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Abstract Concerning a bounded sequence of finite energy weak solutions to the compress-
ible Navier-Stokes-Poisson system (denoted by CNSP), which converges up to extraction
of a subsequence, the limit system may not be the same system. By introducing Young
measures as in [6, 15], the authors deduce the system (HCNSP) which the limit func-
tions must satisfy. Then they solve this system in a subclass where Young measures are
convex combinations of Dirac measures, to give the information on the propagation of
density-oscillations. The results for strong solutions to (CNSP) (see Corollary 6.1) are also
obtained.
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1 Introduction

The motion of a compressible viscous isentropic fluid, confined in a bounded smooth domain

Ω ⊂ R
3, flowing under the self-gravitational force can be described as the system of the Navier-

Stokes-Poisson equations, i.e. for (t, x) ∈ (0, T ) × Ω,

ρt + div(ρu) = 0, (1.1)

(ρu)t + div(ρu ⊗ u) + ∇p− µ∆u − (λ+ µ)∇(divu) = ρ∇Φ, (1.2)

− ∆Φ = 4πg
(
ρ− 1

|Ω|

∫

Ω

ρ
)
, (1.3)

where the unknown functions ρ(t, x), u(t, x), p(t, x) = P (ρ) = aργ , Φ(t, x) denote the density,

velocity, pressure and Newtonian gravitational potential of the fluid, respectively. The viscosity

coefficients µ, λ satisfy

µ > 0, λ+
2

3
µ ≥ 0.

g > 0 is the gravitational constant, a > 0 is a constant, and the adiabatic constant γ > 1.
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We complement this system with the initial-boundary conditions

ρ|t=0 = ρ0, (ρu)|t=0 = q0 in Ω,

u = 0,
∂Φ

∂ν
= 0 on (0, T )× ∂Ω

(1.4)

and refer to the system (1.1)–(1.4) as (CNSP).

The compressible fluids have been studied by many authors (see [3–7, 9–16, 19–20]). In

particular, for the system without Poisson term (i.e. Φ), namely Navier-Stokes equations, Lions

[12] proved the existence of weak solutions for γ > 9
5 for the general large initial data, and

Feireisl [4] presented some ideas to extend Lions’s result to the optimal constraint γ > 3
2 .

While for the full system (CNSP), using the techniques introduced in Lions [12], Feireisl [4]

and additional regularity results on the elliptic equation (1.3), Kobayashi [10] proved that there

exists a finite energy weak solution globally in time under the constraint γ > 3
2 . Here, a finite

energy weak solution in (0, T ) means a triplet of functions (ρ,u,Φ) satisfying

(1) ρ ≥ 0, ρ ∈ L∞(0, T ;Lγ(Ω)), u ∈ L2(0, T ;H1
0 (Ω)).

(2) E = E(t) ∈ L1
loc(0, T ) and d

dt
E(t) +

∫
Ω
µ|∇u|2 + (λ + µ)|divu|2 ≤ 0 holds in D′(0, T ),

where E is the total energy defined as

E(t) =

∫

Ω

1

2
ρ|u|2 +

a

γ − 1
ργ − 1

8πg
|∇Φ|2dx.

(3) Equations (1.1) and (1.2) are satisfied in D′((0, T )×Ω). Moreover, provided that ρ and

u are prolonged to be zero on R
3\Ω, (1.1) holds in D′((0, T ) × R

3).

(4) Φ(t, · ) = g
∫
Ω
G( · , y)ρ(t, y)dy for a.e. t ∈ (0, T ), where G = G(x, y) denotes the Green’s

function of the Poisson part.

(5) Moreover, equation (1.1) is satisfied in the sense of renormalized solutions, i.e.,

(b(ρ))t + div(b(ρ)u) + (b′(ρ)ρ− b(ρ))divu = 0, in D′((0, T )× Ω) (1.5)

for any b ∈ C1(R) such that

b′(z) = 0 for |z| large enough. (1.6)

On the other hand, since the time evolution of the density ρ is governed by the hyperbolic

equation (1.1), it is plausible to expect the oscillations in initial data will be transported by the

flow (see [4]). So, if we select a bounded sequence of finite energy weak solutions (ρn,un,Φn)

which converges to a triplet (ρ,u,Φ) up to the extraction if necessary, the limit functions may

not satisfy (CNSP), for instance, when densities oscillate faster and faster (see [12]). For this, in

Section 3 we will introduce Young measures, as done in [6], to deduce that the limit functions

must satisfy a “homogenized system” (HCNSP) (see Theorem 3.1), whose solutions are the

triplets of (ν,u,Φ), where

ν = {ν(t,x)}(t,x)∈(0,T )×Ω

is the Young measure (a family of probability measures, see Definition 3.1) associated with

the sequence {ρn}n∈N . Next, we intend to solve the system (HCNSP) in a subclass of Young

measures that ν can be expressed as a convex combination of finite Dirac measures, i.e.,

ν(t,x) =

k∑

i=1

αi(t, x)δρi(t,x), ∀ (t, x) ∈ (0, T )× Ω. (1.7)
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In Section 4, by a crucial technique, we instead begin to treat a reduced system (PHCNSP)

whose solutions a priori are solutions to (HCNSP) and we will prove that system (HCNSP)

admits at most one solution and actually is the only one solution to (PHCNSP), if the latter

exists (see Theorem 4.1). Then we will prove the local existence of solutions to (PHCNSP)

with initial data sufficiently regular in Section 5 and the global existence with small data in

Section 6. The theorems obtained in our paper give the information on the possible persistence

of oscillations in solutions to (CNSP).

2 Preliminaries

In this note, we denote the norms of the spaces Lp(Ω), Wm,p(Ω) and Hm(Ω) by | · |p,
‖ · ‖m,p and ‖ · ‖m respectively, while the norms of Lq(0, T ;Lp(Ω)), Lq(0, T ;Wm,p(Ω)) and

Lq(0, T ;Hm(Ω)) are denoted by |‖ · ‖|q,0,p, |‖ · ‖|q,m,p and |‖ · ‖|q,m respectively. The symbol

C is a positive generic constant depending at most on λ, µ, a, g, T and Ω which may take

different values in different formulas and C0 is a positive constant depending only on C and

initial data. We will point out special dependencies if necessary. We introduce the duality

bracket 〈 · , · 〉 between measures and bounded continuous functions, and the functions I and

P stand for the identity on R and x → axγ respectively. Let Y denote the set of continuous

functions b defined on R satisfying (1.6). For simplification of notations, we denote the operator

Lu = −µ∆u − (λ + µ)∇(divu). Finally, for a vector-function r = (r1, · · · , rm) defined over a

domain O, we shall use

r := sup
i=1,··· ,m

sup
y∈O

ri(y), r := inf
i=1,··· ,m

inf
y∈O

ri(y).

We consider a bounded sequence of global finite energy weak solutions (ρn,un,Φn) which

converges to a triplet (ρ,u,Φ) in some sense (see Theorem 3.1). In this paper, convergences of

sequences are implicitly considered up to the extraction of a subsequence. To get the system

(HCNSP) which the limit functions satisfy, we need the following lemmas.

Lemma 2.1 Given b ∈ Y with compact support, let b(ρn) → b weakly-∗ in L∞((0, T )×Ω).

Then for all φ ∈ D((0, T ) × Ω), we have

lim
n→∞

∫ T

0

∫

Ω

[(P (ρn) − (λ+ 2µ)div(un))b(ρn)]φ(t, x)dxdt

=

∫ T

0

∫

Ω

[(q − (λ+ 2µ)divu)b]φ(t, x)dxdt, (2.1)

where q and u are the limit functions which will be found in Theorem 3.3.

Proof See [10, Lemma 4.2] for details, just replacing Tk there by b without any other

modifications.

Lemma 2.2 Let (X,µ) be a measurable set with finite measure. Assume that fn : X → R

is a sequence in Lα(X,µ) (1 ≤ α <∞) converging weakly to f in this space. Then

lim
k→∞

lim sup
n→∞

∫

{|fn|>k}

|fn|dµ = 0. (2.2)

Proof See [6, Lemma 2].
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3 Homogenized System (HCNSP)

In this section, we will introduce Young measures to derive the system (HCNSP) (to be

explained later), and this will be done in the following theorems.

Theorem 3.1 Let γ > 3
2 . Assume (ρn,un,Φn) to be a bounded sequence of global finite

energy weak solutions, and the limit functions

ρ ∈ L∞(0, T ;Lγ(Ω)), u ∈ L2(0, T ;H1
0(Ω)), Φ ∈ L∞(0, T ;W 2,γ(Ω)).

Then there exists a Young measure, ν = {ν(t,x)}(t,x)∈(0,T )×Ω, a family of probability measures,

such that

( i ) we have

〈ν, I〉 = ρ and 〈ν, P 〉 = q for some q, in a sense to be precise; (3.1)

( ii ) for all b ∈ C(R+), smooth, with compact support,

(〈ν, b〉)t + div(〈ν, b〉u) + 〈ν, (Ib′ − b)〉divu

=
〈ν, (Ib′ − b)〉q − 〈ν, (Ib′ − b)P 〉

λ+ 2µ
, in D′((0, T ) × Ω); (3.2)

(iii) ρ, q,u and Φ satisfy





ρt + div(ρu) = 0,

(ρu)t + div(ρu ⊗ u) + ∇q + Lu = ρ∇Φ, in D′((0, T ) × Ω),

−∆Φ = 4πg
(
ρ− 1

|Ω|

∫

Ω

ρ
)

(3.3)

together with the boundary conditions

u = 0,
∂Φ

∂ν
= 0, on (0, T )× ∂Ω. (3.4)

Proof The uniform bounds on the solutions imply that there exists a triplet

ρ ∈ L∞(0, T ;Lγ(Ω)), u ∈ L2(0, T ;H1
0 (Ω)), Φ ∈ L∞(0, T ;W 2,γ(Ω))

such that

ρn → ρ, in C([0, T ];Lγ
weak(Ω)), un → u, weakly in L2(0, T ;H1

0(Ω)),

ρnun → ρu, in C([0, T ];L
2γ

γ+1

weak(Ω)).

Then, for γ > 3
2 , 2γ

γ+1 >
6
5 , L

2γ
γ+1 (Ω) ⊂⊂ H−1(Ω), we have

ρnun ⊗ un → ρu⊗ u, in D′((0, T ) × Ω).

While the elliptic regularity guarantees ∇Φn → ∇Φ in C([0, T ];W 1,γ
weak(Ω)), then if γ ≥ 3, it is

easy to obtain ∇Φn → ∇Φ in C([0, T ];Lγ(Ω)), hence

ρn∇Φn → ρ∇Φ, in C([0, T ];L
γ
2

weak(Ω));
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if 3
2 < γ < 3, since W 1,γ(Ω) ⊂⊂ L

3γ
3−γ (Ω), we have ∇Φn → ∇Φ in C([0, T ];L

3γ
3−γ (Ω)), hence

ρn∇Φn → ρ∇Φ, in C([0, T ];L
3γ

6−γ

weak(Ω)).

Both cases imply that

ρn∇Φn → ρ∇Φ, in D′((0, T ) × Ω).

On the other hand, using the regularity properties of the Bogovskii operator, one may improve

integrability of ρn that P (ρn) is bounded in L
γ+θ

γ ((0, T )×Ω), where θ = 2
3γ−1 (see [10, Lemma

4.1] for more details). Then, P (ρn) → q weakly in L
γ+θ

γ ((0, T )× Ω).

Consequently, we can pass to the limit in (1.1)–(1.3) in the sense of distributions (at least)

to obtain (3.3), and the boundary conditions (3.4) follows directly from the convergences of un

and Φn. This proves (iii).

Now, we introduce Young measures. By the definition of Y , for any b ∈ Y , the sequence

{b(ρn)}n∈N is bounded in L∞((0, T ) × Ω) uniformly with respect to n. Then

b(ρn) → b, weakly- ∗ in L∞((0, T ) × Ω).

For almost every (t, x) ∈ (0, T ) × Ω, the functional: b → b(t, x) is a positive linear mapping

which maps the constant function R → {1} to 1 . Noticing that (Y, | · |∞) is separable, we may

in this way define a family of probability measures {ν(t,x)}(t,x)∈(0,T )×Ω such that

b(t, x) = 〈ν(t,x), b〉 ≡
∫

R

b(y)dν(t,x)(y), a.e. (t, x) ∈ (0, T )× Ω. (3.5)

Definition 3.1 We call ν := {ν(t,x)}(t,x)∈(0,T )×Ω the Young measure associated with the

sequence {ρn}n∈N .

For more general theory about Young measures, we let the readers refer to [2, 17, 18] for

instance.

Next, for any smooth b ∈ C(R+), with compact support, obviously b ∈ Y . As (ρn,un) is a

renormalized solution to (1.1), we have

b(ρn)t + div(b(ρn)un) = (b(ρn) − b′(ρn)ρn)div(un), in D′((0, T )× Ω). (3.6)

Hence, b(ρn) and b(ρn)t are bounded in L∞(Ω) and L2(0, T ;H−1(Ω)) respectively. Applying

the Aubin-Lions Lemma, we see that b(ρn) converges to b in L2(0, T ;H−1(Ω)). Then, b(ρn)un

converges to bu in the sense of distributions, at least. We can rewrite the right-hand side of

(3.6) as

RHSn =
(b(ρn) − b′(ρn)ρn)P (ρn) − (b(ρn) − b′(ρn)ρn)(P (ρn) − (λ+ 2µ)divun)

λ+ 2µ
,

where (Ib′ − b)P ∈ Y has compact support. Consequently, with Lemma 2.1, when n → ∞,

RHSn converges, in the sense of distributions, to

RHS∞ =
〈ν, (b− Ib′)P 〉 − 〈ν, (b− Ib′)〉(q − (λ+ 2µ)divu)

λ+ 2µ

and thus we have (3.2). This proves (ii).
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Finally, we give a sense to (i) in the following. As I and P do not belong to Y , we introduce

a family of truncation functions Tk : R
+ → R

+ defined by Tk(z) := min(z, k). Then Tk and

Tk ◦ P are two families of elements of Y . As Tk(z) = z for |z| ≤ k, by Lemma 2.2, we have

lim
k→∞

∫

Ω

|〈ν, Tk ◦ P 〉 − q| ≤ lim
k→∞

lim
n→∞

∫

{aρ
γ
n>k}

|k − aργ
n|dx ≤ lim

k→∞
2 lim

n→∞

∫

{aρ
γ
n>k}

|aργ
n|dx = 0.

Then we obtain lim
k→∞

〈ν, Tk ◦ P 〉 = q. Similarly, we can prove lim
k→∞

〈ν, Tk ◦ I〉 = ρ. We may in

this way set 〈ν, I〉 := lim
k→∞

〈ν, Tk ◦ I〉, 〈ν, P 〉 := lim
k→∞

〈ν, Tk ◦ P 〉 to obtain (i) and the proof of

Theorem 3.1 completed.

On the other hand, noticing that

ρn → ρ ∈ C([0, T ];Lγ
weak(Ω)) and ρnun → ρu ∈ C([0, T ];L

2γ
γ+1

weak(Ω)),

we may give initial conditions for the finite energy weak solutions, and initial data ρ0
n (resp. q0

n)

converges also weakly in Lγ(Ω) (resp. L
2γ

γ+1 (Ω)) to some ρ0 (resp. q0) such that ρ(0, · ) = ρ0

(resp. ρu(0, · ) = q0). Introducing b
0

:= lim b(ρ0
n), we obtain

Theorem 3.2 Under the assumptions of Theorem 3.1, there exists a family of probability

measures {ν0
x}x∈Ω, such that, for all smooth b ∈ Y with compact support,

〈ν, b〉(0, · ) = 〈ν0, b〉, a.e. x ∈ Ω, (3.7)

where ν is the Young measure derived in Theorem 3.1.

From now on, the system (3.2), (3.3) together with initial data (3.7), (ρu)t=0 = q0, boundary

conditions (3.4) and compatibility condition (3.1) is referred to as (HCNSP), standing for

Homogenized Compressible Navier-Stokes-Poisson equations.

In the sequel, we search solutions for the homogenized system (HCNSP), denoted by (ν,u,

Φ). Firstly, notice that Φ is determined by ρ in accordance with (3.3)3, so we search solutions to

(HCNSP) for (ν,u,Φ), implicitly (ν,u). As the density satisfies a hyperbolic equation, initial

oscillations may persist in time. So, if initial density oscillates between k values, it seems

reasonable to assume that it will oscillate as well at least locally in time. More precisely, as

in [6], let us introduce Sk
0 , the set of pairs (ν0,u0), such that u0 ∈ H1

0 (Ω) ∩ H2(Ω) and ν0

is the convex combination, with weights (α0
i )i=1,··· ,k ∈ H2(Ω) of Dirac measures located in

(ρ0
i )i=1,··· ,k ∈ H2(Ω), i.e.

ν0(x) =

k∑

i=1

α0
i (x)δρi

0(x).

Moreover, we assume r0 > 0, ρi
0(x) 6= ρj

0(x), ∀ i 6= j, ∀x ∈ Ω. The no-vacuum hypothesis is

added here for technical purpose. Consequently, the initial condition on ρu is translated into

a condition on u. Then by the motivation mentioned before, we plan to search solutions to

(HCNSP) (with initial data in Sk
0 ) in the subset. We denote by Sk

T the set of pairs (ν,u) where

u ∈ C([0, T ];H1
0 (Ω) ∩H2(Ω)) ∩ L2(0, T ;H3(Ω))

and ν is the convex combination, with weights (αi)i=1,··· ,k ∈ C([0, T ];H2(Ω)) of Dirac measures

located in (ρi)i=1,··· ,k ∈ C([0, T ];H2(Ω)), i.e.

ν(t, x) =

k∑

i=1

αi(t, x)δρi(t,x).
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Moreover, we assume r > 0, ρi(t, x) 6= ρj(t, x), ∀ i 6= j, ∀ (t, x) ∈ (0, T )× Ω.

The above formulas define a mapping (u, r := (ρ1, · · · , ρk),a := (α1, · · · , αk)) → (ν,u) that

enables us to identify Sk
T (resp. Sk

o ) with

Xk
T := (C([0, T ];H1

0 (Ω) ∩H2(Ω)) ∩ L2(0, T ;H3(Ω))) × C([0, T ];H2(Ω))2k

(resp. Xk
0 := (H1

0 (Ω) ∩ H2(Ω)) × H2(Ω)2k) with the corresponding restrictions to densities

(ρi 6= ρj) and weights (
∑
αi = 1, αi ≥ 0).

Now, we can search solutions for (HCNSP) inside Xk
T . And on such a subclass of solutions,

we can reduce the system (HCNSP) as follows.

Theorem 3.3 Given (u, r,a) ∈ Xk
T , we denote

fαi
:=

αi(aρ
γ
i − q)

λ+ 2µ
, fρi

:=
ρi(q − aρ

γ
i )

λ+ 2µ
, i = 1, · · · , k. (3.8)

Then, (u, r,a) is a solution to (HCNSP) with initial data (u0, r0,a0) ∈ Xk
0 , if and only if

ρ =
k∑

i=1

αiρi, q = a

k∑

i=1

αiρ
γ
i , (3.9)

and 




(αi)t + u · ∇αi = fαi
,

αi((ρi)t + div(ρiu)) = αifρi
,

(ρu)t + div(ρu ⊗ u) + ∇q + Lu = ρ∇Φ,

−∆Φ = 4πg
(
ρ− 1

|Ω|

∫

Ω

ρ
)

(3.10)

with initial-boundary conditions

u|∂Ω = 0,
∂Φ

∂ν

∣∣∣
∂Ω

= 0,

(u)|t=0 = u0, (αi)|t=0 = α0
i , (ρi)|t=0 = ρ0

i .

(3.11)

Proof We prove that (HCNSP) implies this new system. For this, let (u, r,a) be a solution

to (HCNSP). First, as ν satisfies (3.1), (3.9) holds. Next, for any smooth b ∈ Y with compact

support, let us denote bi := b(ρi) and b′i := b′(ρi). Applying (3.2) with b and replacing, one

recovers that

k∑

i=1

{((αi)t + u · ∇αi − fαi
)bi + (αi((ρi)t + div(ρiu)) − αifρi

)b′i} = 0. (3.12)

Because ρi(t, x) 6= ρj(t, x), ∀ i 6= j, ∀ (t, x) ∈ (0, T ) × Ω, and (bi, b
′
i)i=1,··· ,k are independent

functions, (3.12) implies (3.11)1 and (3.10)2. Other equations or conditions can be obtained by

immediate calculus and converse implication also.

Consequently, in the following, instead of searching (ν,u) solutions to (HCNSP), we look

for (u, r,a) solutions to (HCNSP) in Xk
T identifying implicitly the system (3.8)–(3.12).
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4 Uniqueness for (HCNSP)

We prove in this section an interesting uniqueness result for the system (HCNSP). For this,

first of all, notice that in (HCNSP) the equation (i.e. (3.10)2) concerning ρi is multiplied by αi.

It seems difficult to treat ρi if αi disappears. However, contrary to the equation (1.1) on ρ in

(CNSP), u is only involved through its characteristics, and we may reach a uniqueness result.

Motivated by this, we plan to study (HCNSP) replacing (3.10)2 by

(ρi)t + div(ρiu) = fρi
, i = 1, · · · , k,

and we complement the system where αi = 0 by the same equation. A solution to this new

system is a fortiori a solution to (HCNSP). Then, we prove that it is actually the only solution

to (HCNSP) in Xk
T if it exists.

Let us recall precisely the system under consideration




(αi)t + u · ∇αi = fαi

,

(ρi)t + div(ρiu) = fρi

(4.1)

together with 




(ρu)t + div(ρu ⊗ u) + ∇q + Lu = ρ∇Φ,

−∆Φ = 4πg
(
ρ− 1

|Ω|

∫

Ω

ρ
)
,

(4.2)

where ρ and q are defined by (3.9) and fαi
, fρi

by (3.8) accordingly. Complementing the

system with initial-boundary conditions (3.11), we denote this system by (PHCNSP), standing

for Positive Homogenized Compressible Navier-Stokes-Poisson equations.

We will prove that if the system (PHCNSP) has a solution in Xk
T then the system (HCNSP)

has only one solution, actually the unique solution to (PHCNSP). This can be deduced from

the fact that in our case Young measures are convex combinations of Dirac measures together

with the following uniqueness result.

Theorem 4.1 Assume that (u, r,a) and (û, r̂, â) ∈ Xk
T are solutions to (HCNSP) and

(PHCNSP) respectively. Then

u = û, a = â, (ρi)|αi>0 = (ρ̂i)|bαi>0, ∀ i = 1, · · · , k.

Proof First of all, denoting ρ, ρ̂, q and q̂ as in (3.9) respectively and setting w := u − û,

we can notice that

ρ− ρ̂ =

k∑

i=1

(αiρi − α̂iρ̂i), q − q̂ =

k∑

i=1

(αiρi − α̂iρ̂i)ρ̂
γ−1
i + αiρi(ρ

γ−1
i − ρ̂

γ−1
i ).

It is easy to check that for i = 1, · · · , k,

(αiρi)t + div(αiρiu) = 0, (α̂iρ̂i)t + div(α̂iρ̂iû) = 0.

Take the difference of these two equations, multiply it by (αiρi − α̂iρ̂i), and then integrate over

Ω (by parts). We obtain

d

dt

( |αiρi − α̂iρ̂i|22
2

)
+

∫

Ω

div((αiρi − α̂iρ̂i)u)(αiρi − α̂iρ̂i) + div(α̂iρ̂iw)(αiρi − α̂iρ̂i)dx = 0.
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Noticing that w|∂Ω = u|∂Ω = û|∂Ω = 0 and 0 ≤ αi, α̂i ≤ 1, we obtain for arbitrary ε > 0,

d

dt

( |αiρi − α̂iρ̂i|22
2

)

≤
∣∣∣
∫

Ω

1

2
divu(αiρi − α̂iρ̂i)

2dx
∣∣∣ +

∣∣∣
∫

Ω

divwα̂iρ̂i(αiρi − α̂iρ̂i)dx
∣∣∣

+
∣∣∣
∫

Ω

w · ∇(α̂iρ̂i)(αiρi − α̂iρ̂i)dx
∣∣∣

≤ C(|divu|∞|αiρi − α̂iρ̂i|22 + |α̂iρ̂i|∞|divw|2|αiρi − α̂iρ̂i|2 + |w|6|∇(α̂iρ̂i)|3|αiρi − α̂iρ̂i|2)
≤ C(‖u‖3|αiρi − α̂iρ̂i|22 + ‖α̂iρ̂i‖2|∇w|2|αiρi − α̂iρ̂i|2)
≤ C(ε)(‖u‖3 + ‖α̂iρ̂i‖2

2)|αiρi − α̂iρ̂i|22 + ε|∇w|22. (4.3)

As min(r, r̂) > 0, there exists a constant C0 depending on this minimum, such that

|q − q̂|2 ≤ C0

k∑

i=1

(|αiρi − α̂iρ̂i|2 + αi|ρi − ρ̂i|2). (4.4)

We also notice from (4.1) and (3.10) that

αi(ρi − ρ̂i)t + αidiv((ρi − ρ̂i)u) + αidiv(ρ̂iw)

=
αi[(ρi − ρ̂i)(q − aρ

γ
i ) + ρ̂i((q − q̂) − a(ργ

i − ρ̂
γ
i ))]

λ+ 2µ
.

Multiplying it by (ρi − ρ̂i) and then integrating over Ω, we obtain

d

dt

( ∫

Ω

αi(ρi − ρ̂i)
2

2
dx

)
= I1 + I2 + I3 + I4,

where

|I1| : =
∣∣∣
∫

Ω

(αi)t

(ρi − ρ̂i)
2

2
dx−

∫

Ω

αidiv((ρi − ρ̂i)u)(ρi − ρ̂i)dx
∣∣∣

=
∣∣∣
∫

Ω

((αi)t + u.∇αi)
(ρi − ρ̂i)

2

2
dx−

∫

Ω

divu
αi(ρi − ρ̂i)

2

2
dx

∣∣∣

=
∣∣∣
∫

Ω

(αi(aρ
γ
i − q)

λ+ 2µ
− divu

)αi(ρi − ρ̂i)
2

2
dx

∣∣∣

≤ (C0 + |divu|∞)

∫

Ω

αi(ρi − ρ̂i)
2

2
dx,

|I2| : =
∣∣∣
∫

Ω

αidiv(ρ̂iw)(ρi − ρ̂i)dx
∣∣∣

≤
∣∣∣
∫

Ω

√
αi divwρ̂i

√
αi (ρi − ρ̂i)dx

∣∣∣ +
∣∣∣
∫

Ω

√
αi ∇ρ̂i · w

√
αi (ρi − ρ̂i)dx

∣∣∣

≤ |ρ̂i|∞|∇w|2|
√
αi (ρi − ρ̂i)|2 + |∇ρ̂i|3|w|6|

√
αi (ρi − ρ̂i)|2

≤ C‖ρ̂i‖2|
√
αi (ρi − ρ̂i)|2|∇w|2

≤ C(ε)‖ρ̂i‖2
2|
√
αi (ρi − ρ̂i)|22 + ε|∇w|22,
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|I3| : =
∣∣∣
∫

Ω

αi(ρi − ρ̂i)
2(q − aρ

γ
i )

λ+ 2µ
dx

∣∣∣ ≤ C0

∫

Ω

αi(ρi − ρ̂i)
2

2
dx,

|I4| : =
∣∣∣
∫

Ω

αi(ρi − ρ̂i)ρ̂i((q − q̂) + a(ργ
i − ρ̂

γ
i ))

λ+ 2µ
dx

∣∣∣ ≤ C(ε, C0)

∫

Ω

αi(ρi − ρ̂i)
2

2
dx+ ε|q − q̂|22.

Here C0 depends on r, r, r̂ and r̂.

Gathering up all the estimates above, we obtain for any ε > 0,

d

dt
(|√αi (ρi − ρ̂i)|22) ≤ C(ε, C0)(1 + ‖u‖3 + ‖ρ̂i‖2

2)|
√
αi (ρi − ρ̂i)|22 + ε|∇w|22 + ε|q − q̂|22. (4.5)

Finally, according to (5.28) and (5.30), we have

d

dt

( |√ρw|22
2

)
+
µ

2
|∇w|22 ≤ C(m+M2 + ‖(û)t‖2

1)|ρ− ρ̂|22 + C|q − q̂|22 + CmM |w|22, (4.6)

where m,M are the same as that of Lemma 5.4. If we denote

N = |√ρw|22 +

k∑

i=1

(|αiρi − α̂iρ̂i|22 + |√αi (ρi − ρ̂i)|22),

by (4.3), (4.5), (4.6) and taking ε small enough, we obtain

d

dt
N(t) ≤ C0

(
1 + ‖ût‖2

1 + ‖u‖3 +
k∑

i=1

(‖α̂iρ̂i‖2
2 + ‖ρ̂i‖2

2)
)
N(t).

Noticing that N(0) = 0, and the term by which N is multiplied in the right-hand side of this

inequality is in L1(0, T ), we deduce that N(t) = 0 in [0, T ] by the Gronwall’s inequality. This

completes the proof.

With the help of this uniqueness criterion, in the sequel, in order to prove the existence (local

or global in time) of solutions to (HCNSP), it is enough to study the existence of solutions to

(PHCNSP) instead.

5 Local Existence for (PHCNSP)

In this Section, as mentioned in Section 4, we manage to prove the local existence of strong

solutions to the system (PHCNSP), and the global results will be settled in the next section.

Indeed, we shall prove

Theorem 5.1 Given (u0, r0,a0) ∈ Xk
0 , there exists a time T∗ > 0 depending on (‖u0‖2,

‖a0‖2, ‖r0‖2) and r0, such that there is a unique solution to (PHCNSP) in Xk
T∗

.

The uniqueness part was proved as argued in the previous section. (Actually, it follows from

Theorem 4.1 that the system (PHCNSP) admits at most one solution in Xk
T , for any T > 0.) It

remains to prove the existence part and this will be done by linearizing the system (PHCNSP)

and then employing the Schauder fixed-point theorem. More precisely, the proof of Theorem

5.1 will be done in three steps. First, given

u ∈ C([0, T ];H1
0 (Ω) ∩H2(Ω)) ∩ L2(0, T ;H3(Ω)),
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we study the solution (r,a) to (4.1). Next, given (v, r,a) ∈ Xk
T , which satisfies compatibility

condition

ρt + div(ρv) = 0, (5.1)

with ρ defined as in (3.9), we consider the following linearization of (4.2):





(ρu)t + div(ρv ⊗ u) + ∇q + Lu = ρ∇Φ,

−∆Φ = 4πg
(
ρ− 1

|Ω|

∫

Ω

ρ
)
,

u|∂Ω = 0,
∂Φ

∂ν

∣∣∣
∂Ω

= 0,

(5.2)

with q defined as in (3.9). Finally, we employ the Schauder fixed-point theorem to conclude

the local existence of solutions, and complete the proof of Theorem 5.1.

5.1 Linearized hyperbolic problem

We quote here the results derived in [6], which concern the existence, uniqueness and regu-

larities of solutions to the system (4.1).

Lemma 5.1 Assume u ∈ C([0, T ];H1
0 (Ω) ∩H2(Ω)) ∩L2(0, T ;H3(Ω)). Then there exists a

small time T∗, depending only on the norms of (u0, r0,a0) and r0, such that there is a (unique)

solution (r,a) ∈ C([0, T∗];H
2(Ω)) to the system (4.1) with initial data (r0,a0). Moreover,

(rt,at) ∈ C([0, T∗];H
1(Ω)) and ρi(t, x) 6= ρj(t, x), ∀ i 6= j, ∀ (t, x) ∈ (0, T ) × Ω.

Restricting a little smaller T∗ if necessary, but keeping the same dependencies, we have the

following estimates:

1

2
r0 ≤ r ≤ r ≤ 2r0, (5.3)

|‖a‖|2∞,2 + |‖r‖|2∞,2 ≤ 4(‖a0‖2
2 + ‖r0‖2

2), (5.4)

|‖at‖|2∞,1 + |‖rt‖|2∞,1 ≤ C0(‖a0‖2
2 + ‖r0‖2

2)(‖a0‖2
2 + ‖r0‖2

2 + |‖u‖|2∞,2 + 1), (5.5)

where C0 is a constant depending on (r0, r0).

Proof See [6, Lemma 4].

Lemma 5.2 Given (u1,u2) ∈ C([0, T ];H1
0 (Ω)∩H2(Ω))∩L2(0, T ;H3(Ω)), let (T 1

∗ , (r1,a1))

and (T 2
∗ , (r2,a2)) be the times and solutions to (4.1) obtained in Lemma 5.1 with data u1, u2 re-

spectively. Denote T∗ = min(T 1
∗ , T

2
∗ ). Then there exists K>0, depending only on (|‖u1‖|2,3, T∗),

such that inside (0, T∗),

|‖r1 − r2‖|2∞,0 + |‖a1 − a2‖|2∞,0 ≤ K|‖u1 − u2‖|22,1. (5.6)

Proof See [6, Lemma 5].

5.2 Linearized parabolic-elliptic problem

In this subsection, that we say u is a solution to the linearized system (5.2) always implicitly

means that a pair of functions (u,Φ) satisfy (5.2)1, where Φ is in accordance with (5.2)2.

Concerning the linearized system (5.2), we can prove



512 Z. Tan and Y. J. Wang

Lemma 5.3 Let (ρ, q,v) ∈ C([0, T ];H2(Ω))2×C([0, T ];H1
0(Ω)∩H2(Ω))∩L2(0, T ;H3(Ω)),

satisfy compatibility condition (5.1), and assume further that

1

2
r0 ≤ ρ ≤ ρ ≤ 2r0, (ρt, qt) ∈ C([0, T ];H1(Ω)), vt ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

Then there exists a unique solution u to (5.2) satisfying

u ∈ C([0, T ];H1
0 (Ω) ∩H2(Ω)) ∩ L2(0, T ;H3(Ω)), ut ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

Proof For this ρ, by the classical elliptic theory, there is a unique solution Φ to (5.2)2, with

the regularity, Φ ∈ C([0, T ];H4(Ω)) and Φt ∈ C([0, T ];H3(Ω)). Notice that ρ ≥ ρ > 0 and with

(5.1), the linearized momentum equation (5.2)1 can be written as a linear parabolic system

ut + v.∇u + ρ−1Lu = F, (5.7)

where

F = −ρ−1∇q −∇Φ and Ft = ρ−1∇qt − ρ−2ρt∇q −∇Φt.

It is a simple matter to verify F ∈ C([0, T ];H1(Ω)) and Ft ∈ L∞(0, T ;L2(Ω)). Then the

existence and expected regularity of the unique solution u to (5.7) can be proved by applying

classical methods, for instance, the method of continuity (see [19]).

Lemma 5.4 Under the same assumptions of Lemma 5.3, moreover, if assume that there

exists (m,M), with M sufficiently big with respect to initial data and m, such that




v|t=0 = u0,

|‖v‖|2∞,2 + |‖v‖|22,3 + |‖vt‖|2∞,0 + |‖vt‖|22,1 ≤M,

|‖ρ‖|2∞,2 + |‖q‖|2∞,2 ≤ m,

|‖ρt‖|2∞,1 + |‖qt‖|2∞,1 ≤ (M +m)2,

then there exists a small time T∗ depending only on the initial data and (m,M), such that in

(0, T∗),

|‖u‖|2∞,2 + |‖u‖|22,3 + |‖ut‖|2∞,0 + |‖ut‖|22,1 ≤M,

where u is the solution to (5.2) obtained in previous lemma.

Proof of Lemma 5.4 Step 1 First of all, the regularity results on the elliptic equation

(5.2)2 together with Sobolev’s inequality yield

|∇Φ|2 ≤ ‖Φ‖2 ≤ C|ρ|2 and also |∇Φt|2 ≤ C|ρt|2. (5.8)

In view of (5.1), the linearized momentum equation (5.2)1 can be rewritten as the form

ρut + ρv.∇u + ρ∇Φ + ∇q + Lu = 0. (5.9)

Multiplying (5.9) by u and integrating over Ω, also using (5.1), we have

1

2

d

dt

( ∫

Ω

ρ|u|2dx
)

+

∫

Ω

µ|∇u|2 + (λ+ µ)|divu|2dx

= −
∫

Ω

(∇q · u + ρ∇Φ · u)dx

≤ C|q|22 + (λ + µ)|divu|22 + ρ|∇Φ|2|u|2
≤ C|q|22 + (λ + µ)|divu|22 + Cρ2|ρ|22 +

µ

2
|∇u|22.
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Integrating this inequality directly in time, one recovers that

|‖√ρu‖|2∞,0 + µ|‖∇u‖|22,0 ≤ |
√
ρ0 u0|22 + C(1 + ρ2)mT.

Consequently, choosing T small enough with respect to m and initial data, we obtain

|‖u‖|2∞,0 + |‖∇u‖|22,0 ≤ C0. (5.10)

Next, multiplying (5.9) by ut and integrating over Ω, we have

∫

Ω

ρ|ut|2dx+
d

dt

(∫

Ω

µ

2
|∇u|2 +

λ+ µ

2
|divu|2 − qdivudx

)

=

∫

Ω

−(ρv.∇u + ρ∇Φ)ut − qtdivudx

≤
∫

Ω

|qt||∇u| + |√ρv||∇u||√ρut| +
√
ρ |∇Φ||√ρut|dx

≤ |qt|22 +
1

4
|∇u|22 + ρ|v|2∞|∇u|22 +

1

4
|√ρut|22 + Cρ|∇Φ|22 +

1

4
|√ρut|22

≤ 1

2
|√ρut|22 + |qt|22 + Cρ|ρ|22 +

(
Cρ‖v‖2

2 +
1

4

)
|∇u|22.

Then, integrating in time, with the domination

∣∣∣
∫

Ω

qdivudx
∣∣∣ ≤ C|q|22 +

λ+ µ

2
|divu|22

and (5.10), we obtain

|‖√ρut‖|22,0 + µ|‖∇u‖|2∞,0

≤ C|‖q‖|2∞,0 + C(|‖qt‖|2∞,0 + ρ|‖ρ‖|2∞,0)T +
(
Cρ|‖v‖|2∞,2 +

1

2

)
|‖∇u‖|22,0

≤ Cm+ C[(M +m)2 + ρm]T + (ρM + 1)C0.

Consequently, choosing T small enough with respect to (m,M) and initial data, we obtain

|‖ut‖|22,0 + |‖∇u‖|2∞,0 ≤ C0(m+M + 1). (5.11)

To derive higher regularity estimates, we differentiate (5.9) with respect to t and obtain

ρutt + ρv.∇ut + Lut + ∇qt = −ρtut − ρtv.∇u − ρvt.∇u− ρt∇Φ − ρ∇Φt. (5.12)

Multiplying this equation by ut and integrating over Ω, as (ut)|∂Ω = 0, we obtain

1

2

d

dt

(∫

Ω

ρ|ut|2dx
)

+

∫

Ω

µ|∇ut|2 + (λ+ µ)|divut|2dx

=

∫

Ω

−ρt(ut + v.∇u + ∇Φ)ut − ρ(vt.∇u + ∇Φt)ut + qtdivutdx

≤ I1 + I2 + I3 + I4 + I5 + I6,
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where

I1 : =
∣∣∣
∫

Ω

ρt|ut|2dx
∣∣∣ ≤ |ρt|2|ut|

1
2

2 |ut|
3
2

6 ≤ C|ρt|2|ut|
1
2

2 |∇ut|
3
2

2 ≤ C|ρt|42|ut|22 +
µ

12
|∇ut|22,

I2 : =
∣∣∣
∫

Ω

ρtv.∇u · ut

∣∣∣dx ≤ |ρt|3|v|∞|∇u|2|ut|6 ≤ C‖ρt‖1‖v‖2|∇u|2|∇ut|2

≤ C‖ρt‖2
1‖v‖2

2|∇u|22 +
µ

12
|∇ut|22,

I3 : =
∣∣∣
∫

Ω

ρt∇Φ · ut

∣∣∣dx ≤ |ρt|3|∇Φ|2|ut|6 ≤ C‖ρt‖1|ρ|2|∇ut|2 ≤ C‖ρt‖2
1|ρ|22 +

µ

12
|∇ut|22,

I4 : =
∣∣∣
∫

Ω

ρvt.∇u · ut

∣∣∣dx ≤ |ρ|∞|vt|3|∇u|2|ut|6 ≤ C‖ρ‖2|vt|
1
2

2 |vt|
1
2

6 |∇u|2|∇ut|2

≤ C‖ρ‖2
2|vt|2‖vt‖1|∇u|22 +

µ

12
|∇ut|22,

I5 : =
∣∣∣
∫

Ω

ρ∇Φt · ut

∣∣∣dx ≤ |ρ|3|∇Φt|2|ut|6 ≤ C‖ρ‖2|ρt|2|∇ut|2 ≤ C‖ρ‖2
2|ρt|22 +

µ

12
|∇ut|22,

I6 : =
∣∣∣
∫

Ω

qtdivutdx
∣∣∣ ≤ C|qt|22 +

µ

12
|∇ut|22.

Summing up all the estimates I1–I6 together with (5.10) and (5.11) yields

d

dt

(∫

Ω

ρ|ut|2dx
)

+

∫

Ω

µ|∇ut|2 ≤ C1

∫

Ω

ρ|ut|2dx+ C2‖vt‖1 + C3, (5.13)

where

C1 = C0(M +m)4, C2 = C0mM
1
2 (m+M + 1), C3 = C0(m+M + 1)4.

Applying the Gronwall Lemma, we have for any τ ≤ t ≤ T ,

(∫

Ω

ρ|ut|2dx
)
(t) ≤ eC1T

[( ∫

Ω

ρ|ut|2dx
)
(τ) + C2M

1
2

√
T + C3T

]
. (5.14)

On the other hand, as ρ > 0, we observe from (5.9) that

∫

Ω

ρ|ut|2dx ≤ C

∫

Ω

ρ|v|2|∇u|2 + ρ−1|Lu + ∇q|2 + ρ|∇Φ|2dx

≤ C

∫

Ω

ρ|v|2|∇u|2 + ρ−1|Lu + ∇q|2 + ρρ2dx

and thus there exists a constant C0 depending only initial data such that

lim sup
τ→0

∫

Ω

ρ|ut|2dx(τ) ≤ C0. (5.15)

Letting τ → 0 in (5.14) with (5.15) in mind, we can choose T small enough with respect to

(m,M) and initial data, such that

∫

Ω

ρ|ut|2dx(t) ≤ C0, ∀ t ∈ [0, T ]. (5.16)

Substituting (5.16) into (5.13) and integrating over (0, t), 0 ≤ t ≤ T with T chosen before, we

obtain

|‖ut‖|2∞,0 + |‖ut‖|22,1 ≤ C0, (5.17)
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where C0 depends only on initial data. So if choosing M ≥ 3C0, we have

|‖ut‖|2∞,0 + |‖ut‖|22,1 ≤ M

3
.

Step 2 Recall that L, with Dirichlet boundary condition, is an elliptic operator (see [1]).

Then

|‖u‖|2∞,2 ≤ C(|‖u‖|2∞,0 + |‖ρut‖|2∞,0 + |‖ρv.∇u‖|2∞,0 + |‖∇q‖|2∞,0 + |‖ρ∇Φ‖|2∞,0)

≤ C(|‖u‖|2∞,0 + ρ2|‖ut‖|2∞,0 + ρ2|‖v.∇u‖|2∞,0 + |‖q‖|2∞,1 + ρ2|‖ρ‖|2∞,0), (5.18)

where we may dominate (recall that v|t=0 = u0)

|‖v.∇u‖|∞,0 ≤ |u0.∇u0|2 +

∫ T

0

|(v.∇u)t|2dt

≤ C(‖u0‖2
2 + |‖vt‖|2,1|‖u‖|∞,2

√
T + |‖v‖|∞,2|‖ut‖|2,1

√
T ). (5.19)

Combining (5.17)–(5.19) and choosing T small enough with respect to M and initial data, we

have

|‖u‖|2∞,2 ≤ C0(1 +m). (5.20)

If we have chosenM such thatM is bigger than three times the right-hand side of this inequality,

then

|‖u‖|2∞,2 ≤ M

3
.

Step 3 Due to the same elliptic argument about L together with (5.17) and (5.20), we

obtain

|‖u‖|22,3

≤ C(|‖u‖|22,1 + |‖ρut‖|22,1 + |‖ρv.∇u‖|22,1 + |‖∇q‖|22,1 + |‖ρ∇Φ‖|22,1)

≤ C(|‖u‖|22,1 + |‖ρ‖|2∞,2|‖ut‖|22,1 + |‖ρ‖|2∞,2|‖v.∇u‖|22,1 + |‖q‖|22,2 + |‖ρ‖|2∞,2|‖ρ‖|22,1)

≤ C(|‖u‖|2∞,2T + |‖ρ‖|2∞,2|‖ut‖|22,1 + |‖ρ‖|2∞,2|‖v‖|2∞,2|‖u‖|2∞,2T + |‖q‖|2∞,2T + |‖ρ‖|4∞,2T )

≤ C((m+M + 1)2T +mC0).

By a similar argument as did for |‖u‖|∞,2, we can choose T sufficiently small with respect to

m,M and initial data, M large enough with respect to m and initial data such that

|‖u‖|22,3 ≤ M

3
.

The proof of Lemma 5.4 is completed.

On the other hand, for this linearized parabolic-elliptic system, we can also prove the fol-

lowing continuity property.

Lemma 5.5 Suppose that (ρ1,v1, q1) and (ρ2,v2, q2) satisfy the hypothesis of Lemma 5.4.

Let T∗ be the time obtained before. Let u1 and u2 be respectively the solutions to (5.2). Then

there exists K > 0 such that in (0, T∗),

|‖u1 − u2‖|2∞,0 + |‖u1 − u2‖|22,1 ≤ K(|‖ρ1 − ρ2‖|2∞,0 + |‖q1 − q2‖|2∞,0 + |‖v1 − v2‖|2∞,0). (5.21)
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Proof First recall that u1 and u2 satisfy

ρ1(u1)t + ρ1v1.∇u1 + ∇q1 + Lu1 = ρ1∇Φ1, (5.22)

ρ2(u2)t + ρ2v2.∇u2 + ∇q2 + Lu2 = ρ2∇Φ2, (5.23)

− ∆(Φ1 − Φ2) = 4πg
[
(ρ1 − ρ2) −

1

|Ω|

∫

Ω

(ρ1 − ρ2)
]
. (5.24)

If we set w = u1 − u2, taking the difference of (5.22) and (5.23), we have

ρ1wt + ρ1v1∇w + ∇(q1 − q2) + Lw = e + (ρ1 − ρ2)∇Φ1 + ρ2∇(Φ1 − Φ2), (5.25)

where e = −ρ1(v1 − v2)∇u2 − (ρ1 − ρ2)(u2)t − (ρ1 − ρ2)v2.∇u2.

Multiplying (5.25) by w and integrating over Ω, with the domination
∣∣∣
∫

Ω

∇(q1 − q2)wdx
∣∣∣ ≤ C|q1 − q2|22 + (λ+ µ)|divw|22,

we obtain

d

dt

( |√ρ1 w|22
2

)
+ µ|∇w|22

≤C|q1 − q2|22 +
∣∣∣
∫

Ω

ewdx
∣∣∣ +

∣∣∣
∫

Ω

(ρ1 − ρ2)∇Φ1wdx
∣∣∣ +

∣∣∣
∫

Ω

ρ2∇(Φ1 − Φ2)wdx
∣∣∣

:=C|q1 − q2|22 + I1 + I2 + I3. (5.26)

With the classical elliptic estimates, as often done in our paper, we have

|∇Φ1|3 ≤ C|ρ1|2, |∇(Φ1 − Φ2)|2 ≤ C|ρ1 − ρ2|2. (5.27)

By Lemma 5.4 and (5.27), we can dominate

I1 ≤
∫

Ω

|ρ1||v1 − v2||∇u2||w| + |ρ1 − ρ2||(u2)t||w| + |ρ1 − ρ2||v2||∇u2||w|dx

≤ |ρ1|∞|v1 − v2|2|∇u2|3|w|6 + |ρ1 − ρ2|2|(u2)t|3|w|6 + |ρ1 − ρ2|2|v2|∞|∇u2|3|w|6
≤ C‖ρ1‖2|v1 − v2|2‖u2‖2|∇w|2 + |ρ1 − ρ2|2(‖(u2)t‖1 + ‖v2‖2‖∇u2‖2)|∇w|2

≤ C(‖(u2)t‖2
1 +M2)|ρ1 − ρ2|22 + CmM |v1 − v2|22 +

3µ

10
|∇w|22,

I2 ≤ |∇Φ1|3|ρ1 − ρ2|2|w|6 ≤ C|ρ1|2|ρ1 − ρ2|2|∇w|2 ≤ Cm|ρ1 − ρ2|22 +
µ

10
|∇w|22,

I3 ≤ |ρ2|3|∇(Φ1 − Φ2)|2|w|6 ≤ C‖ρ2‖1|ρ1 − ρ2|2|∇w|2 ≤ Cm|ρ1 − ρ2|22 +
µ

10
|∇w|22.

Gathering up these estimates and substituting them into (5.26), we obtain

d

dt

( |√ρ1 w|22
2

)
+
µ

2
|∇w|22

≤ C(m+M2 + ‖(u2)t‖2
1)|ρ1 − ρ2|22 + C|q1 − q2|22 + CmM |v1 − v2|22. (5.28)

We notice that w|t=0 = 0. Integrating (5.28) in time yields in (0, T∗),
∣∣∣
∥∥∥
√
ρ1 w

2

∥∥∥
∣∣∣
2

∞,0
+
µ

2
|‖∇w‖|22,0

≤ K(m,M)
(
|‖ρ1 − ρ2‖|2∞,0

∫ T∗

0

(‖(u2)t‖2
1 + 1)dt+ |‖q1 − q2‖|2∞,0T∗ + |‖v1 − v2‖|2∞,0T∗

)

≤ K(m,M, T∗)(|‖ρ1 − ρ2‖|2∞,0 + |‖q1 − q2‖|2∞,0 + |‖v1 − v2‖|2∞,0).

We recall that w = u1 − u2, ρ1 ≥ r0. Then the desired result follows.
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5.3 Fixed-point argument

All the results obtained before guarantee the local existence of solutions to (PHCNSP), and

this will be done by a fixed-point argument via the Schauder fixed-point theorem. For this, let

V denote the set of velocity fields defined in [0,T] satisfying






v ∈ C([0, T ];H1
0 (Ω) ∩H2(Ω)) ∩ L2(0, T ;H3(Ω)),

vt ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

|‖v‖|2∞,2 + |‖v‖|22,3 + |‖vt‖|2∞,0 + |‖vt‖|22,1 ≤M,

v|t=0 = u0.

By the Aubin-Lions Lemma, we know that V is a compact space with respect to the topology

associated with the norm |‖ · ‖|∞,0 + |‖ · ‖|2,1. By Lemma 5.1, there exists a time T 1
∗ such that

for any v ∈ V, there is a unique solution (r,a) to (4.1). Moreover this solution satisfies the

estimates (5.3)–(5.5). Therefore there exist K1
0 , K

2
0 , depending on the initial data, such that

|‖ρ‖|2∞,2 + |‖q‖|2∞,2 ≤ K1
0 , |‖ρt‖|2∞,1 + |‖qt‖|2∞,1 ≤ K1

0(K2
0 +M), (5.29)

where ρ and q are defined by (3.9). Next, applying Lemmas 5.3 and 5.4, to this (v, ρ, q),

we see that there exists a time T 2
∗ such that there is a unique solution to (5.2) denoted by

Γ(v) where Γ is a well-defined mapping. Notice that m in Lemma 5.4 can be fixed by initial

date (see (5.29)), so if we have chosen M sufficiently big with respect to initial data and let

T = T∗ = min(T 1
∗ , T

2
∗ ), we have Γ(v) ∈ V. Finally, for v1,v2 ∈ V, applying Lemmas 5.2 and

5.5 to them respectively, we obtain (r1,a1, ρ1, q1,Γ(v1)) and (r2,a2, ρ2, q2,Γ(v2)). Moreover,

from (3.9) we have

|‖ρ1 − ρ2‖|2∞,0 + |‖q1 − q2‖|2∞,0 ≤ K3
0 (|‖r1 − r2‖|2∞,0 + |‖a1 − a2‖|2∞,0),

where K3
0 depends only on r0. Then by this together with Lemmas 5.2 and 5.5, we find

|‖Γ(v1) − Γ(v2)‖|2∞,0 + |‖Γ(v1) − Γ(v2)‖|22,1 ≤ K4
0 (|‖v1 − v2‖|2∞,0 + |‖v1 − v2‖|22,1),

whereK4
0 is a constant depending only on initial data. That is to say, the mapping Γ is Lipschitz

in V with respect to the norm |‖ · ‖|∞,0 + |‖ · ‖|2,1. Consequently, as a result of application of

the Schauder fixed-point theorem there is a fixed point to Γ in V, denoted by u. Then there

is a unique solution (r,a) to (4.1) with data u. By the definition of u the triplet (u, r,a) is a

solution to (PHCNSP) in Xk
T∗

. Moreover,





u ∈ C([0, T∗];H
1
0 (Ω) ∩H2(Ω)) ∩ L2(0, T∗;H

3(Ω)),

ut ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

(r,a) ∈ C([0, T∗];H
2(Ω)), (rt,at) ∈ C([0, T∗];H

1(Ω))

(5.30)

and r > 0, ρi(t, x) 6= ρj(t, x), ∀ i 6= j, ∀ (t, x) ∈ (0, T ) × Ω.

Up to now, the proof of Theorem 5.1 is completed.
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6 Global Existence for (PHCNSP)

In this section, the aim is to prove the global existence of solutions to (PHCNSP) for small

initial data. In the following, let ρ̃ be a strictly positive constant. We consider initial conditions

(u0, r0,a0) ∈ Xk
0 , and set r0 = ρ̃+ s0, i.e. ρ0

i = ρ̃+ σ0
i , i = 1, · · · , k. We have

Theorem 6.1 Given ρ̃ > 0 and a0 ∈ H2(Ω), there exists a strictly positive constant C(ρ̃,a0)

such that, for any initial data (u0, r0 := ρ̃+ s0,a0) ∈ Xk
0 satisfying

‖u0‖2
2 + ‖s0‖2

2 ≤ C(ρ̃,a0),

there is a unique global solution to (PHCNSP).

The same as local case, it is enough to prove the existence part. The key point in our

proof is to rewrite (PHCNSP) as a perturbation form in accordance with [6] that enable us

employ almost all the estimates presented in [6, Section 5] to complete our proof. For this,

let (u, r,a) ∈ Xk
T be a solution to (PHCNSP) satisfying (5.30). We rewrite r := ρ̃ + s with

s := (σ1, · · · , σk), and by (4.1)2, we have

(σi)t + u · ∇σi + ρ̃ div(u) = fσi
− σidivu, ∀ i = 1, · · · , k, (6.1)

where

fσi
:=

ρi(q − aρ
γ
i )

λ+ 2µ
, q := a

k∑

i=1

αiρ
γ
i ,

and the perturbation σ =
k∑

i=1

αiσi is a solution to

σt + u · ∇σ + ρ̃ divu = fσ, (6.2)

where fσ = −σdivu. We rewrite (4.2)1 as

ut − Ãu + q1∇σ = f + b (6.3)

with Ãu := µ̃∆u + β̃∇divu, where µ̃ = µeρ , β̃ = λ+µeρ and

f := −(u.∇u) − µ̃σ

ρ
∆u − β̃σ

ρ
∇div(u) + q1∇σ + ∇Φ − ∇P (ρ)

ρ
,

where q1 := aγρ̃γ−2 and b := ∇P (ρ)−∇q

ρ
.

Consequently, we can rewrite the (PHCNSP) as






σt + u · ∇σ + ρ̃ divu = fσ,

ut − Ãu + q1∇σ = f + b,

∆Φ = 4πg
(
σ − 1

|Ω|

∫

Ω

σ
)
,

u|∂Ω = 0,
∂Φ

∂ν

∣∣∣
∂Ω

= 0.

(6.4)

Notice carefully that the system (6.4) is similar to the system (44)–(46) of [6] except the term

f in which a Poisson term Φ satisfying the elliptic equation (6.4)3 is added. Thus all the
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estimates in [6] which do not involve f are still available for us, namely [6, Lemma 8] concerning

the estimates on σi and [6, Lemma 9] concerning the estimates on αi in [6]. Since [6, Lemma

10] involves the term f , we have to prove that it holds also for our system. Indeed, we prove

Lemma 6.1 There exist two norms we denote by ] · [m (resp. [ · ]m) equivalent to (resp.

dominated by) ‖ · ‖m, satisfying the following property:

Assume that (σ,u) ∈ C([0, T ];H2(Ω))×C([0, T ];H1
0(Ω)∩H2(Ω))∩L2(0, T ;H3(Ω)) satisfies

(6.4) and assume that ρ̃ satisfies

ρ̃

4
≤ ρ̃+ σ ≤ 3ρ̃, in (0, T ) × Ω.

Then there exist constants ci, i = 1, · · · , 5, such that, if we denote

φ(t) :=]u[21+]σ[22+c1]ut[
2
0+c2]σt[

2
0+c3[u]22, ψ(t) := ‖u‖2

3 + ‖σ‖2
2 + ‖ut‖2

1 + ‖σt‖2
1,

we have
dφ

dt
+ ψ ≤ c4ψ(φ+ φ2) + c5(‖b‖2

1 + ‖bt‖2
−1). (6.5)

Proof The notations ] · [m and [ · ]m come from [19] (see (4.40) and (4.42) there, re-

spectively). First notice that our aim inequality (6.5) is exactly (4.49) in [19] and all the

computations in [19, Section 4] from (4.6) until (4.42) are also true for our case since they do

not involve the expression of the term f . So in order to prove (6.5) we only have to prove that

the estimates (4.43) and (4.44) in [19] are also true here. But since the Poisson term Φ in f

which yields the difference satisfies the elliptic equation (6.4)3, it is easy to check the estimates

(4.43) and (4.44) in [19] by using the classical regularity results to dominate Φ in term of σ.

Consequently, we can complete our proof by the same method as in [19], just with a slightly

modification.

Since Lemma 6.1 is proved, [6, Lemmas 11–13] are also available for us. Thus we are able

to return to the proof of Theorem 6.1.

Proof of Theorem 6.1 The situation considered here is the same as [6, Section 5], so we

can combine our Lemma 6.1 with [6, Lemmas 8, 9 and 11–13], and then repeat the argument

presented in the last paragraph of [6, Section 5] without any modification to complete the proof

of Theorem 6.1 (see [6, Section 5] for more details).

Up to now, we have proved the local and global existence of solutions to (PHCNSP) with

different initial data respectively. By the arguments in Section 4, the solution is actually the

only solution to (HCNSP).

Finally, notice that if there is no oscillation, i.e. k = 1 in (1.7), the Young measure is a

deterministic family of Dirac measures. Specially, we obtain the following results for strong

solutions to (CNSP).

Corollary 6.1 Let γ > 1, ρ0 ∈ H2(Ω), u0 ∈ H1
0 (Ω) ∩H2(Ω) and ρ0 ≥ δ > 0 in Ω. There

exists T∗ > 0 such that there is a unique strong solution to (CNSP ) in [0, T∗] satisfying




u ∈ C([0, T∗];H
1
0 (Ω) ∩H2(Ω)) ∩ L2(0, T∗;H

3(Ω)),

ut ∈ L∞(0, T∗;L
2(Ω)) ∩ L2(0, T∗;H

1(Ω)),

ρ ∈ C([0, T∗];H
2(Ω)), ρt ∈ C([0, T∗];H

1(Ω))
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and ρ > 0 in (0, T∗)×Ω. Moreover, given a constant ρ̃ > 0, there exists C(ρ̃) > 0 such that for

any initial data (ρ0 = σ0 + ρ̃,u0) satisfying

‖u0‖2
2 + ‖σ0‖2

2 ≤ C(ρ̃),

the unique strong solution is global in time.
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