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1 Introduction

It is well-known that two non-constant polynomials f, g over an algebraic closed field of

characteristic zero are identical if there exist two distinct values a, b such that f−1(a) = g−1(a)

and f−1(b) = g−1(b).

In 1926, R. Nevanlinna [1] extended the above result to meromorphic functions. He showed

that, for two distinct non-constant meromorphic functions f and g on the complex plane C,

they can not have the same inverse images for five distinct values, and g is a special type of

linear fractional transformation of f if they have the same inverse counted with multiplicities

for four distinct values.

Over the last few decades, there have been several generalizations of Nevanlinna’s result to

the case of meromorphic mappings from Cn into the complex projective space PN (C).

The study of uniqueness theorems of meromorphic mappings from C
n into P

N(C) on a finite

set of hyperplanes in PN(C) began about 30 years ago and now has ample results.

Some of the first results concerning this research are due to H. Fujimoto [2, 3]. Consider

two distinct meromorphic mappings f and g from Cn into PN(C) satisfying the condition that

ν(f,Hj) = ν(g,Hj) for q hyperplanes H1, · · · , Hq in P
N (C) located in general position, where we

denote by ν(f,Hj) the map of Cn into Z whose value ν(f,Hj)(z) (z ∈ Cn) is the intersection

multiplicity of the images f and Hj at f(z). He proved the following brilliant theorems.

Theorem A Let f and g be two non-constant meromorphic mappings from Cn into PN (C).

Suppose that there exist 3N + 1 hyperplanes Hj , 1 ≤ j ≤ 3N + 1, in PN (C) located in general
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position such that f(Cn) 6⊂ Hj , g(Cn) 6⊂ Hj and ν(f,Hj) = ν(g,Hj), 1 ≤ j ≤ 3N + 1. Then there

is a projective linear transformation L of PN (C) such that L(f) = g.

Theorem B Let f and g be two non-constant meromorphic mappings from C
n into P

N (C),

at least one of which is linearly non-degenerate. Suppose that there exist 3N + 2 hyperplanes

Hj , 1 ≤ j ≤ 3N + 2, in PN (C) located in general position such that f(Cn) 6⊂ Hj , g(Cn) 6⊂ Hj

and ν(f,Hj) = ν(g,Hj), 1 ≤ j ≤ 3N + 2. Then f ≡ g.

Theorem C Let f and g be two non-constant meromorphic mappings from Cn into PN (C),

at least one of which is algebraically non-degenerate. Suppose that there exist 2N+3 hyperplanes

Hj , 1 ≤ j ≤ 2N + 3, in PN (C) located in general position such that f(Cn) 6⊂ Hj , g(Cn) 6⊂ Hj

and ν(f,Hj) = ν(g,Hj), 1 ≤ j ≤ 2N + 3. Then f ≡ g.

To state some results of the uniqueness problem with truncated multiplicities, we take a

linearly non-degenerate meromorphic mapping f : Cn → PN (C), a positive integer d and q

hyperplanes H1, · · · , Hq in general position.

For 1 ≤ j ≤ q, we set

ν(f,Hj),≤k(z) =

{

0, if ν(f,Hj)(z) > k,

ν(f,Hj)(z), if ν(f,Hj)(z) ≤ k,

ν(f,Hj),>k(z) =

{

0, if ν(f,Hj)(z) ≤ k,

ν(f,Hj)(z), if ν(f,Hj)(z) > k,

where k is a positive integer or k = +∞.

Assume that dim{z ∈ Cn | ν(f,Hi),≤k(z) > 0 and ν(f,Hj),≤k(z) > 0} ≤ n − 2, 1 ≤ i < j ≤ q.

Consider the set F(f, {Hj}q
j=1, k, d) of all linearly non-degenerate meromorphic mappings

g : Cn → PN (C) satisfying the conditions:

(a) min{ν(f,Hj),≤k, d} = min{ν(g,Hj),≤k, d}, 1 ≤ j ≤ q,

(b) f(z) = g(z) on
q⋃

j=1

{z ∈ Cn | ν(f,Hj),≤k(z) > 0}.

L. Smiley [4] gave the following uniqueness theorem:

Theorem D If q ≥ 3N + 2, then ♯F(f, {Hj}q
j=1, +∞, 1) = 1.

H. Fujimoto [5] proved the following result:

Theorem E If q = 3N + 1, then ♯F(f, {Hj}q
j=1, +∞, 2) ≤ 2.

There are several open problems related to the above results (cf. [5]). One of them is the

following:

Is it still true if the number q in Theorems D and E is replaced by a smaller one?

In [6], Thai and Quang improved the above results as follows:

Theorem F If N ≥ 2, then ♯F(f, {Hj}3N+1
j=1 , +∞, 1) = 1.

If N ≥ 4, then ♯F(f, {Hj}3N−1
j=1 , +∞, 2) ≤ 2.

Theorem G If N ≥ 2, then ♯F(f, {Hj}3N+1
j=1 , k, 2) = 1 for k >

(3N+1)(N+2)
2 .

If N ≥ 3, then ♯F(f, {Hj}3N
j=1, k, 2) = 1 for k > 3N2 + 12N + 23 + 48

N−2 .
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In [7], Dethloff and Tan obtained a uniqueness theorem for the case q = 3N + 1 − x.

Theorem H Let f, g be two linearly non-degenerate meromorphic mappings of Cn into

P
N (C) and {Hj}q

j=1 be q = 3N + 1 − x hyperplanes in P
N (C) in general position. Set

E
j
f = {z ∈ C

n | 0 ≤ ν(f,Hj)(z) ≤ k}, ∗E
j
f = {z ∈ C

n | 0 < ν(f,Hj)(z) ≤ k},

and similarly for Ej
g , ∗Ej

g, j = 1, · · · , q. Assume that

(a) min{ν(f,Hj), 1} = min{ν(g,Hj), 1} on E
j
f ∩ Ej

g, N + 2 + y ≤ j ≤ q,

min{ν(f,Hj), p} = min{ν(g,Hj), p} on E
j
f ∩ Ej

g, 1 ≤ j ≤ N + 1 + y,

where 1 ≤ y ≤ 2N and 2 ≤ p ≤ N ,

(b) dim(∗Ei
f ∩ ∗E

j
f ) ≤ n − 2, dim(∗Ei

g ∩ ∗Ej
g) ≤ n − 2, 1 ≤ i < j ≤ q,

(c) f = g on
q⋃

j=1

(∗Ej
f ∩ ∗Ej

g).

If 0 ≤ x < min{2N − y + 1,
(p−1)y
N+1+y

}, then f ≡ g for k ≥ 2N(N+1+y)(3N+p−x)
(p−1)y−x(N+1+y) .

Particularly, take N ≥ 2, y = 1, p = 2 and x = 0.

Corollary A Let f, g be two linearly non-degenerate meromorphic mappings of Cn into

PN (C) (N ≥ 2) and {Hj}3N+1
j=1 be hyperplanes in PN(C) in general position. Assume that

(a) min{ν(f,Hj), 1} = min{ν(g,Hj), 1} on E
j
f ∩ Ej

g, N + 3 ≤ j ≤ 3N + 1,

min{ν(f,Hj), 2} = min{ν(g,Hj), 2} on E
j
f ∩ Ej

g, 1 ≤ j ≤ N + 2,

(b) dim(∗Ei
f ∩ ∗E

j
f ) ≤ n − 2, dim(∗Ei

g ∩ ∗Ej
g) ≤ n − 2, 1 ≤ i < j ≤ 3N + 1,

(c) f = g on
3N+1⋃

j=1

(∗Ej
f ∩ ∗Ej

g).

Then f ≡ g for k ≥ N(N + 2)(6N + 4).

Take N ≥ 3, y = N + 2, p = 3 and x = 1.

Corollary B Let f, g be two linearly non-degenerate meromorphic mappings of Cn into

PN (C) (N ≥ 3) and {Hj}3N
j=1 be hyperplanes in PN (C) in general position. Assume that

(a) min{ν(f,Hj), 1} = min{ν(g,Hj), 1}, 2N + 4 ≤ j ≤ 3N ,

min{ν(f,Hj), 3} = min{ν(g,Hj), 3}, 1 ≤ j ≤ 2N + 3,

(b) dim(f−1(Hi) ∩ f−1(Hj)) ≤ n − 2, 1 ≤ i < j ≤ 3N ,

(c) f = g on
3N⋃

j=1

f−1(Hj).

Then f ≡ g.

Take N ≥ 2, y = I(
√

2N(N + 1) ), p = N and x = 2N − I(
√

2N(N + 1) ), where I(m) :=

min{k ∈ N | k > m} for a positive constant m.

Corollary C Let f, g be two linearly non-degenerate meromorphic mappings of Cn into

PN (C) (N ≥ 2) and {Hj}
N+I(

√
2N(N+1) )+1

j=1 be hyperplanes in PN (C) in general position. As-

sume that

(a) min{ν(f,Hj), N} = min{ν(g,Hj), N}, 1 ≤ j ≤ N + I(
√

2N(N + 1) ) + 1,

(b) dim(f−1(Hi) ∩ f−1(Hj)) ≤ n − 2, i 6= j,

(c) f = g on
N+I(

√
2N(N+1) )+1
⋃

j=1

f−1(Hj).
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Then f ≡ g.

In this paper, we will improve the result given by Dethloff and Tan [7].

Our main results are stated as follows.

Theorem 1.1 With the same assumptions as in Theorem H, if 0 ≤ x < min{2N − y +

1,
(p−1)y
N+1+y

}, then f ≡ g for k ≥ 2N(N+1+y)(3N+ p
2−x)

(p−1)y−x(N+1+y) .

For q = 3N , we obtain

Theorem 1.2 Let f, g be two linearly non-degenerate meromorphic mappings of Cn into

PN (C) (N ≥ 3) and {Hj}3N
j=1 be hyperplanes in PN (C) in general position such that

dim{z ∈ C
n | ν(f,Hi),≤k(z) > 0 and ν(f,Hj),≤k(z) > 0} ≤ n − 2, 1 ≤ i < j ≤ 3N.

Assume that

(a) min{ν(f,Hj),≤k, pj} = min{ν(g,Hj),≤k, pj}, 1 ≤ j ≤ 3N ,

(b) f(z) = g(z) on
3N⋃

j=1

{z ∈ Cn | ν(f,Hj),≤k(z) > 0}.

Then there exist N indices j2N+1, · · · , j3N with

pj2N+1 = · · · = pj3N
= 1 and pj1 = · · · = pj2N

= 3,

such that f ≡ g is still valid for k ≥ N2 + 6N + 12 + 24
N−2 .

Finally, we give a uniqueness theorem for 2N + 3 hyperplanes.

Theorem 1.3 Let f, g be two linearly non-degenerate meromorphic mappings of Cn into

PN (C) and {Hj}2N+3
j=1 be hyperplanes in PN (C) in general position such that

dim(f−1(Hi) ∩ f−1(Hj)) ≤ n − 2, 1 ≤ i < j ≤ 2N + 3.

Assume that

(a) min{ν(f,Hj), pj} = min{ν(g,Hj), pj}, 1 ≤ j ≤ 2N + 3,

(b) f = g on
2N+3⋃

j=1

f−1(Hj).

Then there exist 3 indices j2N+1, j2N+2, j2N+3 with

pj2N+1 = pj2N+2 = pj2N+3 = 1 and pj1 = · · · = pj2N
= N,

such that f ≡ g is still valid.

We note that Theorem 1.1 is an improvement of Theorem H, and Theorem 1.2 (Theorem

1.3) is a kind of improvement of Corollary B (Corollary C). Particularly, for N = 1, Theorem

1.3 is just the Nevanlinna Five Values Theorem.

2 Preliminaries and Some Lemmas

We first introduce some preliminaries from Nevanlinna theory.
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Let F (z) be a nonzero entire function on Cn. For a ∈ Cn, set F (z) =
+∞∑

m=0
Pm(z − a),

where the term Pm(z) is either identically zero or a homogeneous polynomial of degree m.

The number νF (a) := min {m | Pm 6= 0} is said to be the zero-multiplicity of F at a. Set

supp νF := {z ∈ Cn | νF (z) 6= 0}.
Let ϕ be a nonzero meromorphic function on Cn. For each a ∈ Cn, we choose nonzero

holomorphic functions F and G on a neighborhood U of a such that ϕ = F
G

on U and

dim(F−1(0) ∩ G−1(0)) ≤ n − 2, and we define νϕ := νF and ν∞
ϕ := νG, which are independent

of the choices of F and G.

For z = (z1, · · · , zn) ∈ Cn, we set ‖z‖ = (|z1|2 + · · · + |zn|2)
1
2 . For r > 0, define B(r) =

{z ∈ Cn | ‖z‖ < r}, S(r) = {z ∈ Cn | ‖z‖ = r}, dc = (4π
√
−1 )−1(∂ − ∂), v = (ddc‖z‖2)n−1

and σ = dc log ‖z‖2 ∧ (ddc log ‖z‖2)n−1.

Let f : Cn → PN (C) be a meromorphic mapping. We can choose holomorphic functions

f0, · · · , fN on Cn such that

If := {z ∈ C
n | f0(z) = · · · = fN (z) = 0}

is of dimension at most n − 2, and such that f = [f0, · · · , fN ]. Usually, [f0, · · · , fN ] is called a

reduced representation of f . The characteristic function of f is defined by

T (r, f) =

∫

S(r)

log ‖f‖σ −
∫

S(1)

log ‖f‖σ, r > 1.

Note that T (r, f) is independent of the choice of the reduced representation of f .

We now define counting function. For a hyperplane H = {(x0 : · · · : xN ) ∈ PN (C) |

a0x0 + · · ·+aNxN = 0}, (f, H) is said to be free if (f, H) =
N∑

i=0

aifi 6≡ 0. Under the assumption

that (f, H) is free, we define

νM
(f,H)(z) = min{M, ν(f,H)(z)},

νM
(f,H),≤k(z) =

{

0, if ν(f,H)(z) > k,

νM
(f,H)(z), if ν(f,H)(z) ≤ k,

νM
(f,H),>k(z) =

{

0, if ν(f,H)(z) ≤ k,

νM
(f,H)(z), if ν(f,H)(z) > k

for positive integers k, M (or k, M = +∞). Set

n(t) =







∫

supp ν(f,H)∩B(t)

ν(f,H)(z)v, if n ≥ 2,

∑

|z|≤t

ν(f,H)(z), if n = 1.

Similarly, we define nM (t), nM
≤k(t) and nM

>k(t).

Define

N(f,H)(r) =

∫ r

1

n(t)

t2n−1
dt, 1 < r < +∞.
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Similarly, we define NM
(f,H)(r), N

M
(f,H),≤k

(r) and NM
(f,H),>k

(r). For a nonzero meromorphic func-

tion ϕ, we can define the counting function N(r, ν∞
ϕ ) similarly.

We define the proximity function of H by

mf,H(r) =

∫

S(r)

log
‖f‖‖H‖
|(f, H)| σ −

∫

S(1)

log
‖f‖‖H‖
|(f, H)| σ, r > 1,

and the proximity function of a meromorphic function ϕ on Cn is defined by

m(r, ϕ) =

∫

S(r)

log+ |ϕ|σ.

Theorem 2.1 (First Main Theorem) T (r, f) = mf,H(r) + N(f,H)(r) + O(1).

Theorem 2.2 (Second Main Theorem) Let f be a linearly non-degenerate meromorphic

mapping of Cn into PN (C) and H1, · · · , Hq be hyperplanes in general position. Then

‖(q − N − 1)T (r, f) ≤
q

∑

j=1

NN
(f,Hj)(r) + o(T (r, f)),

where “‖” means the estimate holds for all large r outside a set of finite Lebesgue measure.

In [7], the second main theorem for multiple value is given as follows:

∥
∥
∥

(q − N − 1)(k + 1) − qN

k
T (r, f) ≤

q
∑

j=1

NN
(f,Hj),≤k(r) + o(T (r, f)), k ≥ N − 1. (2.1)

In [6], Thai and Quang proved that

∥
∥
∥

(q − N − 1)(k + 1) − qN

k + 1 − N
T (r, f) ≤

q
∑

j=1

NN
(f,Hj),≤k(r) + o(T (r, f)), k ≥ N − 1. (2.2)

We include the proof of (2.2) here for the completeness.

Proof By the second main theorem, we have

‖(q − N − 1)T (r, f) ≤
q

∑

j=1

NN
(f,Hj)

(r) + o(T (r, f))

≤
q

∑

j=1

NN
(f,Hj),≤k(r) +

q
∑

j=1

N

k + 1
N(f,Hj),>k(r) + o(T (r, f))

=

q
∑

j=1

NN
(f,Hj),≤k(r) +

q
∑

j=1

N

k + 1
(N(f,Hj)(r) − N(f,Hj),≤k(r)) + o(T (r, f))

≤
q

∑

j=1

(

1 − N

k + 1

)

NN
(f,Hj),≤k(r) +

Nq

k + 1
T (r, f) + o(T (r, f)).

It implies that

∥
∥
∥

(

q − N − 1 − Nq

k + 1

)

T (r, f) ≤
q

∑

j=1

(

1 − N

k + 1

)

NN
(f,Hj),≤k(r) + o(T (r, f)).
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Hence, we have (2.2).

Now we give some useful lemmas.

Take two distinct hyperplanes Hj , j = 1, 2 and consider a meromorphic function

FH1H2

f =
(f, H1)

(f, H2)
.

We have

Lemma 2.1 (cf. [8]) T (r, FH1H2

f ) ≤ T (r, f) + O(1).

Denote by S the set of all c ∈ CN+1 \ {0} such that

dim{z ∈ C
n | (f, Hj)(z) = (f, c)(z) = 0} ≤ n − 2,

dim{z ∈ C
n | (g, Hj)(z) = (g, c)(z) = 0} ≤ n − 2 for 1 ≤ j ≤ q.

We have

Lemma 2.2 (cf. [9]) S is dense in CN+1.

3 Proof of Main Results

For f, g, we set T (r) = T (r, f) + T (r, g).

Proof of Theorem 1.1 Assume that f 6≡ g. For any fixed j0, 1 ≤ j0 ≤ N + 1 + y, there

exists c ∈ S such that F
Hj0c

f − F
Hj0 c
g 6≡ 0 by Lemma 2.2.

Since min{ν(f,Hj0 ), p} = min{ν(g,Hj0 ), p} on E
j0
f ∩Ej0

g , we see that a zero point z0 of (f, Hj0)

with multiplicity ≤ k is either a zero point of (g, Hj0) with multiplicity ≤ k or a zero point

of (g, Hj0) with multiplicity > k. Then z0 is a zero point of F
Hj0c

f − F
Hj0c
g with multiplicity

≥ min{ν(f,Hj0 ), p} outside an analytic set of codimension ≥ 2.

For any j ∈ {1, · · · , q} \ {j0}, by f = g on
q⋃

j=1

(∗Ej
f ∩ ∗Ej

g), we have that a zero point of

(f, Hj) with multiplicity ≤ k is either a zero point of F
Hj0c

f − F
Hj0c
g or a zero point of (g, Hj)

with multiplicity > k outside an analytic set of codimension ≥ 2.

Hence

N
p

(f,Hj0 ),≤k
(r) +

∑

1≤j≤q
j 6=j0

N1
(f,Hj),≤k(r) ≤ N

F
Hj0

c

f
−F

Hj0
c

g

(r) +
∑

1≤j≤q
j 6=j0

N1
(g,Hj),>k(r). (3.1)

Remark 3.1 (3.1) improves (3.5) in [7].

By the first main theorem and Lemma 2.1, we get

N
F

Hj0
c

f
−F

Hj0
c

g

(r) +
∑

1≤j≤q
j 6=j0

N1
(g,Hj),>k(r)

≤ T (r, F
Hj0c

f − F
Hj0c
g ) +

1

k + 1

∑

1≤j≤q
j 6=j0

N(g,Hj)(r) + O(1)

≤ T (r) +
q − 1

k + 1
T (r, g) + O(1).
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By (3.1), we have

N
p

(f,Hj0 ),≤k
(r) +

∑

1≤j≤q
j 6=j0

N1
(f,Hj),≤k(r) ≤ T (r) +

q − 1

k + 1
T (r, g) + O(1).

Similarly

N
p

(g,Hj0 ),≤k
(r) +

∑

1≤j≤q
j 6=j0

N1
(g,Hj),≤k(r) ≤ T (r) +

q − 1

k + 1
T (r, f) + O(1).

Note that p ≤ N . Hence

p

N
(NN

(f,Hj0 ),≤k(r) + NN
(g,Hj0 ),≤k(r)) +

1

N

∑

1≤j≤q
j 6=j0

(NN
(f,Hj),≤k(r) + NN

(g,Hj),≤k(r))

≤ 2(k + 1) + q − 1

k + 1
T (r) + O(1) ≤ 2(k + 1) + q − 1

k
T (r) + O(1).

p − 1

N
(NN

(f,Hj0 ),≤k(r) + NN
(g,Hj0 ),≤k(r))

≤ 2(k + 1) + q − 1

k
T (r) − 1

N

q
∑

j=1

(NN
(f,Hj),≤k(r) + NN

(g,Hj),≤k(r)) + O(1). (3.2)

Using (2.1), we have

∥
∥
∥

(q − N − 1)(k + 1) − qN

k
T (r) ≤

q
∑

j=1

(NN
(f,Hj),≤k(r) + NN

(g,Hj),≤k(r)) + o(T (r)). (3.3)

By (3.2) and (3.3), we have

∥
∥
∥

p − 1

N
(NN

(f,Hj0 ),≤k(r) + NN
(g,Hj0 ),≤k(r)) + o(T (r))

≤
(2(k + 1) + q − 1

k
− (q − N − 1)(k + 1) − qN

Nk

)

T (r).

It means that

‖(NN
(f,Hj0 ),≤k(r) + NN

(g,Hj0 ),≤k(r)) + o(T (r)) ≤ (3N + 1 − q)(k + 1) + (2q − 1)N

k(p − 1)
T (r)

for all j0, 1 ≤ j0 ≤ N + 1 + y.

So

∥
∥
∥

N+1+y
∑

j=1

(NN
(f,Hj),≤k(r) + NN

(g,Hj),≤k(r)) + o(T (r))

≤ (N + 1 + y)((3N + 1 − q)(k + 1) + (2q − 1)N)

k(p − 1)
T (r). (3.4)

Using (2.1) again, we have

∥
∥
∥

y(k + 1) − N(N + 1 + y)

k
T (r) ≤

N+1+y
∑

j=1

(NN
(f,Hj),≤k(r) + NN

(g,Hj),≤k(r)) + o(T (r)). (3.5)
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From (3.4) and (3.5), we obtain

∥
∥
∥

y(k + 1) − N(N + 1 + y)

k
T (r) + o(T (r))

≤ (N + 1 + y)((3N + 1 − q)(k + 1) + (2q − 1)N)

k(p − 1)
T (r).

It implies that

(p − 1)(y(k + 1) − N(N + 1 + y)) ≤ (N + 1 + y)(x(k + 1) + (6N + 1 − 2x)N).

(Note that q = 3N + 1 − x.)

We have k + 1 ≤ 2N(N+1+y)(3N+ p
2−x)

(p−1)y−x(N+1+y) , which is a contradiction. Thus, we have f ≡ g.

Proof of Theorem 1.2 Assume that f 6≡ g. By changing indices, if necessary, we may

assume that

(f, H1)

(g, H1)
≡ (f, H2)

(g, H2)
≡ · · · ≡ (f, Hk1)

(g, Hk1)
︸ ︷︷ ︸

group 1

6≡ (f, Hk1+1)

(g, Hk1+1)
≡ · · · ≡ (f, Hk2)

(g, Hk2)
︸ ︷︷ ︸

group 2

6≡ · · · 6≡ (f, Hks−1+1)

(g, Hks−1+1)
≡ · · · ≡ (f, Hks

)

(g, Hks
)

︸ ︷︷ ︸

group s

,

where ks = 3N .

Since f 6≡ g, the number of elements of every group is at most N . For each i, 1 ≤ i ≤ N ,

we set j = i + N . Hence (f,Hi)
(g,Hi)

and
(f,Hj)
(g,Hj) belong to distinct groups, so that (f,Hi)

(g,Hi)
6≡ (f,Hj)

(g,Hj) .

Let

p2N+1 = · · · = p3N = 1 and p1 = · · · = p2N = 3.

Fixing an index i with 1 ≤ i ≤ N , we consider F
HiHj

f − F
HiHj
g 6≡ 0. Then, the following

four inequalities hold:

N3
(f,Hi),≤k(r) +

∑

1≤v≤3N

v 6=i,j

N1
(f,Hv),≤k(r) ≤ N

F
HiHj

f
−F

HiHj
g

(r),

N
F

HiHj

f
−F

HiHj
g

(r) ≤ T (r, F
HiHj

f − FHiHj
g )

= N(r, ν∞

F
HiHj

f
−F

HiHj
g

) + m(r, F
HiHj

f − FHiHj
g ) + O(1),

N(r, ν∞

F
HiHj

f
−F

HiHj
g

) ≤ N(r, νi), where νi(z) = max{ν(f,Hj)(z), ν(g,Hj)(z)},

m(r, F
HiHj

f − FHiHj
g ) ≤ m

(

r,
(f, Hi)

(f, Hj)

)

+ m
(

r,
(g, Hi)

(g, Hj)

)

+ O(1)

≤ T (r, f) + T (r, g) − N(f,Hj)(r) − N(g,Hj)(r) + O(1).

By the above four inequalities, it follows that

N3
(f,Hi),≤k(r) + (N(f,Hj)(r) + N(g,Hj)(r) − N(r, νi)) +

∑

1≤v≤3N

v 6=i,j

N1
(f,Hv),≤k(r)

≤ T (r) + O(1). (3.6)
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On the other hand, it is easy to see that

N(f,Hj)(r) + N(g,Hj)(r) − N(r, νi) ≥ N3
(f,Hj),≤k(r). (3.7)

From (3.6) and (3.7), we get

N3
(f,Hi),≤k(r) + N3

(f,Hj),≤k(r) +
∑

1≤v≤3N

v 6=i,j

N1
(f,Hv),≤k(r) ≤ T (r) + O(1).

Similarly

N3
(g,Hi),≤k(r) + N3

(g,Hj),≤k(r) +
∑

1≤v≤3N

v 6=i,j

N1
(g,Hv),≤k(r) ≤ T (r) + O(1).

Hence

3

N
(NN

(f,Hi),≤k(r) + NN
(g,Hi),≤k(r) + NN

(f,Hj),≤k(r) + NN
(g,Hj),≤k(r))

+
1

N

∑

1≤v≤3N

v 6=i,j

(NN
(f,Hv),≤k(r) + NN

(g,Hv),≤k(r))

≤ 2T (r) + O(1).

2

N
(NN

(f,Hi),≤k(r) + NN
(g,Hi),≤k(r) + NN

(f,Hj),≤k(r) + NN
(g,Hj),≤k(r))

≤ 2T (r) − 1

N

3N∑

v=1

(NN
(f,Hv),≤k(r) + NN

(g,Hv),≤k(r)) + O(1). (3.8)

Using (2.2), we have

∥
∥
∥

(2N − 1)(k + 1) − 3N2

k + 1 − N
T (r) ≤

3N∑

v=1

(NN
(f,Hv),≤k(r) + NN

(g,Hv),≤k(r)) + o(T (r)). (3.9)

By (3.8) and (3.9), it implies that

∥
∥
∥

2

N
(NN

(f,Hi),≤k(r) + NN
(g,Hi),≤k(r) + NN

(f,Hj),≤k(r) + NN
(g,Hj),≤k(r))

≤ (k + 1) + N2

N(k + 1 − N)
T (r) + o(T (r)).

Taking summing-up of the above inequality over 1 ≤ i ≤ N , we have

∥
∥
∥2

N∑

i=1

(NN
(f,Hi),≤k(r) + NN

(g,Hi),≤k(r) + NN
(f,Hj),≤k(r) + NN

(g,Hj),≤k(r))

= 2

2N∑

v=1

(NN
(f,Hv),≤k(r) + NN

(g,Hv),≤k(r))

≤ N(k + 1) + N3

k + 1 − N
T (r) + o(T (r)).
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(Note that j = i + N .)

Using (2.2) again, we get

∥
∥
∥

(N − 1)(k + 1) − 2N2

k + 1 − N
T (r) ≤

2N∑

v=1

(NN
(f,Hv),≤k(r) + NN

(g,Hv),≤k(r)) + o(T (r)).

Hence
∥
∥
∥

(N − 1)(k + 1) − 2N2

k + 1 − N
T (r) ≤ N(k + 1) + N3

2(k + 1 − N)
T (r) + o(T (r)).

This means that

2(N − 1)(k + 1) − 4N2 ≤ N(k + 1) + N3.

We have k + 1 ≤ N2 + 6N + 12 + 24
N−2 , which is a contradiction. Thus, we have f ≡ g.

Proof of Theorem 1.3 Assume that f 6≡ g. Repeating the argument in the proof of

Theorem 1.2, without loss of generality, we may assume that

p2N+1 = p2N+2 = p2N+3 = 1 and p1 = · · · = p2N = N.

Fixing an index i with 1 ≤ i ≤ N , we consider F
HiHj

f −F
HiHj
g 6≡ 0, where j = i+N . Then,

we have

N − 1

N
(NN

(f,Hi)
(r) + NN

(g,Hi)
(r) + NN

(f,Hj)
(r) + NN

(g,Hj)
(r))

≤ 2T (r) − 1

N

2N+3∑

v=1

(NN
(f,Hv)(r) + NN

(g,Hv)(r)) + O(1).

(The proof is similar to (3.8).)

Using the second main theorem, we get

‖(N + 2)T (r) ≤
2N+3∑

v=1

(NN
(f,Hv)(r) + NN

(g,Hv)(r)) + o(T (r)).

It implies that

∥
∥
∥

N − 1

N
(NN

(f,Hi)
(r) + NN

(g,Hi)
(r) + NN

(f,Hj)
(r) + NN

(g,Hj)
(r)) ≤ N − 2

N
T (r) + o(T (r)).

Taking summing-up of the above inequality over 1 ≤ i ≤ N , we have

∥
∥
∥(N − 1)

2N∑

j=1

(NN
(f,Hj)(r) + NN

(g,Hj)
(r)) ≤ (N2 − 2N)T (r) + o(T (r)).

Using the second main theorem again, we get

‖(N − 1)T (r) ≤
2N∑

j=1

(NN
(f,Hj)(r) + NN

(g,Hj)
(r)) + o(T (r)).

Hence

‖(N − 1)2T (r) ≤ (N2 − 2N)T (r) + o(T (r)).

Letting r → +∞, we get a contradiction. Thus, we have f ≡ g.
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