−1

∂ων

∥∥∥
Drν,sν ×Whν (Kν)

+ (N + n)
∥∥∥
∂Φν−1

∂ων−1

∥∥∥ ·
∥∥∥
∂ψν−1

∂ων

∥∥∥
Drν,sν ×Whν (Kν)

≺ 2(N + n)
(
γ−1

ν−1ε
N2

N2+1
−ζ(N2+n+τ+1)

ν−1 + ε
N2

N2+1

ν−1

)

≤ 2(N + n)
(
εζ

ν−1 + 2ε
N2

N2+1

ν−1

)
≤ 1

2
.

So ‖∂Φν

∂ων
‖ < 2 is proved for any ν. We can also prove ‖∂Ψν

∂ων
‖ < 2 by the same method.

We know that (2.10) is well-defined, if (Φν(Drν ,sν
×Whν

(Kν)),Ψν(Whν
(Kν))) ⊂ ∆σν

. Since

rν > sν , 2(N + n)rν = σν and ζ < 1
N2+1 , we have

‖ImΦν(Z, ω)‖Drν,sν×Whν (Kν) = ‖ImΦν(Z, ω) − ImΦν(Re(Z, ω))‖Drν,sν ×Whν (Kν)

≤ (N + n)max
{
‖DΦν‖ · ‖ImZ‖,

∥∥∥
∂Φν

∂ω

∥∥∥ · ‖Imω‖
}

≤ max{2(N + n)rν , 2(N + n)sν , 2(N + n)hν} ≤ σν ,

‖ImΨν(ω)‖Whν
= ‖ImΨν(ω) − ImΨν(Re(ω))‖Whν

≤ (N + n)‖DΨν‖ · ‖Im(ω)‖
≤ 2(N + n)hν ≤ σν .

Therefore (Φν(Drν ,sν
×Whν

(Kν)),Ψν(Whν
(Kν))) ⊂ ∆σν

and (2.10) is well-defined.

From

‖DΦ−1
ν − En+N‖ ≤

∞∑

j=1

‖DΦν − En+N‖j ≤ 2‖DΦν − En+N‖ < 1,

we get ‖DΦ−1
ν ‖ < 2.

Now we estimate f̃1
+. If ζd > 2, εdζ−1

0 ≤ [2c̃(2(N + n))d+1‖f1‖Cd ]−1 and cdζ−1εdζ−2
0 <

(1
2 )

1
κ−1 , then by Lemma 2.1

‖DΦ−1
+ (f1

σ+
− f1

σ++
)‖Dr+,s+

×Wh+
(K+) < 2(N + n)‖f1

σ+
− f1

σ++
‖Dr+,s+

×Wh+
(K+)

< 2(N + n)c̃ ‖f1‖Cdσd
+

= 2d+1(N + n)d+1c̃ ‖f1‖Cdεdζ
+ <

ε+
2
. (2.37)

At last we get ‖f̃1
+‖D+×Wh+

(K+) < ε+.

(b) Estimate of f i
+ and f̃ i

+ (i = 2, 3, 4)
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From the last three equalities of (2.17) and the homological equation (2.19), it follows that

f2
+ = f̃2 ◦ φ+ (D −D+)u+ +

∑

|k|≤K

(Dh3
k +DI1

ky+ +DI2
ku+ +DI3

kv+)ei〈k,x+〉

−
∑

|k|≤K

i〈k, ω〉(h2
k +H1

ky+ +H2
ku+ +H3

kv+)ei〈k,x+〉

−
∑

|k|≤K

i〈k, f̃1
0 + f1

+〉(h2
k +H1

ky+ +H2
ku+ +H3

kv+)ei〈k,x+〉

−
∑

|k|≤K

[H1
k(D+u+ + f2

+) +H2
k(C+y+ +A+v+ + f3

+) +H3
k(B+u+ + f4

+)]ei〈k,x+〉

= f̃2 ◦ φ− TK f̃
2 − TK

(∂f̃2

∂y

)
y+ − TK

(∂f̃2

∂u

)
u+ − TK

(∂f̃2

∂v

)
v+

−
∑

|k|≤K

[
i〈k, f̃1

0 + f1
+〉(h2

k +H1
ky+ +H2

ku+ +H3
kv+) +H1

kf
2
+ +H2

kf
3
+ +H3

kf
4
+

+H1
k

(∂f̃2

∂u

)

0
u+ +H2

k

(∂f̃2

∂y

)

0
y+ +H3

k

(∂f̃2

∂u

)

0
u+ +H2

k

(∂f̃2

∂v

)

0
v+

]
ei〈k,x+〉,

which implies that, for (x+, y+, u+, v+) ∈ Dr+,s+ and ω+ ∈ Wh+ ,

‖f2
+‖Dr+,s+

×Wh+
(K+)≺

∥∥∥f̃2 ◦ φ− TK f̃
2 − TK

(∂f̃2

∂y

)
y+ − TK

(∂f̃2

∂u

)
u+ − TK

(∂f̃2

∂v

)
v+

∥∥∥

+ (|f̃1
0 | + ‖f1

+‖)γ−1ε1−ζ(N2+τ+n+1)s+ + ε2−ζ(N2+n+τ)

+ γ−1ε1−ζ(N2+τ+n)(‖f2
+‖ + ‖f3

+‖ + ‖f4
+‖).

We first estimate the first term in the above inequality. Similarly to the discussions in part

(a), we have

f̃2 ◦ φ− TK

(
f̃2 +

∂f̃2

∂y
y+ +

∂f̃2

∂u
u+ +

∂f̃2

∂v
v+

)
= F 2

1 + F 2
2 + F 2

3 ,

where

F 2
1 = f̃2 ◦ φ− f̃2(x+, y+, u+, v+),

F 2
2 = f̃2(x+, y+, u+, v+) − f̃2(x+, 0, 0, 0)− ∂f̃2

∂y
y+ − ∂f̃2

∂u
u+ − ∂f̃2

∂v
v+,

F 2
3 = (id − TK)

(
f̃2(x+, 0, 0, 0) +

∂f̃2

∂y
y+ +

∂f̃2

∂u
u+ +

∂f̃2

∂v
v+

)
.

If ζ < 3−2κ
N2+τ+n+1 , γ−1

0 ε
3−2κ−ζ(N2+n+τ+1)
0 ≪ 1, (cε0)

(κ−1)(3−2κ−ζ(N2+n+τ+1)) < 1
2 and κ < 3

2 ,

we have the following result from Lemma 2.7 and Cauchy’s estimates

‖F 2
1 ‖Dr+,s+

×Wh+
(K+)≺max

{ε2−ζ(N2+τ+n)s

γ(r − r+)
,
ε2−ζ(N2+τ+n)s2

γ(s− s+)

}
≺ s+ε

κ.
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By the mean value theorem and Cauchy’s estimates, we get

‖F 2
2 ‖Dr+,s+

×Wh+
(K+)≺

εs

s2
· (αs)2 = εκs+.

Since ζ < λ and κ < 3
2 , the following holds by Lemma 2.2

‖F 2
3 ‖Dr+,s+

×Wh+
(K+) ≤ εs

∑

|k|≥K

e−|k|(r−r+) ≤ εs

∫ ∞

K

xne−x(r−r+) dx ≺ ε2s ≤ εκs+.

Hence

‖f2
+‖≺ εκs+ + γ−1ε1−ζ(N2+τ+n)(‖f2

+‖ + ‖f3
+‖ + ‖f4

+‖)

on Dr+,s+ ×Wh+(K+).

Similarly, one can obtain

‖f3
+‖Dr+,s+

×Wh+
(K+)≺ εκs+ + γ−1ε1−ζ(N2+τ+n)(‖f2

+‖ + ‖f3
+‖ + ‖f4

+‖),

‖f4
+‖Dr+,s+

×Wh+
(K+)≺ εκs+ + γ−1ε1−ζ(N2+τ+n)(‖f2

+‖ + ‖f3
+‖ + ‖f4

+‖).

If γ−1ε1−ζ(N2+τ+n+1) ≪ 1, (cε0)
(κ−1)(1−ζ(N2+n+τ+1)) < 1

2 , and κ < 3
2 , then

1

s+
(‖f2

+‖ + ‖f3
+‖ + ‖f4

+‖)≺ εκ <
1

2
ε+.

Now we estimate f̃2
+. Since

f̃2
+ = f2

+ + (DΦ+)−1(f2
σ+

− f2
σ++

) ◦ Φ+,

we only need to estimate (DΦ+)−1(f2
σ+

− f2
σ++

) ◦ Φ+.

If dζ > 2, 2(2(N+n))d+1c̃ ‖f i‖Cdεζd−1
0 ≤ s0 (i = 2, 3, 4) and cζd−1εζd−2

0 <
(

1
2

) 1
κ−1 , similarly

to (2.37) we get

‖(DΦ+)−1(f i
σ+

− f i
σ++

) ◦ Φ+‖ < 2(N + n)c̃ ‖f i‖Cd · σd
+ <

1

2
ε+s+.

To summarize this section, we have the following proposition.

Proposition 2.1 There is a large constant c > 0 such that if

γ−1ε
1

N2+1
−λ(N2+τ+1)

< c−1,

γ−1hKN2+τ max{K,M + 1} < c−1,

KN2+τε < c−1 min{γ − γ+, | det(aij)1≤i,j≤p|},

where ε is small enough and ζ < min
{

2−κ
N2+τ+n+1 ,

3−2κ
N2+τ+n+1 ,

1
N2+1

}
, then there exist a G-

commute transformation φ and a mapping ψ : ω+ 7→ ω, such that under this φ, the system

(2.16) is changed into (2.14). Moreover, the following conclusions hold:

(1) |〈k, ω+〉| > γ+|k|−τ ,

| det(i〈k, ω+〉EN −A+)| > γ+|k|−τ ,

| det(i〈k, ω+〉EN2 − EN ⊗AT
+ + AT

+ ⊗ EN )| > γ+|k|−τ ,

| det(a+
ij)1≤i,j≤p| > 0,
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on an open set Wh(K) of Rn for |k| ≤ K;

(2) ω+(ω), a+
ij(ω), c+ij(ω) and d+

ij(ω) are real analytic in ω and satisfy, for |l| ≤ N2,

∣∣∣
∂l(ω+ − ω)

∂ωl

∣∣∣ ≤ cε
1

N2+1 ,

∣∣∣
∂la+

ij

∂ωl

∣∣∣,
∣∣∣
∂lb+ij
∂ωl

∣∣∣,
∣∣∣
∂lc+ij
∂ωl

∣∣∣,
∣∣∣
∂ld+

ij

∂ωl

∣∣∣ ≤M + cε
1

N2+1 = M+,

on the complex h-neighborhood of Θ, and

∣∣∣
∂la+

ij

∂ωl
+

∣∣∣,
∣∣∣
∂lb+ij

∂ωl
+

∣∣∣,
∣∣∣
∂lc+ij

∂ωl
+

∣∣∣,
∣∣∣
∂ld+

ij

∂ωl
+

∣∣∣ ≤M + cε
1

N2+1 = M+,

on the complex h+-neighborhood of Θ;

(3) The new perturbation terms f̃ l
+ (1 ≤ l ≤ 4) satisfy

‖f̃1
+‖Dr+,s+

×Wh+
(K+),

1

s+
‖f̃ j

+‖Dr+,s+
×Wh+

(K+) ≤ cεκ = ε+, 2 ≤ j ≤ 4.

3 Proof of Theorem 1.1

Without loss of generality, we assume that r < 1, s < 1. For any ν ≥ 0, we define

Dν = Drν ,sν
, Wν = Whν

(Kν).

Step 1 The choice of ε0

In order to apply Proposition 2.1 for any ν ≥ 0, we choose ε0 sufficiently small and s0 such

that

ε
1−ζ(N2+τ+n+3)
0 γ−1

0 ≪ 1

16(N + n)
, ε

N2

N2+1
−ζ(N2+τ+n+2)

0 γ−1
0 ≪ 1

8(N + n)
,

ε
1

N2+1
−λ(N2+τ+n)

0 γ−1
0 M0 ≪ 1, ε

3−2κ−ζ(N2+τ+n+1)
0 γ−1

0 ≪ 1,

εdζ−1
0 < min{(2(2(N + n))d+1c̃ ‖f1‖Cd)−1, min

2≤j≤4
s0(2(2(N + n))d+1c̃ ‖f j‖Cd)−1},

cε0 < min
{(1

3

) 1

(κ−1)

(
1

N2+1
−λ(N2+τ+n+1)

)
,
(1

2

) 1
(κ−1)(2−κ−ζ(N2+n+τ+1))

}
,

(cε0)
ζd−1ε−1

0 <
(1

2

) 1
κ−1

, ε
1−λ(N2+τ)
0 ≪ γ0

4
, s0 <

εζ
0

2
.

We take Φ0 = φ0 = id, f i
σ0

= f i
0, i = 1, 2, 3, 4.

Step 2 The definition of Θγ

Set Θ−1 = Θ, A0 = A and K−1 = 0. From the discussions in Section 2, it follows that for

each ν ≥ 0,

Θν =
⋂

Kν−1<|k|≤Kν





ω ∈ Θν−1

∣∣∣∣∣∣∣

|〈k, ω〉| ≥ γν |k|−τ and

| det(i〈k, ω〉EN −Aν)| ≥ γν |k|−τ and

| det(i〈k, ω〉EN2 − EN ⊗AT
ν + Aν ⊗ EN )| ≥ γν |k|−τ





.
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Now we define

Θγ =
∞⋂

ν=0

Θν .

Step 3 The measure of Θγ

By the definition of Θγ , we have

Θ − Θγ ⊂
∞⋃

ν=0

Rν(γν),

where

Rν(γν) = Rν
1(γν) ∪Rν

2(γν) ∪Rν
3(γν)

with

Rν
1(γν) =

⋂

Kν−1<|k|≤Kν

{ω ∈ Θν−1 | |〈k, ω〉| ≤ γν |k|−τ},

Rν
2(γν) =

⋂

Kν−1<|k|≤Kν

{ω ∈ Θν−1 | | det(i〈k, ω〉EN −Aν)| ≤ γν |k|−τ},

Rν
3(γν) =

⋂

Kν−1<|k|≤Kν

{ω ∈ Θν−1 | | det(i〈k, ω〉EN2 − EN ⊗AT
ν + Aν ⊗ EN )| ≤ γν |k|−τ}.

Before we estimate the measure of the set Rν(γν), we need the following lemma.

Lemma 3.1 Let g(t) = g1(t) + ig2(t) : I ⊂ R → C be of class Cm, ∀m ∈ N. Define

Iβ = {t ∈ I | |g(t)| ≤ β} with β > 0. If there is a constant d > 0 such that one of the following

conditions holds:

(1) |g(m)
1 (t)| > d > 0, ∀ t ∈ I,

(2) |g(m)
2 (t)| > d > 0, ∀ t ∈ I,

then

meas Iβ ≤ c0β
1
m ,

where c0 = 2(2 + 3 + · · · +m+ d−1).

The proof of this lemma can be found in [8, 17].

For each k satisfying Kν−1 < |k| ≤ Kν , let

Rν
k1(γν) = {ω ∈ Θν−1 | |〈k, ω〉| ≤ γν |k|−τ},

Rν
k2(γν) = {ω ∈ Θν−1 | | det(i〈k, ω〉EN −Aν)| ≤ γν |k|−τ},

Rν
k3(γν) = {ω ∈ Θν−1 | | det(i〈k, ω〉EN2 − EN ⊗AT

ν + Aν ⊗ EN )| ≤ γν |k|−τ}.

Now we estimate the measure of the set Rν
k3(γν). Let

g(ω) = det(i〈k, ω〉EN2 − EN ⊗AT
ν + Aν ⊗ EN ).

We get

g(ω) = iN
2〈k, ω〉N

2

+
∑

l≤N2−1

pl(ω)〈k, ω〉l,
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where the coefficients pl(ω) depend on Aν , but not on k. Suppose that the real and imaginary

part of g are g1 and g2, respectively, that is,

g(ω) = g1(ω) + ig2(ω).

If N ≡ 0 (mod 2), then

g1 = ±〈k, ω〉N
2

+
∑

l≤N2−1

Re p(ω)〈k, ω〉l.

By (2.36), the choice of εν and Proposition 2.1, it follows that

∣∣∣
∂l(ων(ω) − ω)

∂ωl

∣∣∣ ≤ 1

2
,
∣∣∣
∂laν

ij(ω)

∂ωl

∣∣∣ ≤Mν ≤M + c′,

where c′ = 2cκ−1ε
1

N2+1

0 . Without loss of generality, we assume that

|k1| = max
1≤j≤n

|kj |.

Then

|k1| ≥
Kν−1

n
, if |k| ≥ Kν−1.

Hence we have ∣∣∣
∂N2

∂ωN2

1

g1(ω)
∣∣∣ ≥ (N2)!|k1|N

2

(1 −O(|k1|−1)) ≥ 1,

if Kν−1 > K∗ with a sufficiently large positive integer K∗. By Lemma 3.1 we have

measRν
k3(γν) ≤ c̃0

( γν

|k|τ
) 1

N2 ≤ c̃0γ
1

N2 |k|− τ

N2 ,

where c̃0 = N(N + 1) · (diameter of Θ)n−1. Similarly, one can get the same estimate when

N ≡ 1 (mod 2). The estimates for the other two sets Rν
k1(γν) and Rν

k2(γν) are analogous.

Therefore we have

meas
( ∞⋃

ν=1

Rν
)
≤

∞∑

ν=1

measRν(γν) ≤ 3c̃0γ
1

N2

∞∑

ν=1

Kν∑

|k|=Kν−1

|k|− τ

N2

≤ 3c̃0γ
1

N2

∑

|k|≥K∗

|k|− τ

N2 = O(γ
1

N2 )

because τ > N2n.

On the other hand, if ε0 is very small, then K0 ≥ K∗. By the condition (3) in Theorem 1.1,

it follows that for any fixed K0,

measR0(γ) → 0, as γ → 0.

Hence

meas (Θ − Θγ) → 0, as γ → 0.

Step 4 The convergences of Φν , DΦν and Ψν
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For any ν ≥ 0, by the discussions in Section 2, we can find a sequence of G-commute

transformations φ0, φ1, · · · , φν . Let

Φν = φ0 ◦ φ1 ◦ · · · ◦ φν−1 : D ×W → D0.

Then under Φν , the system (2.4) is changed into (2.2).

By the choice of ε0 and the definition of εν , we can conclude that εν → 0 as ν → ∞. If

γ−1
j ε

1−ζ(N2+τ+n+2)
j ≪ 1

16(N+n) , ∀ ν, ̺ ∈ N, ν > ̺, we can prove the convergence of Φν :

‖Φν − Φ̺‖Dν×Wν
≤

ν−1∑

j=̺

‖(Φj+1 − Φj)‖Dν×Wν

≤
ν−1∑

j=̺

‖DΦj(φj − id)‖Dν×Wν

≤ (N + n)
ν−1∑

j=̺

‖DΦj‖‖φj − id‖Dν×Wν

≺ 2(N + n)

ν−1∑

j=̺

max{γ−1
j ε

1−ζ(N2+n+τ)
j , γ−1

j ε
1−ζ(N2+n+τ)
j sj}

≺ 2(N + n)

ν−1∑

j=̺

γ−1
j ε

1−ζ(N2+τ+n)
j

≺ 4(N + n)γ−1
̺ ε1−ζ(N2+n+τ)

̺ ≤
εζ

̺

4
→ 0, ̺→ +∞. (3.1)

Then Φν is a Cauchy sequence, and has a continuous function Φ∞ as its limit.

Now we prove that DΦν is a Cauchy sequence.

‖DΦν −DΦ̺‖Dν×Wν
≤

ν−1∑

j=̺

‖(DΦj+1 −DΦj)‖Dν×Wν

≤
ν−1∑

j=̺

‖(DΦjDφj −DΦj)‖Dν×Wν

≤ (N + n)

ν−1∑

j=̺

‖DΦj‖‖Dφj − E2n+p+q)‖Dν×Wν

≺ 2(N + n)

ν−1∑

j=̺

max{γ−1
j ε

1−ζ(N2+n+τ+1)
j , γ−1

j ε
1−ζ(N2+n+τ+1)
j sj}

≺ 2(N + n)
ν−1∑

j=̺

γ−1
j ε

1−ζ(N2+τ+n+1)
j

≺ 4(N + n)γ−1
̺ ε1−ζ(N2+n+τ+1)

̺ ≤
εζ

̺

4
→ 0, ̺→ +∞. (3.2)

Therefore DΦν is a Cauchy sequence, and hence DΦν converges to DΦ∞. Especially when

̺ = 0, the inequality (3.2) becomes

‖DΦν − E2n+p+q‖Dν×Wν
≤ εζ

0

4
.
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Let ν tend to infinity. We get

‖DΦ∞ − E2n+p+q‖D∞×Θγ
≤ εζ

0

4
.

Similarly, from (3.1) we get

‖Φ∞ − id‖D∞×Θγ
≤ εζ

0

4
.

Hence if ε0 is small enough, Φ∞ must be a diffeomorphism. By the same method we can prove

the convergence of Ψν. The convergences of Φν and DΦν yield that

ϕt = Φ∞ ◦ ϕt
∞,

on Tn × {0} × {0} × {0} × Θγ , where ϕt is the flow of system (1.5) and ϕt
∞ the flow of the

system

ẋ = ω∞,

ẏ = D∞(ω∞)u,

u̇ = C∞(ω∞)y +A∞(ω∞)v,

v̇ = B∞(ω∞)u.

(3.3)

Hence, for each ω ∈ Θγ , the embedding torus Φ∞(Tn × {0} × {0} × {0} × {ω∞}) is invariant

under ϕt. Moreover, on this torus, we have

x = x0 + ω∞t,

where ω = Ψ∞(ω∞). This completes the proof.
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