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Abstract The authors show that the 2-non-negative traceless bisectional curvature is
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1 Introduction

In 1982, in a famous paper [10], R. Hamilton proved that in a 3-dimensional compact man-

ifold, if the initial metric has positive Ricci curvature, then this positivity condition will be

preserved under the Ricci flow. He showed that the underlying manifold must be diffeomor-

phic to the standard S3 or its finite quotient. Following this paper, there are intensive active

researches on Ricci flow, and many works are devoted to study when certain convex cones of

curvature pinching conditions are preserved by the Ricci flow. In [11], R. Hamilton proved

that the positive curvature operator is preserved under the Ricci flow in all dimensions. H.

Chen [5] further showed that a weaker notion, that the sum of any two eigenvalues is positive,

is preserved under the Ricci flow. In 2004, L. Ni [14] constructed an example in a complete

Riemannian manifold where the positivity of sectional curvature is not preserved by the Ricci

flow. On the other hand, in the Kähler setting, it is well-known that the positive bisectional

curvature is preserved under the Kähler-Ricci flow through the work of S. Bando [1] for complex

dimension n = 3, and later N. Mok [15] for general dimensions. Following the argument of N.

Mok, in an unpublished work of Cao-Hamilton, they proved that the orthogonal bisectional

curvature (cf. Definition 3.2) is preserved under the Kähler-Ricci flow. There are other con-

vex cones of curvature pinching conditions which are preserved, for instance [3, 13]. A more

complete reference on this topic can be found in [12] .

In analyzing the evolution equation (2.4) of the Ricci tensor, it is somewhat unfortunate

that the parabolic Laplacian of the Ricci tensor involves the full sectional curvature. It is then
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no surprise that we only know the positivity of Ricci tensor is preserved in real dimensions 2

and 3 by the earlier work of R. Hamilton. A counter example to the possible extension of R.

Hamilton’s result on Ricci tensor in high dimensions seems to be difficult to construct. Recently,

D. Knopf [9] constructed a counter example in the Kähler setting where the positivity of Ricci

curvature is not preserved. Again, D. Knopf’s example is in a complete Kähler manifold.

Therefore, it is still an open question whether or not positive Ricci curvature is preserved under

the Ricci flow in the case of compact manifolds. In particular, in the case of compact Kähler

manifolds, there might be some hope that some form of lower bound of Ricci curvature will be

preserved in [6] where the first named author showed, along with other results, that any metric

with positive orthogonal bisectional curvature, even a negative lower bound of Ricci curvature,

is preserved and improved under the Kähler-Ricci flow. (The main result proved in [6] is that

any irreducible Kähler manifold with positive first Chern class, where the positive orthogonal

bisectional curvature is preserved under the Kähler-Ricci flow, must be biholomorphic to CPn. )

In a compact Kähler manifold X , the bisectional curvature tensor acts as a symmetric

bilinear form on the space of (1, 1) form (which we will denote as Λ1,1(X)). Furthermore,

this action preserves the traceless part of this space (which we will denote as Λ1,1
0 (X)). In a

recent paper by Phong and Sturm [19], they observed that the condition that the sum of any

two eigenvalues of the traceless bisectional curvature operator is positive, is preserved under

the Kähler-Ricci flow in complex dimension 2. Note that this condition is different from the

condition used by H. Chen, even though the main idea of proof is very similar. The main

theorem they proved in [19] is that, if this curvature condition holds, then the positivity of

Ricci curvature will be preserved under the Kähler-Ricci flow in complex surfaces. The proof

there is difficult and intriguing.

The 2-positive traceless bisectional curvature is certainly different to the popular notion

of positive bisectional curvature. For instance, when this curvature condition holds, the Ricci

curvature might not be positive. In [7, 8], the first named author and G. Tian studied the con-

vergence of Kähler-Ricci flow in Kähler Einstein manifolds where the initial metric has positive

bisectional curvature and showed that the Kähler-Ricci flow must converge to the Fubini-Study

metric exponentially over the flow. The present work can be viewed as a continuation of [7, 8]

in the sense that the curvature condition is relaxed in some subtle way. However, one of more

immediate motivations of the present work is [5] and more recently [19]. The interest of the

first named author in this type of special curvature conditions was certainly re-invigorated by

this elegantly written paper [19]. Together with the second named author, we start to investi-

gate systematically geometrical properties of this 2-non-negative traceless bisectional curvature

operator on any Kähler manifold. Our first result is

Theorem 1.1 Let X be a compact Kähler manifold with c1(M) > 0, of complex dimension

n ≥ 2. Along the Kähler-Ricci flow, we have

(1) If the initial metric has non-negative traceless bisectional curvature operator, then the

evolved metrics also have non-negative traceless bisectional curvature operator. If it is positive

at one point initially, then it is positive everywhere for all t > 0.

(2) If the initial metric has 2-non-negative traceless bisectional curvature operator, then the

evolved metrics also have 2-non-negative traceless bisectional curvature. If it is positive at one

point initially, then it is positive everywhere for all t > 0.

Under either of these two conditions, the positivity of Ricci tensor is preserved under the
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Kähler-Ricci flow.

The relation between 2-positive traceless bisectional curvature and the notion of positive

orthogonal bisectional curvature is much more subtle. They are defined in a completely dif-

ferent manner and the action of bisectional curvature operator on the space of (1,1) forms is

very complicated. It is hard to visualize what 2-positive traceless bisectional curvature really

is. A somewhat surprising result we prove in this paper is that (cf. Theorem 1.2) any Kähler

metric which has 2-positive traceless bisectional curvature must also have positive orthogonal

bisectional curvature. The last part of the preceding theorem follows directly from the applica-

tion of Hamilton’s maximal principle for tensors to the evolution equation of the Ricci tensor.

Compared with the main theorem in [19], our theorem is for all dimensions and our proof is

simpler and more straightforward, even in complex surfaces.

Theorem 1.2 In a Kähler manifold with 2-non-negative traceless bisectional curvature op-

erator, the orthogonal bisectional curvature must be non-negative. If, in addition, the scalar

curvature is uniformly bounded from above and the dimension n ≥ 3, then the bisectional cur-

vature is uniformly bounded. Moreover, if we assume that the traceless bisectional curvature

operator is non-negative, then the sum of any two eigenvalues of the Ricci tensor is non-negative.

Remark 1.1 We point out that the condition n ≥ 3 can not be removed. In Section 4,

we construct a Kähler surface which has non-negative traceless bisectional curvature while the

scalar curvature cannot bound the bisectional curvature.

Remark 1.2 In the special case of complex surfaces, similar estimate was derived in [20].

However, they need to assume also the non-negativity of Ricci curvature. In an unpublished

work of G. Perelman, the scalar curvature is uniformly bounded along the Kähler-Ricci flow.

Combining this with Theorem 1.2, we conclude that the full bisectional curvature is uniformly

bounded over the Kähler-Ricci flow when the initial metric has 2-non-negative traceless bisec-

tional curvature.

Following Remark 1.2 and a general theorem on the Kähler-Ricci flow (cf. [21, 22]), we get

the following

Corollary 1.1 Let X be a compact Kähler manifold with c1(M) > 0, of complex dimension

n ≥ 3. Along the Kähler-Ricci flow, if the initial metric has 2-non-negative traceless bisectional

curvature operator, then the flow converges by sequences to some Kähler-Ricci soliton in the

limit in the sense of Cheeger-Gromov-Hausdorff topology.

Similar results was also proved by Phong-Sturm [20] in complex surfaces with additional

assumption that the initial metric has non-negative Ricci curvature.

2 Basic Kähler Geometry

2.1 Setup of notations

Let X be an n-dimensional compact Kähler manifold. A Kähler metric can be given by its

Kähler form ω on X . In local coordinates z1, · · · , zn, this ω is of the form

ω =
√
−1

n
∑

i,j=1

gij d zi ∧ d zj > 0,
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where {gij} is a positive definite Hermitian matrix function. The Kähler condition requires

that ω be a closed positive (1,1)-form. In other words, the following holds

∂gik

∂zj
=

∂gjk

∂zi
and

∂gki

∂zj
=

∂gkj

∂zi
, ∀ i, j, k = 1, 2, · · · , n.

The Kähler metric corresponding to ω is given by

√
−1

n
∑

1

gαβ dzα ⊗ dzβ.

For simplicity, in the following, we will often denote by ω the corresponding Kähler metric. The

Kähler class of ω is its cohomology class [ω] in H2(X, R). By the Hodge theorem, any other

Kähler metric in the same Kähler class is of the form

ωϕ = ω +
√
−1

n
∑

i,j=1

∂2ϕ

∂zi∂zj
> 0

for some real valued function ϕ on X. The functional space in which we are interested (often

referred to as the space of Kähler potentials) is

P(X, ω) = {ϕ ∈ C∞(X, R) | ωϕ = ω +
√
−1 ∂∂ϕ > 0 on X}.

Given a Kähler metric ω, its volume form is

ωn = n!(
√
−1 )n det(gij)dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn.

Its Christoffel symbols are given by

Γk
i j =

n
∑

l=1

gkl ∂gil

∂zj
and Γk

i j
=

n
∑

l=1

gkl ∂gli

∂zj
, ∀ i, j, k = 1, 2, · · ·n.

The curvature tensor is

Rijkl = −
∂2gij

∂zk∂zl
+

n
∑

p,q=1

gpq ∂giq

∂zk

∂gpj

∂zl
, ∀ i, j, k, l = 1, 2, · · ·n.

We say that ω is of nonnegative bisectional curvature if

Rijklv
ivjwkwl ≥ 0

for all non-zero vectors v and w in the holomorphic tangent bundle of X . The bisectional

curvature and the curvature tensor can be mutually determined. The Ricci curvature of ω is

locally given by

Rij = −∂2 log det(gkl)

∂zi∂zj

.

So its Ricci curvature form is

Ric(ω) =
√
−1

n
∑

i,j=1

Rij(ω)dzi ∧ dzj = −
√
−1∂∂ log det(gkl).

It is a real, closed (1,1)-form. Recall that [ω] is called a canonical Kähler class if this Ricci form

is cohomologous to λ ω, for some constant λ. In our setting, we require λ = 1. The trace of

Ricci curvature is the scalar curvature, which is given by

R = gijRij .
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2.2 The Kähler-Ricci flow

Now we assume that the first Chern class c1(X) is positive. The normalized Ricci flow (cf.

[10, 11]) on a Kähler manifold X is of the form

∂gij

∂t
= gij − Rij , ∀ i, j = 1, 2, · · · , n. (2.1)

If we choose the initial Kähler metric ω with c1(X) as its Kähler class. The flow (2.1) preserves

the Kähler class [ω]. It follows that on the level of Kähler potentials, the Ricci flow becomes

∂ϕ

∂t
= log

ωn
ϕ

ωn
+ ϕ − hω, (2.2)

where hω is defined by

Ric(ω) − ω =
√
−1∂∂hω and

∫

X

(ehω − 1)ωn = 0.

Then the evolution equation for bisectional curvature is

∂

∂t
Rijkl = △Rijkl + RijpqRqpkl − RipkqRpjql + RilpqRqpkj + Rijkl

− 1

2
(RipRpjkl + RpjRipkl + RkpRijpl + RplRijkp). (2.3)

Here ∆ is the complex Laplacian with respect to the metric g(t), and it acts on the bisectional

curvature by

∆Rijkl =
1

2
gαβ(Rijkl,αβ + Rijkl,βα).

The evolution equation for Ricci curvature and scalar curvature are

∂Rij

∂t
= △Rij + RijpqRqp − RipRpj , (2.4)

∂R

∂t
= △R + RijRji − R. (2.5)

By direct computations and using the evolved frames, we obtain the following evolution

equation for the bisectional curvature:

∂Rijkl

∂t
= ∆Rijkl − Rijkl + RijmnRnmkl − RimknRmjnl + RilmnRnmkl. (2.6)

As usual, the flow equation (2.1) or (2.2) is referred to as the Kähler-Ricci flow on X . It is

proved by Cao [2], who followed Yau’s celebrated work [23], that the Kähler-Ricci flow exists

globally for any smooth initial Kähler metric.

3 The Traceless Bisectional Curvature Operator

3.1 Definitions and the evolution equations

In Riemannian geometry, the curvature tensor for Riemannian metric can always be decom-

posed orthogonally into three parts: Rm = W + V + U, where W is the Weyl tensor and V, U

are the traceless Ricci part and the scalar curvature part respectively. The decomposition for
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Kähler case is slightly different. The bisectional curvature tensor can also be decomposed into

orthogonal parts as well.

Set

Sij = Rij −
1

n
Rgij = R0

ij
, (3.1)

Sabcd = Rabcd − 1

n
(Sabgcd + Scdgab) −

1

n2
Rgabgcd. (3.2)

As in the Riemannian case, the “Weyl” part Sabcd is also trace free:

Sabcd = Scdab, gabSabcd = 0.

As in the previous subsection, under some evolved moving frame, we can rewrite the evolution

equation for curvature as follows (cf. [19])

Proposition 3.1 Along the Kähler-Ricci flow the evolution equation relating the traceless

bisectional curvature operator are as follows:

∂R

∂t
= ∆R − R +

1

n
R2 + SαβSβα, (3.3)

∂Sab

∂t
= ∆Sab +

1

n
(R − n)Sab + SabijSji, (3.4)

∂Sabcd

∂t
= ∆Sabcd − Sabcd + SabijSjicd + SaijdSibcj − SaicjSibjd +

1

n
SabScd. (3.5)

The bisectional curvature operator can be viewed as a symmetric operator on the space

of real (1, 1) forms Λ1,1(X). For any pair of (1, 1) forms η, τ , the action of the bisectional

curvature is

R(η, τ) = Rijkl ηab τcd gibgajgkdgcl.

If we decompose the space Λ1,1(X) into the line which consists of the multiple of the Kähler

form and its orthogonal complementary subspace Λ1,1
0 (X), then the action of Sijkl preserves

Λ1,1
0 (X). Denote the action of Sijkl by S. In some special basis, we will use M to denote

the matrix of the operator S. We often refer S as the traceless bisectional curvature opera-

tor. Moreover, there is a nice decomposition formula for the bisectional curvature operator in

Λ1,1(X) :

(

R Ric0

Ric0t S

)

. (3.6)

If the action of S in Λ1,1
0 (X) is non-negative, then we call the underlying Kähler metric

has a non-negative traceless bisectional curvature operator. If the action of S in Λ1,1
0 (X) has a

property that the sum of any two eigenvalues is non-negative, then we say that the underlying

Kähler metric has a 2-non-negative traceless bisectional curvature operator.

3.2 Geometric properties of the traceless bisectional curvature operator

In this subsection, we derive some geometric properties of the traceless bisectional curvature

operator. First, in any local coordinate, after fixing a frame such that the metric tensor at the
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origin is an identity matrix, there is a natural orthonormal basis for Λ1,1(X) at the origin point

(here i, j = 1, 2, · · ·n):

{
√
−1dzi ∧ dzi, dzi ∧ dzj − dzj ∧ dzi,

√
−1 (dzi ∧ dzj + dzj ∧ dzi)}.

For convenience, we use the following notations.

Definition 3.1 The space Λ1,1
0 (X) is locally spanned by the following elements:

Aij = dzi ∧ dzi − dzj ∧ dzj ,

Bij = dzi ∧ dzj + dzj ∧ dzi,

Cij = −
√
−1 (dzi ∧ dzj − dzj ∧ dzi),

where 1 ≤ i 6= j ≤ n.

One remarks that this is not an orthonomal basis since {A1i, 2 ≤ i ≤ n} are not orthogonal

to each other. However, A is orthonomal to both B and C while B, C are an orthonomal basis

for some subspace.

In this paper, we often use the following definition.

Definition 3.2 An orthogonal bisectional curvature is a holomorphic bisectional curvature

which acts on two orthogonal holomorphic planes.

Proposition 3.2 If the traceless bisectional curvature operator is 2-non-negative, then the

orthogonal bisectional curvature is nonnegative. If the traceless bisectional curvature operator

is nonnegative, then we have the following inequalities:

Riiii + Rjjjj ≥ 2Riijj ≥ 0, Rii + Rjj ≥ 0

for any i 6= j.

Proof (1) If A is a symmetric matrix and the sum of two lowest eigenvalues of A is

nonnegative, then Aii + Ajj ≥ 0 if i 6= j. To see this, assuming that m1 ≤ m2 ≤ · · · ≤ mn are

the eigenvalues of A, we have

m1 + m2 = inf{A(x, x) + A(y, y) | |x| = |y| = 1, x⊥y} ≥ 0.

Then for any i 6= j, we have

Aii + Ajj = A(ei, ei) + A(ej , ej) ≥ 0,

where {ei} are the standard basis of Rn.

(2) Assume that S is 2-non-negative. Since the matrix of S is the same as the matrix of

curvature operator Rm when acting on the space Λ1,1
0 (X), we have

R(Bij , Bij) + R(Cij , Cij) ≥ 0,

which implies Riijj ≥ 0, ∀ i 6= j.

(3) Assume that the traceless bisectional curvature operator is nonnegative,

R(Aij , Aij) = Riiii + Rjjjj − 2Riijj ≥ 0.
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Thus, we have

Rii + Rjj = Riiii +
∑

α6=i

Rααii + Rjjjj +
∑

β 6=j

Rββjj

≥ 2Riijj +
∑

α6=i

Rααii +
∑

β 6=j

Rββjj

≥ 0,

where i 6= j. The proposition is proved.

4 Proof of Theorem 1.2

We follow notations in the previous section. Note that Proposition 3.2 already implies the

first and last parts of Theorem 1.2, so it suffices to prove the following

Theorem 4.1 Let X be a compact Kähler manifold of dimension n ≥ 3. If the traceless

bisectional curvature is 2-non-negative and the scalar curvature is bounded from above, then the

bisectional curvature is uniformly bounded.

Proof Choose a local coordinate at any point x ∈ X as in Subsection 3.2, by the definition

of scalar curvature, we have

R =

n
∑

k=1

Rkkkk + 2
∑

i<j

Riijj . (4.1)

Since S is 2-non-negative, by Proposition 3.2 the orthogonal bisectional curvature is nonnega-

tive. Thus we have

R ≥
n

∑

k=1

Rkkkk. (4.2)

For fixed i and j , one notes that Aij is orthonomal to both Bij and Cij . Following part (1) of

the proof of Proposition 3.2, we have (since S is 2-non-negative)

R(Aij , Aij) + R(Bij , Bij) ≥ 0,

R(Aij , Aij) + R(Cij , Cij) ≥ 0

for all i 6= j. Thus

(R(Aij , Aij) + R(Bij , Bij)) + (R(Aij , Aij) + R(Cij , Cij)) ≥ 0.

This implies

Riiii + Rjjjj ≥ 0, ∀ i 6= j. (4.3)

Thus, we have

n
∑

k=1

Rkkkk ≥ 0. (4.4)
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Combining this with (4.1), for all i 6= j, we have

0 ≤ Riijj ≤ R

2
. (4.5)

Note that n ≥ 3, (4.2) and (4.3) imply that for all k,

Rkkkk ≤ R. (4.6)

Claim 4.1 For any 1 ≤ k ≤ n, we have |Rkkkk| ≤ 2R.

Proof Assume that the holomorphic bisectional curvatures satisfy the following inequalities

R1111 ≤ R2222 ≤ R3333 ≤ · · · ≤ Rnnnn.

By (4.3), we have R2222 ≥ 0. By (4.6), it suffices to show R1111 ≥ −2R. In fact, since S is

2-non-negative, we have

R(A12, A12) + R(B12, B12) + R(C12, C12) ≥ 0.

This implies

R1111 + R2222 + 2R1122 ≥ 0.

By (4.5) and (4.6), we have

R1111 ≥ −(R2222 + 2R1122) ≥ −2R.

The claim is proved.

Since all the curvature like Rααββ are bounded by the scalar curvature by Claim 4.1, other

curvature tensors are also bounded. This can be seen from the following claim.

Claim 4.2 For all i, j, k, l, we have |Rijkl| ≤ cR, where c is a universal constant.

Proof The idea of the proof is to write the curvature tensors as some linear combinations

of curvatures like Rααββ and then use Claim 4.1. Here we assume that i, j, k, l are different

from each other. Setting

eα = dzi + dzj , eβ = dzi +
√
−1 dzj, ǫγ = dzi − dzj,

we can check

Rijkk =
1

2
(Rααkk − Riikk − Rjjkk +

√
−1 (Rββkk − Riikk − Rjjkk)).

Thus, |Rijkk| ≤ cR. For Rijij , we can use the following identity:

Re(Rijij) =
1

4
(Rαααα + Rγγγγ − 2Riiii − 8Riijj − 2Rjjjj).

Thus, |Re(Rijij)| ≤ cR. Similarly, we can prove |Im(Rijij)| ≤ cR, and so |Rijij | ≤ cR. Using

the same method, we see that other curvatures like Riiij , Rijil, Rijkl are also bounded by R.

The claim is proved.

In summary, all the bisectional curvature tensors are bounded by the scalar curvature R if

S is 2-non-negative. The theorem is proved.
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Example 4.1 In complex surfaces, if S is 2-non-negative, the scalar curvature may not

control the bisectional curvature. In fact, we consider the Kähler surface S2 × S2, with a

product Kähler metric

ω =
√
−1F (z)dz ∧ dz +

√
−1G(w)dw ∧ dw,

where z, w are a local coordinate of the first and second factor of S2 × S2 respectively. Let

U × U be an open neighborhood of (0, 0) ∈ S2 × S2. Set

F (z) =
1

(1 + λ2|z|2)2 and G(w) =
1

(1 − λ2|w|2)2 , (z, w) ∈ U × U,

where λ ∈ R \ {0}. Now we calculate the curvature. Choose an orthonormal basis {e1, e2} at

any (z, w) ∈ U × U , where

e1 =
1

1 + λ2|z|2 dz, e2 =
1

1 − λ2|w|2 dw,

and set Rijkl = R(ei, ej , ek, el). Then for all points in U × U we have

R1111 = 2λ2, R2222 = −2λ2

and other curvatures are zero. Thus, S = 0 is non-negative and the scalar curvature R = 0,

but the bisectional curvature is obviously unbounded.

5 Proof of Theorem 1.1

In this section, we are ready to prove Theorem 1.1. Note that in [11], the positivity of

curvature operator is preserved and in [5] the 2-positivity of curvature operator is preserved

along the Ricci flow. One can also see both from [12]. Our proof here is similar to theirs.

Now we begin to prove Theorem 1.1.

Proof (1) Define

[φλ, φµ]ab = φλ
amφ

µ

mb
− φ

µ
amφλ

mb
= Cλµ

ρ φ
ρ

ab
,

where {φλ} is a basis of Λ1,1
0 (X), which is some linear combinations of {Aij , Bij , Cij , i 6= j}

(cf. Definition 3.1). The coefficients Cαβ
γ here are pure imaginary or zero in our notation, since

one can check that [Aij , Bij ] = 2
√
−1Cij , etc. Now observe

SamndSmbcn − SamcnSmbnd = Mαβφα
amφ

β

nd
Mγδφ

γ

mb
φδ

cn − Mαβφα
amφ

β
cnMγδφ

γ

mb
φδ

nd

= MαβMγδφ
α
amφ

γ

mb
(φβ

nd
φδ

cn − φ
β
cnφδ

nd
)

= MαβMγδφ
α
amφ

γ

mb
Cδβ

ρ φ
ρ

cd

= −1

2
Cαγ

q Cβδ
p MαβMγδφ

q

ab
φ

p

cd
,

where M is the matrix of S under the basis {φλ}. Define

M#
qp = Cαγ

q Cβδ
p MαβMγδ. (5.1)
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Then we have

SamndSmbcn − SamcnSmbnd = −1

2
M#

qpφ
q

ab
φ

p

cd

and
∂M

∂t
= −M + M2 − 1

2
M# +

1

n
T. (5.2)

Now we have the following lemma.

Lemma 5.1 If all Cαγ
q are real and M ≥ 0, then M# ≥ 0.

Proof Without loss of generality, we may choose a basis {φα} which diagonalizes M , so

that Mαβ = δαβMαα. For any v = vαφα, we have

M#(v, v) = (vαCai
α )(vβC

bj
β )MabMij = (vαCai

α )2MaaMii ≥ 0.

The lemma is then proved.

Now we return to the proof of Theorem 1.1 again. Since in our case all Cλµ
ρ are zero or pure

imaginary numbers, we have M# ≤ 0 if M ≥ 0. Since T is always non-negative, we have

∂M

∂t
= −M + M2 − 1

2
M# +

1

n
T ≥ 0,

when M = 0. Note that M ≥ 0 is convex and M(0) ≥ 0, we have M(t) ≥ 0 for all t > 0.

In other words, the nonnegative traceless bisectional curvature operator is preserved. By the

strong maximum principle, if M is positive at one point at time t = 0, M is positive everywhere

for all time t > 0.

(2) We want to prove that the 2-non-negative traceless bisectional curvature operator is

preserved along the Kähler-Ricci flow. Let us assume that the eigenvalues of the traceless

bisectional curvature operator on Λ1,1
0 (X) are λ1 ≤ λ2 ≤ · · ·λm, where m = n2−1. From (5.1),

(5.2), we have

d

dt
(λ1 + λ2) ≥

d

dt
(M11 + M22)

≥ −(λ1 + λ2) + (λ2
1 + λ2

2) −
1

2

∑

p,q

((Cpq
1 )2 + (Cpq

2 )2)λpλq. (5.3)

Note that the right-hand side

1

2

∑

p,q

((Cpq
1 )2 + (Cpq

2 )2)λpλq =
∑

p<q

((Cpq
1 )2 + (Cpq

2 )2)λpλq

=
∑

q≥3

(C2q
1 )2(λ1 + λ2)λq +

∑

p,q≥3

((Cpq
1 )2 + (Cpq

2 )2)λpλq.

Note that λm ≥ · · · ≥ λ2 ≥ 0. If λ1+λ2 = 0, then the right-hand side of (5.3) is nonnegative.

Since λ1 + λ2 is a concave function on X , λ1 + λ2 ≥ 0 is preserved. By the strong maximum

principle again, if λ1 +λ2 > 0 is positive at one point at time t = 0, then λ1 +λ2 > 0 is positive

everywhere for all time t > 0.
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(3) Now we prove the last part of Theorem 1.1. If the traceless bisectional curvature positive

is non-negative or 2-non-negative, Theorem 1.2 implies that

Riijj ≥ 0, ∀ i 6= j.

Let us assume that initially the Ricci curvature is positive and after finite time t0 > 0, at some

point p ∈ X , Rij vanishes at least at one direction. For convenience, set this direction as ∂
∂z1

and diagonalize the Ricci curvature at this point. Then

∂R11

∂t

∣

∣

∣

t0
≥ R11jjRjj − R11R11 =

n
∑

j=2

R11jjRjj ≥ 0.

By Hamilton’s maximum principle for tensors, this is enough to show that the positivity of

Ricci curvature is preserved under the condition.

6 Proof of Corollary 1.1

To prove Corollary 1.1, it suffices to prove that the Kähler-Ricci flow converges by sequences

to some Kähler-Ricci soliton when the bisectional curvature is uniformly bounded by Theorem

1.2. In [21], N. Sesum proved that τ -flow converges by sequences to some Ricci soliton when

the curvature operator and the diameter are uniformly bounded. In [22], Sesum also proved

that the Kähler-Ricci flow converges by sequences to some Kähler-Ricci soliton outside some

isolated points on any Kähler surface. The idea is more or less standard, and we include a proof

here.

First let us recall Perelman’s no local collapsing theorem.

Definition 6.1 (cf. [16]) Let gij(t) be a smooth solution to the Ricci flow (gij)t on [0, T )

on a Riemannian manifold X of dimension n. We say that gij(t) is locally collapsing at T , if

there is a sequence of times tk → T and a sequence of metric balls Bk = Bk(pk, rk) at times tk,

such that
r2

k

tk
is bounded, |Rm|(gij)(tk) ≤ r−2

k in Bk and
Vol(Bk)

rn
k

→ 0.

Lemma 6.1 (cf. [16]) If X is closed and T < ∞, then gij(t) is not locally collapsing at T .

Now we begin to prove Corollary 1.1.

Proof First we are ready to prove that the injectivity radii have a uniformly positive

lower bound along the Kähler-Ricci flow. If the traceless bisectional curvature operator is 2-

nonnegative and the scalar curvature is bounded along the flow, Theorem 1.2 implies that the

curvature tensor is uniformly bounded.

Claim 6.1 The injectivity radius has a uniformly positive lower bound along the flow.

Proof Let (X, gij) be the Kähler-Ricci flow. Fix T > 0. Now we re-scale the metric

gij(s) = (T − s)gij

(

− log
(T − s

T

))

, s ∈ [0, T ). (6.1)

Then, gij(s) is a solution with finite maximal existence interval to the unnormalized Kähler-

Ricci flow
∂gij

∂s
= −Rij . Lemma 6.2 implies that (X, gij(s)) is not locally collapsing. In other

words, for any sequence of times sk → T, any sequence of metric balls Bk = Bk(xk, rk) at times
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sk, such that
r2

k

sk
is bounded and |Rm|(gij)(sk) ≤ r−2

k in Bk, there exists a constant δ > 0 such

that

Vol(Bk)

r2n
k

≥ δ. (6.2)

Since |Rm|(gij(t)) is uniformly bounded along the Kähler-Ricci flow, for the un-normalized

flow, we have

|Rm|(gij(s)) ≤
C

T − s
.

We claim that there exists a constant ǫ > 0 such that inj(g(s)) ≥
√

T − s ǫ. We prove this by

contradiction. Assume that there exists a sequence of times sk → T , such that

inj(g(sk))√
T − sk

→ 0.

We re-scale the metric

h(sk) =
1

T − sk

g(sk).

Let r2
k = T − sk. Then

|Rm|(h(sk)) ≤ C, inj(h(sk)) → 0. (6.3)

From (6.2), we have

Vol(Bh(sk)(xk, 1)) ≥ δ. (6.4)

Then, (6.3), (6.4) contradict J. Cheeger’s injectivity radius estimate (cf. [18]). Thus, we have

inj(g(s)) ≥
√

T − s ǫ. Together with (6.1), we have

inj(g(t)) ≥ ǫ > 0.

Claim 6.2 The diameter has a uniformly upper bound along the flow.

Proof To see this, we assume that there are N points p1, p2, · · · , pN such that

distg(t)(pi, pj) ≥ 2ǫ, ∀ 1 ≤ i 6= j ≤ N,

where ǫ > 0 is the uniformly lower bound on the injectivity radius from Claim 6.1. Hence,

the balls Bg(t)(pi, ǫ) are embedded and pairwisely disjoint. Since the curvature operator is

uniformly bounded, from the volume comparison theorem,

V ≥
N

∑

i=1

Vol(Bg(t)(pi, ǫ)) ≥ NCǫ2n.

Since the volume V is fixed along the flow, N is bounded from above. Consequently the diameter

has a uniformly upper bound along the flow.

Now we return to the proof of Corollary 1.1. Since we have uniformly bounds on curvature

tensor and uniformly lower bound on the injectivity radius, by Hamilton’s compactness theorem,

for every tk → ∞ as k → ∞, there exists a subsequence such that (X, g(tk + t)) converges to

(X, h(t)), in the sense that there exist diffeomorphisms φi : X → X , such that φ∗
i g(tk + t)

converge uniformly together with their covariant derivatives to metrics h(t) on any compact

subsets. For every sequence of times tk → ∞, there exists a subsequence, such that the

(X, g(tk + t)) converges to a Kähler Ricci soliton as k → ∞. The readers are referred to [21, 22]

for details. The corollary is proved.
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