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Abstract The authors show that the 2-non-negative traceless bisectional curvature is
preserved along the Ké&hler-Ricci flow. The positivity of Ricci curvature is also preserved
along the Kéhler-Ricci flow with 2-non-negative traceless bisectional curvature. As a corol-
lary, the Kahler-Ricci flow with 2-non-negative traceless bisectional curvature will converge
to a Kéhler-Ricci soliton in the sense of Cheeger-Gromov-Hausdorff topology if complex
dimension n > 3.
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1 Introduction

In 1982, in a famous paper [10], R. Hamilton proved that in a 3-dimensional compact man-
ifold, if the initial metric has positive Ricci curvature, then this positivity condition will be
preserved under the Ricci flow. He showed that the underlying manifold must be diffeomor-
phic to the standard S® or its finite quotient. Following this paper, there are intensive active
researches on Ricci flow, and many works are devoted to study when certain convex cones of
curvature pinching conditions are preserved by the Ricci flow. In [11], R. Hamilton proved
that the positive curvature operator is preserved under the Ricci flow in all dimensions. H.
Chen [5] further showed that a weaker notion, that the sum of any two eigenvalues is positive,
is preserved under the Ricci flow. In 2004, L. Ni [14] constructed an example in a complete
Riemannian manifold where the positivity of sectional curvature is not preserved by the Ricci
flow. On the other hand, in the K&hler setting, it is well-known that the positive bisectional
curvature is preserved under the Kéhler-Ricci flow through the work of S. Bando [1] for complex
dimension n = 3, and later N. Mok [15] for general dimensions. Following the argument of N.
Mok, in an unpublished work of Cao-Hamilton, they proved that the orthogonal bisectional
curvature (cf. Definition 3.2) is preserved under the Kéhler-Ricci flow. There are other con-
vex cones of curvature pinching conditions which are preserved, for instance [3, 13]. A more
complete reference on this topic can be found in [12] .

In analyzing the evolution equation (2.4) of the Ricci tensor, it is somewhat unfortunate
that the parabolic Laplacian of the Ricci tensor involves the full sectional curvature. It is then
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no surprise that we only know the positivity of Ricci tensor is preserved in real dimensions 2
and 3 by the earlier work of R. Hamilton. A counter example to the possible extension of R.
Hamilton’s result on Ricci tensor in high dimensions seems to be difficult to construct. Recently,
D. Knopf [9] constructed a counter example in the Kéahler setting where the positivity of Ricei
curvature is not preserved. Again, D. Knopf’s example is in a complete Kéhler manifold.
Therefore, it is still an open question whether or not positive Ricci curvature is preserved under
the Ricci flow in the case of compact manifolds. In particular, in the case of compact Kéahler
manifolds, there might be some hope that some form of lower bound of Ricci curvature will be
preserved in [6] where the first named author showed, along with other results, that any metric
with positive orthogonal bisectional curvature, even a negative lower bound of Ricci curvature,
is preserved and improved under the Kéhler-Ricci flow. (The main result proved in [6] is that
any irreducible Kéhler manifold with positive first Chern class, where the positive orthogonal
bisectional curvature is preserved under the Kéhler-Ricci flow, must be biholomorphic to CP™. )

In a compact Kéhler manifold X, the bisectional curvature tensor acts as a symmetric
bilinear form on the space of (1,1) form (which we will denote as Ab»!(X)). Furthermore,
this action preserves the traceless part of this space (which we will denote as Ay (X)). In a
recent paper by Phong and Sturm [19], they observed that the condition that the sum of any
two eigenvalues of the traceless bisectional curvature operator is positive, is preserved under
the Kahler-Ricci flow in complex dimension 2. Note that this condition is different from the
condition used by H. Chen, even though the main idea of proof is very similar. The main
theorem they proved in [19] is that, if this curvature condition holds, then the positivity of
Ricci curvature will be preserved under the Kéhler-Ricci flow in complex surfaces. The proof
there is difficult and intriguing.

The 2-positive traceless bisectional curvature is certainly different to the popular notion
of positive bisectional curvature. For instance, when this curvature condition holds, the Ricci
curvature might not be positive. In [7, 8], the first named author and G. Tian studied the con-
vergence of Kahler-Ricci flow in Kéhler Einstein manifolds where the initial metric has positive
bisectional curvature and showed that the Kéhler-Ricci flow must converge to the Fubini-Study
metric exponentially over the flow. The present work can be viewed as a continuation of [7, §]
in the sense that the curvature condition is relaxed in some subtle way. However, one of more
immediate motivations of the present work is [5] and more recently [19]. The interest of the
first named author in this type of special curvature conditions was certainly re-invigorated by
this elegantly written paper [19]. Together with the second named author, we start to investi-
gate systematically geometrical properties of this 2-non-negative traceless bisectional curvature
operator on any Kéahler manifold. Our first result is

Theorem 1.1 Let X be a compact Kdahler manifold with ¢1(M) > 0, of complex dimension
n > 2. Along the Kdhler-Ricci flow, we have

(1) If the initial metric has non-negative traceless bisectional curvature operator, then the
evolved metrics also have non-negative traceless bisectional curvature operator. If it is positive
at one point initially, then it is positive everywhere for all t > 0.

(2) If the initial metric has 2-non-negative traceless bisectional curvature operator, then the
evolved metrics also have 2-non-negative traceless bisectional curvature. If it is positive at one
point initially, then it is positive everywhere for all t > 0.

Under either of these two conditions, the positivity of Ricci tensor is preserved under the
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Kihler-Ricci flow.

The relation between 2-positive traceless bisectional curvature and the notion of positive
orthogonal bisectional curvature is much more subtle. They are defined in a completely dif-
ferent manner and the action of bisectional curvature operator on the space of (1,1) forms is
very complicated. It is hard to visualize what 2-positive traceless bisectional curvature really
is. A somewhat surprising result we prove in this paper is that (cf. Theorem 1.2) any Kéhler
metric which has 2-positive traceless bisectional curvature must also have positive orthogonal
bisectional curvature. The last part of the preceding theorem follows directly from the applica-
tion of Hamilton’s maximal principle for tensors to the evolution equation of the Ricci tensor.
Compared with the main theorem in [19], our theorem is for all dimensions and our proof is

simpler and more straightforward, even in complex surfaces.

Theorem 1.2 In a Kdhler manifold with 2-non-negative traceless bisectional curvature op-
erator, the orthogonal bisectional curvature must be non-negative. If, in addition, the scalar
curvature is uniformly bounded from above and the dimension n > 3, then the bisectional cur-
vature is uniformly bounded. Moreover, if we assume that the traceless bisectional curvature
operator is non-negative, then the sum of any two eigenvalues of the Ricci tensor is non-negative.

Remark 1.1 We point out that the condition n > 3 can not be removed. In Section 4,
we construct a Kéhler surface which has non-negative traceless bisectional curvature while the
scalar curvature cannot bound the bisectional curvature.

Remark 1.2 In the special case of complex surfaces, similar estimate was derived in [20].
However, they need to assume also the non-negativity of Ricci curvature. In an unpublished
work of G. Perelman, the scalar curvature is uniformly bounded along the Kéhler-Ricci flow.
Combining this with Theorem 1.2, we conclude that the full bisectional curvature is uniformly
bounded over the Kéhler-Ricci flow when the initial metric has 2-non-negative traceless bisec-

tional curvature.

Following Remark 1.2 and a general theorem on the Kéhler-Ricci flow (cf. [21, 22]), we get
the following

Corollary 1.1 Let X be a compact Kahler manifold with ¢ (M) > 0, of complex dimension
n > 3. Along the Kdhler-Ricci flow, if the initial metric has 2-non-negative traceless bisectional
curvature operator, then the flow converges by sequences to some Kahler-Ricci soliton in the
limit in the sense of Cheeger-Gromov-Hausdorff topology.

Similar results was also proved by Phong-Sturm [20] in complex surfaces with additional
assumption that the initial metric has non-negative Ricci curvature.

2 Basic Kahler Geometry

2.1 Setup of notations

Let X be an n-dimensional compact Kéhler manifold. A Ké&hler metric can be given by its
Kahler form w on X. In local coordinates z1,- - - , z,, this w is of the form

w=+v-1 Z gi;dziAdz7>O,

i,j=1
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where {gﬁ} is a positive definite Hermitian matrix function. The Kahler condition requires
that w be a closed positive (1,1)-form. In other words, the following holds

— 097 - 0g,7
8qu _ g,]‘ and 89111 _ gk;], vz7],k:1,27 ,N.
027 0zt 029 0zt

The Kéhler metric corresponding to w is given by

V-1 Z 907 d2* @ d:”.
1

For simplicity, in the following, we will often denote by w the corresponding Kéhler metric. The
Kihler class of w is its cohomology class [w] in H?(X,R). By the Hodge theorem, any other
Kahler metric in the same Kéhler class is of the form
wy, =w—+ V-1 — >0
¢ Z 02'027

4,j=1

for some real valued function ¢ on X. The functional space in which we are interested (often
referred to as the space of Kéhler potentials) is

P(X,w) ={p € C®°(X,R) |wy, =w++v~190p >0 on X}.
Given a Kéahler metric w, its volume form is
W =nl(v-1)" det(gﬁ)dz1 AdzE A AdZ" Ad2™

Its Christoffel symbols are given by

n

10,1 T _ N\~ 799
Eo_ k19941 B & 990 S
i = lgl g 92 and Fij = lgl g 9.7 Vi, j,k=1,2,---n.

The curvature tensor is

829.7. n _0giz g
= *J pqZJtq —7P) i =

Rijkl - 8zk827 + Zlg 82’“ 827 ’ \V/Z,j,k,l - 1527 n.
q=

We say that w is of nonnegative bisectional curvature if
Rﬁkivivjwkwl >0

for all non-zero vectors v and w in the holomorphic tangent bundle of X. The bisectional
curvature and the curvature tensor can be mutually determined. The Ricci curvature of w is

locally given by
R _ 9% log det(g,;)
o 821'(9§j '
So its Ricci curvature form is

Ric(w) = V=1 Y Rz(w)dz' Adz = —/=190logdet(g;7).

i,j=1
It is a real, closed (1,1)-form. Recall that [w] is called a canonical Kéhler class if this Ricci form

is cohomologous to A w, for some constant A. In our setting, we require A = 1. The trace of
Ricci curvature is the scalar curvature, which is given by

R=giR;.
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2.2 The Kahler-Ricci flow

Now we assume that the first Chern class ¢1(X) is positive. The normalized Ricci flow (cf.
[10, 11]) on a Kéhler manifold X is of the form

agﬁ .
If we choose the initial Kéhler metric w with ¢1(X) as its Kéhler class. The flow (2.1) preserves
the Kéhler class [w]. It follows that on the level of Kahler potentials, the Ricci flow becomes

n

e S (2.2)

ot
where h,, is defined by

RIC((JJ) —w =V _185hw and / (ehw _ 1)(&)” — 0
X

Then the evolution equation for bisectional curvature is

8

at Ukl A]%Ukl + Rz, RiﬁkﬁR

ijpq- “qpkl vidl + Rijpglt + Rﬁkf

ilpg” "qpkj

i(RlﬁRpgki + Rp;RiﬁkZ + RkﬁRﬁpf +R R?]k‘p) (23)

Here A is the complex Laplacian with respect to the metric g(t), and it acts on the bisectional
curvature by

1 07
AR = 59" (Riji o5 + Rijia 5a)-

The evolution equation for Ricci curvature and scalar curvature are

51~ = ARG+ BB — RipRy5, (2.4)
OR
5p = OR+RGR; — R (2.5)

By direct computations and using the evolved frames, we obtain the following evolution
equation for the bisectional curvature:

8Rz]kl
ot
As usual, the flow equation (2.1) or (2.2) is referred to as the Kahler-Ricci flow on X. Tt is

proved by Cao [2], who followed Yau’s celebrated work [23], that the Kéhler-Ricci flow exists
globally for any smooth initial K&ahler metric.

- ARz]kl Rz}ki + qumWR — Rimm R 7 +R; _R (26)

nmkl mjn, ilmmt tnmkl

3 The Traceless Bisectional Curvature Operator

3.1 Definitions and the evolution equations

In Riemannian geometry, the curvature tensor for Riemannian metric can always be decom-
posed orthogonally into three parts: Rm =W + V + U, where W is the Weyl tensor and V,U
are the traceless Ricci part and the scalar curvature part respectively. The decomposition for
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Kahler case is slightly different. The bisectional curvature tensor can also be decomposed into
orthogonal parts as well.
Set

1 0
Sﬁ = Rﬁ — ﬁRgﬁ = R.*., (31)

)
1 1
SchE = Ragca - E(SaEch + Scﬁgag) - ﬁRgaEch' (32)

As in the Riemannian case, the “Weyl” part S 7 - is also trace free:

abc
b
S(LECE = Scﬁa@’ g(l Sag(ﬂ = O
As in the previous subsection, under some evolved moving frame, we can rewrite the evolution
equation for curvature as follows (cf. [19])

Proposition 3.1 Along the Kdhler-Ricci flow the evolution equation relating the traceless
bisectional curvature operator are as follows:

OR B 1 5 o
95 1
ot = ASaE + E(R — n)Sag + abij s (3.4)
98,5 1
8—fd = ASupcq — Sapea + SabizSjica T SaijaSive — SaicSivja +  SapSaa- (3.5)

The bisectional curvature operator can be viewed as a symmetric operator on the space
of real (1,1) forms Ab(X). For any pair of (1,1) forms 7,7, the action of the bisectional

curvature is

R(n.7) = Rz ra 9”9 e"g".
If we decompose the space Ab!(X) into the line which consists of the multiple of the Kéhler
form and its orthogonal complementary subspace A(l)’l(X ), then the action of S {751 Preserves
A(l)’l(X). Denote the action of Sﬁki by S. In some special basis, we will use M to denote

the matrix of the operator S. We often refer S as the traceless bisectional curvature opera-
tor. Moreover, there is a nice decomposition formula for the bisectional curvature operator in

ALL(X)
R Ric
<Ric0t S ) ' (3.6)

If the action of S in A(l)’l(X ) is non-negative, then we call the underlying Kéhler metric
has a non-negative traceless bisectional curvature operator. If the action of S in A(l)’l(X ) has a
property that the sum of any two eigenvalues is non-negative, then we say that the underlying
Kahler metric has a 2-non-negative traceless bisectional curvature operator.

3.2 Geometric properties of the traceless bisectional curvature operator

In this subsection, we derive some geometric properties of the traceless bisectional curvature
operator. First, in any local coordinate, after fixing a frame such that the metric tensor at the
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origin is an identity matrix, there is a natural orthonormal basis for A1 (X) at the origin point
(here i,j =1,2,---n):
{(V=1dz' AdZF,d2" AdF —d2? AdZ V=1 (dz' AdZ +d2d AdF)).
For convenience, we use the following notations.
Definition 3.1 The space A(l)’l(X) 1s locally spanned by the following elements:
AV =dz' Adzt —d2d AdF
BY =dz' AdF +d2d AdF,
C = —/~1(dz' AdF —dzd AdFY),
where 1 < i # j < n.

One remarks that this is not an orthonomal basis since {A”, 2 < i < n} are not orthogonal
to each other. However, A is orthonomal to both B and C while B, C are an orthonomal basis

for some subspace.
In this paper, we often use the following definition.

Definition 3.2 An orthogonal bisectional curvature is a holomorphic bisectional curvature
which acts on two orthogonal holomorphic planes.

Proposition 3.2 If the traceless bisectional curvature operator is 2-non-negative, then the
orthogonal bisectional curvature is nonnegative. If the traceless bisectional curvature operator
18 monnegative, then we have the following inequalities:

R+ Ri:=>2R;:>0, Rz+R:>0

it J3ji = 11jj Jji =
for any i #£j.

Proof (1) If A is a symmetric matrix and the sum of two lowest eigenvalues of A is
nonnegative, then A;; + A;; > 0 if 4 # j. To see this, assuming that m; < my < --- < m,, are
the eigenvalues of A, we have

m1 + me = inf{A(z,z) + A(y,y) | |z| = |y| =1, =Ly} > 0.
Then for any i # j, we have
A+ Ajj = A(ei, ei) + A(ej, ej) >0,

where {e;} are the standard basis of R™.
(2) Assume that S is 2-non-negative. Since the matrix of S is the same as the matrix of
curvature operator Rm when acting on the space A(l)’l(X ), we have

R(BY,BY) + R(CY,CY) >0,

which implies Rz~ > 0, Vi # j.

1jj —
(3) Assume that the traceless bisectional curvature operator is nonnegative,

R(AY,AY) = Rz: + R=5 — 2R = > 0.

i1t Jiii iijj



550 X. X. Chen and H. Z. Li

Thus, we have

R+ Rjg =Rz + ) Rogii+ R+ ) R

b i
> 2R3+ ) Rega+ ) Rz
aFi B#7

>0

)

where i # j. The proposition is proved.

4 Proof of Theorem 1.2

We follow notations in the previous section. Note that Proposition 3.2 already implies the
first and last parts of Theorem 1.2, so it suffices to prove the following

Theorem 4.1 Let X be a compact Kdahler manifold of dimension n > 3. If the traceless
bisectional curvature is 2-non-negative and the scalar curvature is bounded from above, then the
bisectional curvature is uniformly bounded.

Proof Choose a local coordinate at any point x € X as in Subsection 3.2, by the definition
of scalar curvature, we have

R= Z Rygr +2 Z Rz (4.1)
k=1 i<j

Since S is 2-non-negative, by Proposition 3.2 the orthogonal bisectional curvature is nonnega-
tive. Thus we have

R>>" R (4.2)
k=1

For fixed i and j , one notes that A% is orthonomal to both B¥ and C%. Following part (1) of
the proof of Proposition 3.2, we have (since S is 2-non-negative)

R(AY,AY) + R(BY,BY) > 0,
R(AY,AY) + R(CY,CY) >0
for all 4 # j. Thus
(R(AY, A7) + R(BY, BY)) + (R(A”, A") + R(C",C")) > 0.
This implies
Rgz+ Rj5,7 20, Vi#]. (4.3)

Thus, we have
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Combining this with (4.1), for all ¢ # j, we have

R
0< Ryj; < 5 (4.5)
Note that n > 3, (4.2) and (4.3) imply that for all &,
Rir < B (4.6)

Claim 4.1 For any 1 <k <n, we have |R,,7| < 2R.

Proof Assume that the holomorphic bisectional curvatures satisfy the following inequalities
Ri111 < Ryggs < Ryzg3 < -+ < Ry

By (4.3), we have R,5,5 > 0. By (4.6), it suffices to show R,y;7 > —2R. In fact, since S is

2-non-negative, we have
R(A™,A") + R(B',B?) + R(C'?,C"*) > 0
This implies
Ry1i1 + Rogogs + 2Ry155 2 0
By (4.5) and (4.6), we have

Riqi1 = —(Rygos + 2Ri793) > —2R.

The claim is proved.
Since all the curvature like RaaﬁB are bounded by the scalar curvature by Claim 4.1, other
curvature tensors are also bounded. This can be seen from the following claim.

Claim 4.2 For all i,j,k,l, we have |Rﬁk7| < cR, where ¢ is a universal constant.

Proof The idea of the proof is to write the curvature tensors as some linear combinations
of curvatures like R 555 and then use Claim 4.1. Here we assume that i, j, k,[ are different
from each other. Setting

e =dz'+dz?, P =dz'+vV—1dz7, € =dz'—d,
we can check
1
R = 5 Romie — Biae — Bigwe + V=1 Bapz — B — Bijg))-

Thus, [R5,%| < cR. For R;;;7, we can use the following identity:

ijij

1
Re(R-~

i77) = 7 (Bamaw + Byyyy — 2Rz — 8R;;5 — 2R 5,3

1180 1157 jjjj)'

Thus, |Re(R | < ¢R, and so |R

the same method, we see that other curvatures like RmJ,Rwl7 R”k

| < ¢R. Similarly, we can prove |Im(R 771 < cR. Using

; are also bounded by R.

77) 7:7)
The claim is proved.

In summary, all the bisectional curvature tensors are bounded by the scalar curvature R if
S is 2-non-negative. The theorem is proved.
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Example 4.1 In complex surfaces, if S is 2-non-negative, the scalar curvature may not
control the bisectional curvature. In fact, we consider the Kihler surface S? x S2%, with a
product Kéhler metric

w=+vV-1F(2)dzAdzZ+V-1G(w)dw A dw,
where z,w are a local coordinate of the first and second factor of S? x S? respectively. Let
U x U be an open neighborhood of (0,0) € S? x S2. Set

1 1

F(Z):W and G(U/):W7 (Z,TU)EUXU,

where A € R\ {0}. Now we calculate the curvature. Choose an orthonormal basis {e!,e?} at
any (z,w) € U x U, where

1 1 2 1

T+ X220 T 12wt

€

and set R57 = R(e', e7, ek,_l). Then for all points in U x U we have
Rt = 257, Rygy3 = —2)\?

and other curvatures are zero. Thus, & = 0 is non-negative and the scalar curvature R = 0,
but the bisectional curvature is obviously unbounded.

5 Proof of Theorem 1.1

In this section, we are ready to prove Theorem 1.1. Note that in [11], the positivity of
curvature operator is preserved and in [5] the 2-positivity of curvature operator is preserved
along the Ricci flow. One can also see both from [12]. Our proof here is similar to theirs.

Now we begin to prove Theorem 1.1.

Proof (1) Define
(6%, 8" 1at = Sam i — Sy = Co" W0

where {¢*} is a basis of Ay (X), which is some linear combinations of {A¥, B, C¥, i # j}
(cf. Definition 3.1). The coefficients C;"ﬁ here are pure imaginary or zero in our notation, since
one can check that [A%, BY] = 2,/—1C% etc. Now observe

Saﬁnasmgcﬁ - SamCﬁSmEnE = Maﬁ¢2ﬁ¢i2M’75¢;‘g (ézﬁ - Maﬁ¢2ﬁ¢fﬁM'ﬂ5¢:ng 767,3
= aﬁM'yé¢gm¢7ng(¢§E¢gﬁ - (bfﬁ‘big)
= MapMys595m 7_05B¢52

mb P

1 03
—5007 0y MapMosd 7
where M is the matrix of S under the basis {¢*}. Define

M¥ = CoC MosM,s. (5.1)
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Then we have :
S ESmEcﬁ - Samcﬁsmgna = —§M£¢ZE P_

amn cd

and

M 1 1
= M+ M?>—-M*+ =T 5.2
ot + 2 * n (5-2)

Now we have the following lemma.
Lemma 5.1 If all C(‘;” are real and M >0, then M# > 0.

Proof Without loss of generality, we may choose a basis {¢*} which diagonalizes M, so
that Mog = 6agMaa. For any v = v¥¢*, we have

M#(v,v) = (v2C2) (WP CY ) Moy Mij = (v C2)? Moo M > 0.

The lemma, is then proved.

Now we return to the proof of Theorem 1.1 again. Since in our case all C;"‘ are zero or pure

imaginary numbers, we have M# < 0 if M > 0. Since T is always non-negative, we have

oM 1 1

— =-M+M?*—-M¥*+-T>0,

ot 2 n
when M = 0. Note that M > 0 is convex and M (0) > 0, we have M(t) > 0 for all ¢ > 0.
In other words, the nonnegative traceless bisectional curvature operator is preserved. By the
strong maximum principle, if M is positive at one point at time t = 0, M is positive everywhere
for all time ¢t > 0.

(2) We want to prove that the 2-non-negative traceless bisectional curvature operator is
preserved along the Ké&hler-Ricci flow. Let us assume that the eigenvalues of the traceless
bisectional curvature operator on A(l)’l(X) are A\; < Ay < -+ A\, where m = n? —1. From (5.1),
(5.2), we have

d d
E()\l + A2) > _t(MH + Mas)

o,

> Ot )+ (4 - g SO (NN (53)

p.q

Note that the right-hand side

5 SO + (CEPIMA = S(CE? + (CE )

=D (CY2 (M + XA + > ((CF1)2 + (CENP)Ap A

q=3 P,q=>3

Note that A, > -+ > Aa > 0. If A\; + A2 = 0, then the right-hand side of (5.3) is nonnegative.
Since A1 + A2 is a concave function on X, A\; + A2 > 0 is preserved. By the strong maximum
principle again, if A\; + Ay > 0 is positive at one point at time ¢ = 0, then A\; + Ay > 0 is positive
everywhere for all time ¢ > 0.
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(3) Now we prove the last part of Theorem 1.1. If the traceless bisectional curvature positive
is non-negative or 2-non-negative, Theorem 1.2 implies that
R;720, Vi#j.
Let us assume that initially the Ricci curvature is positive and after finite time ¢y > 0, at some
point p € X, Rﬁ vanishes at least at one direction. For convenience, set this direction as 8%1
and diagonalize the Ricci curvature at this point. Then

OR7
ot

n
> Ry — RipRig = ) RyjsRi5 > 0.
0 ]:2
By Hamilton’s maximum principle for tensors, this is enough to show that the positivity of
Ricci curvature is preserved under the condition.

6 Proof of Corollary 1.1

To prove Corollary 1.1, it suffices to prove that the Ké&hler-Ricci flow converges by sequences
to some Kihler-Ricci soliton when the bisectional curvature is uniformly bounded by Theorem
1.2. In [21], N. Sesum proved that 7-flow converges by sequences to some Ricci soliton when
the curvature operator and the diameter are uniformly bounded. In [22], Sesum also proved
that the Kéhler-Ricci flow converges by sequences to some Kéhler-Ricci soliton outside some
isolated points on any Kéhler surface. The idea is more or less standard, and we include a proof
here.

First let us recall Perelman’s no local collapsing theorem.

Definition 6.1 (cf. [16]) Let g;j(t) be a smooth solution to the Ricci flow (gij)¢ on [0,T)
on a Riemannian manifold X of dimension n. We say that g;;(t) is locally collapsing at T, if
there is a sequence of times ty, — T and a sequence of metric balls By, = By (pr,rx) at times ty,
such that % is bounded, |Rm|(gi;)(tx) < r,* in By and % — 0.

Lemma 6.1 (cf. [16]) If X is closed and T < oo, then g;;(t) is not locally collapsing at T
Now we begin to prove Corollary 1.1.

Proof First we are ready to prove that the injectivity radii have a uniformly positive
lower bound along the Kéhler-Ricci flow. If the traceless bisectional curvature operator is 2-
nonnegative and the scalar curvature is bounded along the flow, Theorem 1.2 implies that the
curvature tensor is uniformly bounded.

Claim 6.1 The injectivity radius has a uniformly positive lower bound along the flow.

Proof Let (X, g;;) be the Kéhler-Ricci flow. Fix 7' > 0. Now we re-scale the metric

T—s

G5(5) = (T = s)g5( —log (==2)), s €l0.7). (6.1)
Then, gﬁ(s) is a solution with finite maximal existence interval to the unnormalized Ké&hler-
Ricci flow % = —R;5. Lemma 6.2 implies that (X,g;5(s)) is not locally collapsing. In other
words, for any sequence of times s, — 7', any sequence of metric balls By, = By (xy, i) at times
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Sk, such that :—’; is bounded and |[Rm|(g;;)(sk) < .2 in By, there exists a constant § > 0 such
that

Vol(By) , (6.2)

2n -
Tk

Since |[Rm|(g;7(t)) is uniformly bounded along the Kéhler-Ricci flow, for the un-normalized
flow, we have

[Rinl(75(5) < 7

We claim that there exists a constant ¢ > 0 such that inj(g(s)) > /T — s e. We prove this by
contradiction. Assume that there exists a sequence of times s — T', such that

inj(gls)

T— Sk
We re-scale the metric 1
h(sk) = 7= skg(Sk)-
Let ri =T — 5. Then
[Rm|(h(sk)) < C, inj(h(sk)) — 0. (6.3)
From (6.2), we have
VO](Bh(sk)(xky 1)) > 9. (6.4)

Then, (6.3), (6.4) contradict J. Cheeger’s injectivity radius estimate (cf. [18]). Thus, we have
inj(g(s)) > VT — se. Together with (6.1), we have

inj(g(t)) > € > 0.
Claim 6.2 The diameter has a uniformly upper bound along the flow.
Proof To see this, we assume that there are N points py, ps,--- ,pnx such that
disty(s)(pi,pj) > 26, V1<i#j<N,

where € > 0 is the uniformly lower bound on the injectivity radius from Claim 6.1. Hence,
the balls By (pi,€) are embedded and pairwisely disjoint. Since the curvature operator is
uniformly bounded, from the volume comparison theorem,

N

V >3 "Vol(By)(pire)) > NCe™.

i=1
Since the volume V is fixed along the flow, IV is bounded from above. Consequently the diameter
has a uniformly upper bound along the flow.

Now we return to the proof of Corollary 1.1. Since we have uniformly bounds on curvature
tensor and uniformly lower bound on the injectivity radius, by Hamilton’s compactness theorem,
for every t, — oo as k — o0, there exists a subsequence such that (X, g(tx + t)) converges to
(X, h(t)), in the sense that there exist diffeomorphisms ¢; : X — X, such that ¢7g(tr + t)
converge uniformly together with their covariant derivatives to metrics h(t) on any compact
subsets. For every sequence of times t; — oo, there exists a subsequence, such that the
(X, g(tr +1)) converges to a Kahler Ricci soliton as k — oo. The readers are referred to [21, 22]
for details. The corollary is proved.
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