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1 Introduction

Since the notion of Lie bialgebras was introduced by Drinfeld in 1983 (cf. [1, 2]), there have

appeared several papers on Lie coalgebras or Lie bialgebras (cf. [3–10]). Lie bialgebras of Witt

and Virasoro type were presented in [9]. These types of Lie bialgebras were further classified

in [6]. The authors in [8] studied Lie bialgebra structures on Lie algebras of generalized Witt

type, which were proved to be coboundary triangular. Lie bialgebra structures on Lie algebras of

generalized Virasoro-like type were considered in [10]. Partially due to the fact that constructing

quantization of Lie bialgebras is an important tool to produce new quantum groups (e.g., [11,

12]), the study of Lie bialgebra structures becomes more and more important.

In this paper, we study Lie bialgebra structures on a family of Lie algebras of Block type.

Lie algebras of this type attract our attention not only because they are closely related to the

Virasoro algebra or the Virasoro-like algebra but also because they are special cases of Lie

algebras of Cartan type S and Cartan type H (cf. [13–15]).

First, let us recall the definition of Lie bialgebras. Let L be a vector space over a field

F of characteristic zero. Denote by ξ the cyclic map of L ⊗ L ⊗ L cyclically permuting the

coordinates, namely, ξ(x1 ⊗ x2 ⊗ x3) = x2 ⊗ x3 ⊗ x1 for x1, x2, x3 ∈ L, and by τ the twist map

of L ⊗ L, i.e., τ(x ⊗ y) = y ⊗ x for x, y ∈ L.

To introduce the notion of Lie bialgebras, we first reformulate the definition of a Lie algebra

as follows: A Lie algebra is a pair (L, δ) of a vector space L and a linear map δ : L ⊗ L → L
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(the bracket of L) satisfying the conditions:

Ker(1 − τ) ⊂ Ker δ, (1.1)

δ · (1 ⊗ δ) · (1 + ξ + ξ2) = 0 : L ⊗ L ⊗ L → L, (1.2)

which are called skew-symmetry and Jacobi identity respectively. Dually, one has the notion

of Lie coalgebras: A Lie coalgebra is a pair (L, ∆) of a vector space L and a linear map

∆ : L → L ⊗ L (the cobracket of L) satisfying the conditions:

Im∆ ⊂ Im(1 − τ), (1.3)

(1 + ξ + ξ2) · (1 ⊗ ∆) · ∆ = 0 : L → L ⊗ L ⊗ L, (1.4)

which are called anti-commutativity and Jacobi identity respectively. For a Lie algebra L, we

always use [x, y] = δ(x, y) to denote its Lie bracket and use the symbol “ · ” to stand for the

diagonal adjoint action

x ·
(

∑

i

ai ⊗ bi

)

=
∑

i

([x, ai] ⊗ bi + ai ⊗ [x, bi]) for x, ai, bi ∈ L. (1.5)

Definition 1.1 A Lie bialgebra is a triple (L, δ, ∆) satisfying the conditions:

(L, δ) is a Lie algebra, (L, ∆) is a Lie coalgebra, (1.6)

∆δ(x, y) = x · ∆y − y · ∆x for x, y ∈ L (compatibility condition). (1.7)

Denote by U the universal enveloping algebra of L and by 1 the identity element of U . For

an element r =
∑

i

ai ⊗ bi ∈ L⊗L, we define rij , c(r), i, j = 1, 2, 3 to be elements of U ⊗U ⊗U

by (where the bracket in (1.8) is the commutator):

c(r) = [r12, r13] + [r12, r23] + [r13, r23], (1.8)

r12 =
∑

i

ai ⊗ bi ⊗ 1, r13 =
∑

i

ai ⊗ 1 ⊗ bi, r23 =
∑

i

1 ⊗ ai ⊗ bi.

Definition 1.2 (1) A coboundary Lie bialgebra is a 4-tuple (L, δ, ∆, r), where (L, δ, ∆) is a

Lie bialgebra and r ∈ Im(1 − τ) ⊂ L ⊗ L such that ∆ = ∆r is a coboundary of r, where ∆r is

defined by

∆r(x) = x · r for x ∈ L. (1.9)

(2) A coboundary Lie bialgebra (L, δ, ∆, r) is called triangular if it satisfies the following

classical Yang-Baxter Equation (CYBE ):

c(r) = 0. (1.10)

Now let us formulate the main result below. Let G be any nonzero additive subgroup of F

with Z ⊂ G. The Lie algebras considered in this paper are the Block Lie algebras B = B(G)

with basis {∂, xa,i | a ∈ G, i ∈ Z} and brackets

[∂, xb,j ] = bxb,j , (1.11)

[xa,i, xb,j ] = ((a − 1)j − (b − 1)i)xa+b,i+j−1. (1.12)

The main result of this paper is the following
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Theorem 1.1 Every Lie bialgebra structure on B is a triangular coboundary Lie bialgebra.

2 Proof of the Main Result

The following result can be found in [1, 2, 6].

Lemma 2.1 Let L be a Lie algebra and r ∈ Im(1 − τ) ⊂ L ⊗ L.

(1) The tripple (L, [ · , · ], ∆r) is a Lie bialgebra if and only if r satisfies CYBE (1.10).

(2) We have

(1 + ξ + ξ2) · (1 ⊗ ∆) · ∆(x) = x · c(r) for all x ∈ L. (2.1)

Now consider the Lie algebra B. We denote

B′ = [B, B] = span{xa,i | (a, i) ∈ G × Z} (the derived subalgebra of B). (2.2)

Note that C = x1,0 is a central element of B′, and B′/FC is a simple Lie algebra (in this case

B is called a central simple Lie algebra). For convenience, we use the following convention.

Convention 2.1 If an undefined symbol appears in an expression, we always regard it as

zero.

Lemma 2.2 Let B[n] = B ⊗ · · · ⊗ B be the tensor product of n copies of B, and regard

B[n] as a B-module under the adjoint diagonal action of B.

(1) Suppose that c ∈ B[n] satisfies a · c = 0 for all a ∈ B. Then c = 0.

(2) Suppose that c ∈ B[n] satisfies a · c = 0 for all a ∈ B′. Then c ∈ F(C ⊗ · · · ⊗ C).

Proof It can be proved by using the similar arguments as in the proof of [10, Lemma 2.2].

An element r ∈ Im(1 − τ) ⊂ B ⊗ B is said to satisfy the modified Yang-Baxter Equation

(MYBE) if

x · c(r) = 0 for all x ∈ B. (2.3)

As a conclusion of Lemma 2.2, one immediately obtains

Corollary 2.1 An element r ∈ Im(1 − τ) ⊂ B ⊗ B satisfies CYBE (1.10) if and only if it

satisfies MYBE (2.3).

Regard V = B ⊗B as a B-module under the adjoint diagonal action. Denote by Der(B, V )

the set of derivations D : B → V , namely, D is a linear map satisfying

D([x, y]) = x · D(y) − y · D(x) for x, y ∈ B, (2.4)

and by Inn(B, V ) the set consisting of the derivations ainn, a ∈ V , where ainn is the inner

derivation defined by

ainn : x 7→ x · a for x ∈ B. (2.5)
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Then it is well-known that

H1(B, V ) ∼= Der(B, V )/Inn(B, V ), (2.6)

where H1(B, V ) is the first cohomology group of a Lie algebra B with coefficients in the B-

module V .

Proposition 2.1 Der(B, V ) = Inn(B, V ), equivalently, H1(B, V ) = 0.

Proof Note that B =
⊕

a∈G

Ba and V = B ⊗ B =
⊕

a∈G

Va are G-graded (but not finitely

graded), with

Ba = Span{xa,i | i ∈ Z} ⊕ δa,0F∂ and Va =
∑

b,c∈G
b+c=a

Bb ⊗ Bc for a ∈ G. (2.7)

A derivation D ∈ Der(B, V ) is homogeneous of degree a ∈ G if D(Bb) ⊂ Va+b for all b ∈ G.

Denote

Der(B, V )a = {D ∈ Der(B, V ) | deg D = a} for a ∈ G.

Let D ∈ Der(B, V ). For a ∈ G, we define the linear map Da : B → V as follows: For any

µ ∈ Bb with b ∈ G, write D(µ) =
∑

c∈G

µc with µc ∈ Vc, then we set

Da(µ) = µa+b.

Obviously, Da ∈ Der(B, V )a and we have

D =
∑

a∈G

Da, (2.8)

which holds in the sense that for every u ∈ B, only finitely many Da(u) 6= 0, and D(u) =
∑

a∈G

Da(u) (we call such a sum in (2.8) summable).

We shall prove this proposition by several claims.

Claim 2.1 If 0 6= a ∈ G, then Da ∈ Inn(B, V ).

For a 6= 0, denote γ = a−1Da(∂) ∈ Va. Then for any xb,j ∈ Bb with b ∈ G, applying Da to

[∂, xb,j ] = bxb,j and using Da(xb,j) ∈ Va+b, we have

(a + b)Da(xb,j) − xb,j · Da(∂) = ∂ · Da(xb,j) − xb,j · Da(∂) = bDa(xb,j), (2.9)

i.e., Da(xb,j) = γinn(x
b,j). Thus Da = γinn is inner.

Claim 2.2 D0(∂) = D0(x
1,0) = 0.

Applying D0 to [∂, x] = bx for x ∈ Bb with b ∈ G, as in (2.9) we obtain x · D0(∂) = 0. Thus

by Lemma 2.2(1), D0(∂) = 0. Next, applying D0 to [xb,j , x1,0] = 0 for any xb,j ∈ B′, we obtain

xb,j · D0(x
1,0) = 0. Thus by Lemma 2.2(2), D0(x

1,0) ∈ F(C ⊗ C). But C ⊗ C ∈ V2, while

D0(x
1,0) ∈ V1, we have D0(x

1,0) = 0 (recall Convention 2.1).
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Claim 2.3 Replacing D0 by D0 − uinn for some u ∈ V0, we can suppose D0(x
a,i) = 0 for

(a, i) ∈ G × Z.

We can write D0(x
a,j) as

D0(x
a,j) =

∑

p∈G
q,r∈Z

da,j
p,q,rx

p,q ⊗ x−p+a,r +
∑

s∈Z

da,j
s ∂ ⊗ xa,s +

∑

t∈Z

ea,j
t xa,t ⊗ ∂ (2.10)

for all a ∈ G and some da,j
p,q,r, d

a,j
s , da,j

t ∈ F, where {(p, q, r) ∈ G × Z × Z | da,j
p,q,r 6= 0}, {s ∈

Z | da,j
s 6= 0} and {t ∈ Z | ea,j

t 6= 0} are finite sets.

Applying D0 to [x1,0, xa,j ] = 0, we obtain

∑

s∈Z

da,j
s x1,0 ⊗ xa,s +

∑

t∈Z

ea,j
t xa,t ⊗ x1,0 = 0. (2.11)

Comparing the coefficients of x1,0 ⊗ xa,s and xa,t ⊗ x1,0, we obtain

da,j
s = ea,j

t = 0, (a, s), (a, t) 6= (1, 0) and d1,j
0 = −e1,j

0 . (2.12)

Hence we can rewrite (2.10) as

D0(x
a,j) =

∑

p∈G
q,r∈Z

da,j
p,q,rx

p,q ⊗ x−p+a,r, a 6= 1, (2.13)

D0(x
1,j) =

∑

p∈G
q,r∈Z

d1,j
p,q,rx

p,q ⊗ x−p+1,r + d1,j
0 (∂ ⊗ x1,0 − x1,0 ⊗ ∂), j 6= 0. (2.14)

That is,

D0(x
a,j) =

∑

p∈G
q,r∈Z

da,j
p,q,rx

p,q ⊗ x−p+a,r + δa,1d
1,j
0 (∂ ⊗ x1,0 − x1,0 ⊗ ∂). (2.15)

Subclaim Replacing D0 by D0 − uinn for some u ∈ V0, we can suppose D0(x
a,j) = 0

for all a ∈ Z, j ∈ Z.

We can write

D0(x
0,1) =

∑

p∈G
q,r∈Z

d0,1
p,q,r xp,q ⊗ x−p,r (2.16)

for some d0,1
p,q,r ∈ F, where {(p, q, r) ∈ G × Z × Z | d0,1

p,q,r 6= 0} is a finite set. Note that

x0,1 · xp,q ⊗ x−p,r = (2 − q − r)xp,q ⊗ x−p,r.

Using this, by replacing D0 by D0 − uinn, where u is a combination of some xp,q ⊗ x−p,r for

q + r 6= 2, we can rewrite (2.16) as

D0(x
0,1) =

∑

q+r=2

p∈G
q,r∈Z

d0,1
p,q,r xp,q ⊗ x−p,r. (2.17)
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Furthermore, from the following facts

x0,1 · (xp,0 ⊗ x−p,2) = 0 = x0,1 · (xp,2 ⊗ x−p,0),

x0,0 · (xp,0 ⊗ x−p,2) = −2xp,0 ⊗ x−p,1,

x0,0 · (xp,2 ⊗ x−p,0) = −2xp,1 ⊗ x−p,0,

by replacing D0 by D0 − uinn, where u is a combination of xp,0 ⊗ x−p,2 and xp,2 ⊗ x−p,0 (this

replacement does not affect (2.17)), we can suppose

d0,0
p,0,1 = d0,0

p,1,0 = 0. (2.18)

Applying D0 to [x0,0, x0,1] = −x0,0, we obtain
∑

q+r=2

p∈G
q,r∈Z

d0,1
p,q,r(−qxp,q−1 ⊗ x−p,r − rxp,q ⊗ x−p,r−1) =

∑

p∈G
q,r∈Z

(1 − q − r)d0,0
p,q,rx

p,q ⊗ x−p,r.

That is,
∑

q+r=1

p∈G
q,r∈Z

(−(q + 1)d0,1
p,q+1,rx

p,q ⊗ x−p,r − (r + 1)d0,1
p,q,r+1x

p,q ⊗ x−p,r)

=
∑

p∈G
q,r∈Z

(1 − q − r)d0,0
p,q,rx

p,q ⊗ x−p,r.

Comparing the coefficients of xp,q ⊗ x−p,r, we obtain

2d0,1
p,0,2 = −d0,1

p,1,1 = 2d0,1
p,2,0, (2.19)

d0,0
p,q,r = 0, q + r 6= 1. (2.20)

By (2.15) and (2.17)–(2.20), D0(x
0,0) and D0(x

0,1) can be respectively rewritten as

D0(x
0,0) = 0 , (2.21)

D0(x
0,1) =

∑

p∈G

d0,1
p,0,2(x

p,0 ⊗ x−p,2 − 2xp,1 ⊗ x−p,1 + xp,2 ⊗ x−p,0). (2.22)

Applying D0 to [x0,1, x−1,0] = 2x−1,0, we obtain
∑

p∈G
q,r∈Z

d−1,0
p,q,r((1 − q − r)xp,q ⊗ x−p−1,r)

=
∑

p∈G

4(d0,1
p,0,2 − d0,1

p+1,0,2)(x
p,1 ⊗ x−p−1,0 − xp,0 ⊗ x−p−1,1).

Comparing the coefficients of xp,q ⊗ x−p−1,r, we obtain

d−1,0
p,q,r = 0, q + r 6= 1, (2.23)

∑

p∈G

(d0,1
p+1,0,2 − d0,1

p,0,2)x
p,0 ⊗ x−p−1,1 = 0, (2.24)

∑

p∈G

(d0,1
p,0,2 − d0,1

p+1,0,2)x
p,1 ⊗ x−p−1,0 = 0. (2.25)



Lie Bialgebras of Block Type 493

From the equation (2.24) or (2.25), we have

d0,1
p+1,0,2 = d0,1

p,0,2 for any p ∈ G. (2.26)

According to the fact that the set {p ∈ G | d0,1
p,0,2 6= 0} is of finite order, we obtain

d0,1
p,0,2 = 0 for any p ∈ G. (2.27)

Combining (2.22) and (2.27), we can safely deduce that

D0(x
0,1) = 0. (2.28)

Applying D0 to [x0,1, xa,j ] = (1 − a − j)xa,j , we obtain

∑

p∈G
q,r∈Z

(2 − a − q − r)da,j
p,q,rx

p,q ⊗ x−p+a,r

= (1 − a − j)

(

∑

p∈G
q,r∈Z

da,j
p,q,rx

p,q ⊗ x−p+a,r + δa,1d
1,j
0 (∂ ⊗ x1,0 − x1,0 ⊗ ∂)

)

. (2.29)

That is,

∑

p∈G
q,r∈Z

(1 − q − r + j)da,j
p,q,rx

p,q ⊗ x−p+a,r − (1 − a − j)δa,1d
1,j
0 (∂ ⊗ x1,0 − x1,0 ⊗ ∂) = 0.

Thus we can deduce da,j
p,q,r = 0 for any a ∈ G, j ∈ Z unless q + r = j + 1 and d1,j

0 = 0 for

0 6= j ∈ Z. But we have proved D0(x
1,0) = 0 in Claim 2.2. Hence

d1,j
0 = 0 for all j ∈ Z. (2.30)

Then (2.10) can be rewritten as

D0(x
a,j) =

∑

p∈G
j+1>q∈Z

da,j
p,qx

p,q ⊗ x−p+a,j+1−q for all a ∈ G (2.31)

for some da,j
p,q ∈ F, where {(p, q) ∈ G × Z, q 6 j + 1 | da,j

p,q 6= 0} is a finite set for any a ∈ G.

According to (2.31), for any a ∈ G, we can write D0(x
a,0) as

D0(x
a,0) =

∑

p∈G

(da,0
p,0x

p,0 ⊗ x−p+a,1 + da,0
p,1x

p,1 ⊗ x−p+a,0). (2.32)

Applying D0 to [xa,0, x0,0] = 0, we obtain

∑

p∈G

(da,0
p,0 xp,0 ⊗ x−p+a,0 + da,0

p,1 xp,0 ⊗ x−p+a,0) = 0.

Comparing the coefficients of xp,0 ⊗ x−p+a,0, we obtain

da,0
p,0 + da,0

p,1 = 0. (2.33)
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According to (2.32) and (2.33), we can rewrite D0(x
a,0) as

D0(x
a,0) =

∑

p∈G

da,0
p,0(x

p,0 ⊗ x−p+a,1 − xp,1 ⊗ x−p+a,0). (2.34)

In particular, for a = −1 and a = 2, one has

D0(x
−1,0) =

∑

p∈G

d−1,0
p,0 (xp,0 ⊗ x−p−1,1 − xp,1 ⊗ x−p−1,0), (2.35)

D0(x
2,0) =

∑

p∈G

d2,0
p,0(x

p,0 ⊗ x−p+2,1 − xp,1 ⊗ x−p+2,0). (2.36)

Applying D0 to [x−1,0, x2,0] = 0, we obtain

∑

p∈G

(−2d2,0
p,0x

p,0 ⊗ x−p+1,0 + 2d2,0
p+1,0x

p,0 ⊗ x−p+1,0
)

=
∑

p∈G

(d−1,0
p,0 xp,0 ⊗ x−p+1,0 − d−1,0

p−2,0x
p,0 ⊗ x−p+1,0

)

.

Comparing the coefficients of xp,0 ⊗ x−p+1,0, we have

2d2,0
p+1,0 − 2d2,0

p,0 + d−1,0
p−2,0 − d−1,0

p,0 = 0. (2.37)

According to (2.31), we can write D0(x
0,2) as

D0(x
0,2)=

∑

p∈G

(d0,2
p,0x

p,0⊗ x−p,3+ d0,2
p,1x

p,1⊗ x−p,2+ d0,2
p,2x

p,2⊗ x−p,1+ d0,2
p,3x

p,3⊗ x−p,0). (2.38)

Applying D0 to [x0,0, x0,2] = −2x0,1, we obtain

∑

p∈G

(3d0,2
p,0x

p,0 ⊗ x−p,2 + d0,2
p,1x

p,0 ⊗ x−p,2 + 2d0,2
p,1x

p,1 ⊗ x−p,1

+ 2d0,2
p,2x

p,1 ⊗ x−p,1 + d0,2
p,2x

p,2 ⊗ x−p,0 + 3d0,2
p,3x

p,2 ⊗ x−p,0) = 0.

Comparing the coefficients of xp,0 ⊗ x−p,2, xp,2 ⊗ x−p,0 and xp,1 ⊗ x−p,1, we obtain

3d0,2
p,0 + d0,2

p,1 = 0, d0,2
p,2 + 3d0,2

p,3 = 0, d0,2
p,1 + d0,2

p,2 = 0. (2.39)

According to equations (2.38) and (2.39), we can rewrite D0(x
0,2) as

D0(x
0,2) =

∑

p∈G

d0,2
p,0(x

p,0 ⊗ x−p,3 − 3xp,1 ⊗ x−p,2 + 3xp,2 ⊗ x−p,1 − xp,3 ⊗ x−p,0). (2.40)

Using the following facts

x0,1 · (xp,0 ⊗ x−p,2 + xp,2 ⊗ x−p,0 − 2xp,1 ⊗ x−p,1) = 0, (2.41)

x0,0 · (xp,0 ⊗ x−p,2 + xp,2 ⊗ x−p,0 − 2xp,1 ⊗ x−p,1) = 0, (2.42)

and

x0,2 · (xp,0 ⊗ x−p,2 + xp,2 ⊗ x−p,0 − 2xp,1 ⊗ x−p,1)

= 2p(xp,0 ⊗ x−p,3 − 3xp,1 ⊗ x−p,2 + 3xp,2 ⊗ x−p,1 − xp,3 ⊗ x−p,0), (2.43)
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and replacing D0 by D0−uinn, where u is a combination of xp,0⊗x−p,2+xp,2⊗x−p,0−2xp,1⊗x−p,1

for p 6= 0 (this replacement does not affect (2.17) and (2.18)), we can rewrite (2.38) as

D0(x
0,2) = d0,2

0,0(x
0,0 ⊗ x0,3 − 3x0,1 ⊗ x0,2 + 3x0,2 ⊗ x0,1 − x0,3 ⊗ x0,0). (2.44)

According to the following facts

x0,1 · (x0,0 ⊗ x0,2 + x0,2 ⊗ x0,0 − 2x0,1 ⊗ x0,1) = 0,

x0,0 · (x0,0 ⊗ x0,2 + x0,2 ⊗ x0,0 − 2x0,1 ⊗ x0,1) = 0,

x0,2 · (x0,0 ⊗ x0,2 + x0,2 ⊗ x0,0 − 2x0,1 ⊗ x0,1) = 0,

and

x−1,0 · (x0,0 ⊗ x0,2 + x0,2 ⊗ x0,0 − 2x0,1 ⊗ x0,1)

= −4(x0,0 ⊗ x−1,1 − x0,1 ⊗ x−1,0) + 4(x−1,0 ⊗ x0,1 − x−1,1 ⊗ x0,0),

and replacing D0 by D0−uinn, where u is a combination of x0,0⊗x0,2 +x0,2⊗x0,0−2x0,1⊗x0,1

(this replacement does not affect (2.17), (2.18) and (2.44)), we can suppose

d−1,0
0,0 = 0. (2.45)

Hence we can rewrite (2.35) as

D0(x
−1,0) =

∑

06=p∈G

d−1,0
p,0 (xp,0 ⊗ x−p−1,1 − xp,1 ⊗ x−p−1,0). (2.46)

For any a, b ∈ Z, a, b, a + b 6= 0, 1, applying D0 to

(a + b − 1)[xa,0, [xb,0, x0,2]] = 2(a − 1)(b − 1)[xa+b,0, x0,1],

we obtain
∑

p∈G

((a − 1)(b + 2a − 2p)db,0
p−a,0 + (a − 1)(1 + 2p − 2b)db,0

p,0 + (b − 1)(1 − p + b)da,0
p−b,0

+ (b − 1)(p − a + b)da,0
p,0 + (a − 1)(b − 1)da+b,0

p,0

)

xp,0 ⊗ x−p+a+b,1

+
∑

p∈G

((a − 1)(b − 2p)db,0
p,0 − (a − 1)(1 − 2p + 2a)db,0

p−a,0 − (b − 1)(2b − p)da,0
p−b,0

− (b − 1)(p + 1 − a)da,0
p,0 − (a − 1)(b − 1)da+b,0

p,0 )xp,1 ⊗ x−p+a+b,0

+ 3(a − 1)(b − 1)d0,2
0,0(−x0,0 ⊗ xa+b,1 + xb,0 ⊗ xa,1 + xa,0 ⊗ xb,1 − xa+b,0 ⊗ x0,1

− xb,1 ⊗ xa,0 − xa,1 ⊗ xb,0 + x0,1 ⊗ xa+b,0 + xa+b,1 ⊗ x0,0) = 0. (2.47)

Comparing the coefficients of xp,0 ⊗ x−p+a+b,1 and xp,1 ⊗ x−p+a+b,0 where p 6= 0, a, b, a + b in

(2.47), we obtain

0 = (a − 1)(b + 2a− 2p)db,0
p−a,0+(a − 1)(1 + 2p − 2b)db,0

p,0+(b − 1)(1 − p + b)da,0
p−b,0

+ (b − 1)(p − a + b)da,0
p,0 + (a − 1)(b − 1)da+b,0

p,0 , (2.48)

0 = (a − 1)(b − 2p)db,0
p,0 − (a − 1)(1 − 2p + 2a)db,0

p−a,0 − (b − 1)(2b − p)da,0
p−b,0

− (b − 1)(p + 1 − a)da,0
p,0 − (a − 1)(b − 1)da+b,0

p,0 . (2.49)
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Replacing a, b with b, a in both equations (2.48) and (2.49), we obtain

0 = (b − 1)(a + 2b − 2p)db,0
p−b,0 + (b − 1)(1 + 2p− 2a)da,0

p,0 + (a − 1)(1 − p + a)db,0
p−a,0

+ (a − 1)(p − b + a)db,0
p,0 + (b − 1)(a − 1)da+b,0

p,0 , (2.50)

0 = (b − 1)(a − 2p)da,0
p,0 − (b − 1)(1 − 2p + 2b)da,0

p−b,0 − (a − 1)(2a − p)db,0
p−a,0

− (a − 1)(p + 1 − b)db,0
p,0 − (b − 1)(a − 1)da+b,0

p,0 . (2.51)

Adding (2.49) to (2.48), we obtain

2(b − 1)((a − 1)db,0
p−a,0 + (1 − a)db,0

p,0 + (1 − 3b)da,0
p−b,0 + (1 − b)da,0

p,0) = 0. (2.52)

Adding (2.51) to (2.48), we obtain

0 = 2((ab + p − b − ap)db,0
p−a,0 + (b + ap − ab − p)db,0

p,0

+ (3b + bp − 3b2 − p)da,0
p−b,0 + (b2 + p − b − bp)da,0

p,0). (2.53)

Multiplying (2.53) by (a − 1), (2.52) by −2(ab + p − b − ap), and then adding both results

together, one has

−8(a − 1)(b − 1)b(p + b − 1)da,0
p,0 = 0. (2.54)

According to (2.54), for a 6= 0, 1, we have

da,0
p,0 = 0, unless p = 0, a. (2.55)

For a, b, a + b 6= 0, 1, a 6= b, comparing the coefficients of x0,0 ⊗ xa+b,1, xb,0 ⊗ xa+b,1 and

xa+b,0 ⊗ xa+b,1 in (2.47), we respectively obtain

(a − 1)(2a + b)db,0
−a,0 + (a − 1)(1 − 2b)db,0

0,0 + (b − 1)(1 + b)da,0
−b,0

+ (b − 1)(−a + b)da,0
0,0 + (a − 1)(b − 1)da+b,0

0,0 − 3(a − 1)(b − 1)d0,2
0,0 = 0, (2.56)

(a − 1)(2a − b)db,0
b−a,0 + (a − 1)db,0

b,0 + (b − 1)da,0
0,0

− a(b − 1)da,0
b,0 + (a − 1)(b − 1)da+b,0

b,0 + 3(a − 1)(b − 1)d0,2
0,0 = 0. (2.57)

Combining equations (2.55) and (2.56), we get

d0,2
0,0 = 0. (2.58)

Then according to (2.44), one has

D0(x
0,2) = 0. (2.59)

Hence, combining equations (2.55) and (2.57)–(2.58), one has

(a − 1)db,0
b,0 + (b − 1)da,0

0,0 = 0. (2.60)

According to equation (2.45), and taking a = −1, b = 3 in (2.60), we have

d3,0
3,0 = 0. (2.61)
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For a = b 6= 0,±1, comparing the coefficients of xa,1 ⊗ xa,0 in (2.47), one has

(a + 1)da,0
a,0 + (a + 1)da,0

0,0 + (a − 1)d2a,0
a,0 + 6(a − 1)d0,2

0,0 = 0. (2.62)

Taking a = 3 in (2.62), by (2.55), (2.58) and (2.61) we can deduce

d3,0
0,0 = 0. (2.63)

According to equation (2.63), and taking a = 3, b = −1 in (2.60), we have

d−1,0
−1,0 = 0. (2.64)

Finally, by equations (2.55), (2.45), (2.61), (2.63) and (2.64), we deduce

D0(x
−1,0) = D0(x

3,0) = 0. (2.65)

Note that {xa,j | (a, j) ∈ Z × Z} can be generated by the set {x−1,0, x0,2, x3,0}. According

to the facts that we have proved in (2.59) and (2.65), we can easily deduce that D0(x
a,j) = 0

for (a, j) ∈ Z × Z.

Now we can finish the proof of Claim 2.3 as follows.

Applying D0 to [x0,0, xa,0] = 0 and [x−1,0, xa,0] = 0 respectively, using (2.32) we can deduce

that

da,0
p,0 = −da,0

p,1 and da,0
p,0 = −da,0

p+1,1. (2.66)

That is, da,0
p,1 = da,0

p+1,1. According to the fact that the set {p ∈ G | da,0
p,1 6= 0} is of finite order,

we obtain

da,0
p,1 = 0 for any p ∈ G. (2.67)

Then by (2.66), we also have

da,0
p,0 = 0 for any p ∈ G. (2.68)

Thus D0(x
a,0) = 0 for any a ∈ G. Since, for any element a ∈ G and i ∈ Z, we always have

[xa,0, x0,i+1] = (a − 1)(i + 1)xa,i,

it follows that, for any element a ∈ G and i ∈ Z,

D0(x
a,i) = 0.

This proves Claim 2.3.

Claim 2.4 D0 = 0.

By Claims 2.1–2.3, we have D0(B) ⊆ F(C ⊗ C). Since [B, B] = B, we obtain

D0(B) ⊆ B · (D0(B)) = 0.
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We can obtain D0(x
a,j) = 0 for any a ∈ G, j ∈ Z. Then, Claim 2.4 follows.

Claim 2.5 For every D ∈ Der(B, V ), (2.8) is a finite sum.

By the above claims, we can suppose Da = (va)inn for some va ∈ Va and a ∈ G. If

G′ = {a ∈ G\{0} | va 6= 0} is an infinite set, we see that

D(∂) =
∑

a∈G′∪{0}

∂ · va =
∑

a∈G′

ava

is an infinite sum, which is not an element in V , contradicting the fact that D is a derivation

from B to V . This proves Claim 2.5 and the proposition.

Lemma 2.3 Suppose v ∈ V such that b · v ∈ Im(1 − τ) for all b ∈ B. Then v ∈ Im(1 − τ).

Proof (cf. [10]) First note that B · Im(1 − τ) ⊂ Im(1 − τ). We shall prove that after a

number of steps in each of which v is replaced by v−u for some u ∈ Im(1− τ), the zero element

is obtained and thus v ∈ Im(1 − τ) is proved. Write

v =
∑

x∈G

vx.

Obviously,

v ∈ Im(1 − τ) ⇔ vx ∈ Im(1 − τ) for all x ∈ G. (2.69)

Then
∑

x∈G

xvx = ∂ · v ∈ Im(1 − τ).

By (2.69), xvx ∈ Im(1 − τ), in particular,

vx ∈ Im(1 − τ), if x 6= 0.

Thus by replacing v by v −
∑

06=x∈G

vx, we can suppose

v = v0 ∈ V0.

Now we can write

v =
∑

p,q,r

wp,q,rx
p,q ⊗ x−p,r (2.70)

for some wp,q,r ∈ F. Choose any total order on G compatible with its additive group structure.

Since

up,q,r := xp,q ⊗ x−p,r − x−p,r ⊗ xp,q ∈ Im(1 − τ),

replacing v by v − u, where u is a combination of some up,q,r, we can suppose

wp,q,r 6= 0 ⇒ p > 0 or p = 0. (2.71)
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First assume that wp,q,r 6= 0 for some p > 0, q, r when (p, q) 6= (1, 0). Choose s, t > 0 such that

(s − 1)q − t(p − 1) 6= 0.

Then we see that the term xp+s,q+t−1 ⊗ x−p,r appears in xs,t · v, but (2.71) implies that the

term x−p,r ⊗ xp+s,q+t−1 does not appear in xs,t · v, which is in contradiction with the fact that

xs,t · v ∈ Im(1 − τ). Then assume that w0,q,r 6= 0 for some q, r. Choose s < 0, t > 0 such that

(s − 1)r + t 6= 0.

Then we see that the term x0,q ⊗ xs,t+r−1 appears in xs,t · v, but (2.71) implies that the term

xs,t+r−1 ⊗ x0,q does not appear in xs,t · v, which is again in contradiction with the fact that

xs,t · v ∈ Im(1 − τ). By now, we can write

v =
∑

r

wrx
1,0 ⊗ x−1,r. (2.72)

We have to prove wr = 0 for all r ∈ Z. If there is some r0 ∈ Z such that wr0
6= 0, then there is

some s, t > 0, (s, t) 6= (2, 1 − r0) satisfying

(s − 1)r0 + 2t 6= 0.

That is, there is some xs,t ∈ B such that

(1 + τ)(xs,t · (x1,0 ⊗ x−1,r0)) 6= 0.

This contradicts the facts that Im(1− τ) ⊂ Ker(1 + τ) and b · v ∈ Im(1− τ) for all b ∈ B. Thus

v ∈ Im(1 − τ).

This proves the lemma.

Proof of Theorem 1.1 Let (B, [ · , · ], ∆) be a Lie bialgebra structure on B. By (1.7), (2.4)

and Proposition 2.1, ∆ = ∆r is defined by (1.9) for some r ∈ B⊗B. By (1.3), Im∆ ⊂ Im(1−τ).

Thus by Lemma 2.3, r ∈ Im(1 − τ). Then (1.4), (2.1) and Corollary 2.1 show that c(r) = 0.

Thus Definition 1.2 says that (B, [ · , · ], ∆) is a triangular coboundary Lie bialgebra.
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