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1 Introduction

Proper holomorphic mapping theory dates from 1950s, and there are many good results on

it (see [1–9]). The classification of proper holomorphic mappings (see the definition in [1]) is an

important and difficult problem, especially between bounded domains of different dimensions

(see [2–4]). Assume that g, f : D1 → D2 are proper holomorphic mappings, D1 and D2 are

bounded domains in Cn and CN respectively. If there exist h1 ∈ Aut(D1) and h2 ∈ Aut(D2)

such that f = h2 ◦ g ◦ h1, then f and g are equivalent. Let Bn be the unit ball in Cn. By a

classical result of Alexander [5], every proper holomorphic self-mapping of Bn with n ≥ 2 is

equivalent to the identity mapping.

For 1 < n < N , denote by Rat(Bn, BN ) the collection of all rational proper holomorphic

mappings from Bn to BN . For n > 2, the authors of [2] proved that there are only two

equivalence classes in Rat(Bn, BN ). In [3], the authors got a new gap phenomenon for proper

holomorphic mappings from Bn to BN when N ≤ 3n− 4. When N < 2n− 1 Huang Xiaojun

gave the following classical theorem on the classification of proper holomorphic mappings from

Bn to BN .

Theorem A (see [4]) Let Bn, Bm (n > 1, n < m < 2n − 1) be the unit balls in Cn,Cm

respectively. Let f : Bn → Bm be a holomorphic proper mapping that is twice continuously

differentiable up to the boundary. Then there exist σ ∈ Aut(Bn), τ ∈ Aut(Bm) such that

τ ◦ f ◦ σ(z1, z2, · · · , zn) = (z1, z2, · · · , zn, 0, · · · , 0).

From the above theorem, we know that the holomorphic proper mapping from Bn to Bm

is unique up the holomorphic automorphisms of Bn and Bm.
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In this paper, we will discuss the proper holomorphic mappings between special Hartogs

triangles of different dimensions and obtain a corresponding classification theorem. The main

idea is from [6], in which the authors gave the classification of proper holomorphic mappings

between generalized Hartogs triangles of same dimensions.

Firstly, we give the definition of the special Hartogs triangles:

Ω(n1,m1) =
{

(z, w) ∈ C
n1+m1 : 0 <

n1∑

i=1

|zi|
2 <

m1∑

j=1

|wj |
2 < 1

}

,

Ω(n2,m2) =
{

(z′, w′) ∈ C
n2+m2 : 0 <

n2∑

i=1

|z′i|
2 <

m2∑

j=1

|w′
j |

2 < 1
}

,

where

1 < n1 < n2 < min{n1 +m1 − 1, 2n1 − 1}, 1 < m1 < m2 < 2m1 − 1, (1.1)

and we use the notations

|z|2 :=

n1∑

i=1

|zi|
2, |w|2 :=

m1∑

j=1

|wj |
2, |z′|2 :=

n2∑

i=1

|z′i|
2, |w′|2 :=

m2∑

j=1

|w′
j |

2.

The main result is as follows.

Theorem 1.1 Let Ω(n1,m1) and Ω(n2,m2) be Hartogs triangles with the dimensional

assumption (1.1). Let F : Ω(n1,m1) → Ω(n2,m2) be a proper holomorphic mapping that is

twice continuously differentiable up to the boundary. Then there exist σ ∈ Aut(Ω(n1,m1)) and

τ ∈ Aut(Ω(n2,m2)), such that

τ ◦ F ◦ σ(z, w) = (z1, · · · , zn1
, 0, · · · , 0
︸ ︷︷ ︸

n2−n1

, w1, · · · , wm1
, 0, · · · , 0
︸ ︷︷ ︸

m2−m1

).

2 Main Lemmas

Let F = (F1, F2) : Ω(n1,m1) → Ω(n2,m2) be a proper holomorphic mapping, where F1 =

(f1, · · · , fn2
), F2 = (fn2+1, · · · , fn2+m2

).

Let ∂Ω(n1,m1) = A ∪B ∪ C, where

A = { (z, w) ∈ C
n1+m1 | |z|2 − |w|2 = 0, |z|2 6= 0, |w|2 6= 1},

B = { (z, w) ∈ C
n1+m1 | |w|2 = 1},

C = { 0 ∈ C
n1+m1}.

It is obvious that A ∩B = B ∩ C = A ∩ C = ∅.

Similarly, ∂Ω(n2,m2) = A′ ∪B′ ∪ C′, where

A′ = { (z′, w′) ∈ C
n2+m2 | |z′|2 − |w′|2 = 0, |z′|2 6= 0, |w′|2 6= 1},

B′ = { (z′, w′) ∈ C
n2+m2 | |w′|2 = 1},

C′ = { 0 ∈ C
n2+m2}.

We also have A′ ∩B′ = B′ ∩ C′ = A′ ∩ C′ = ∅.
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Lemma 2.1 F = (F1, F2) : Ω(n1,m1) → Ω(n2,m2) is a proper holomorphic mapping that

is twice continuously differentiable up to the boundary. Then F (B) ⊂ B′.

Proof Since F is proper, and twice continuously differentiable up to the boundary, we have

F (B) ⊂ ∂Ω(n2,m2).

If there exists x0 ∈ B, such that F (x0) ∈ A′, then by the continuity of F , there exist an

open set U of x0 in Cn1+m1 and an open set V of F (x0) in Cn2+m2 , such that F (U) ⊂ V .

Let

S = {(z, w) ∈ ∂Ω(n1,m1) : rank(F ′) < n1 +m1},

where F ′ is the Jacobian matrix of F . Select x1 ∈ B\S. Then we can find a suitable open set

U1 of x1, such that F |U1 : U1 → F (U1) has maximum rank. Then (|z′|2−|w′|2)◦F and |w|2−1

are local defining functions of U1 ∩B.

The coefficient matrices of the Levi-forms of |w|2 − 1 and (|z′|2 − |w′|2) ◦F are respectively
(

0 0
0 Im1

)

and (F ′)t

(
In1

0
0 −Im2

)

(F ′), (2.1)

where (F ′)t is an (n1 +m1)× (n2 +m2) matrix which defines on U1 ∩B with maximum rank.

Then (F ′)t can be expressed as the following

(F ′)t = R(0, Im1+n1
)V, (2.2)

where R and V are (n1 + m1) × (n1 + m1) and (n2 + m2) × (n2 + m2) nonsingular matrices

respectively, In1+m1
is the (n1 +m1) × (n1 +m1) unit matrix.

Let

V =

(
V1 V2

V3 V4

)

,

where V1 is an (n2 +m2 − n1 −m1) × n2 matrix, V4 is an (n1 +m1) × (m2) matrix.

Setting

η = (0, · · · , 0, b1, · · · , bn1+m1
)1×(n2+m2),

η1 = (b1, · · · , bn1+m1
)1×(n1+m1),

we consider the equation system:






η1V3 = (0, · · · , 0
︸ ︷︷ ︸

n2

),

grad(|w|2 − 1)(R−1)t(0 I)(n1+m1)×(n2+m2)η
t = 0,

(2.3)

where

grad(|w|2 − 1) = (0, · · · , 0, w1, · · · , wm1
).

(2.3) has n1 +m1 variables and n2 +1 equations. By the assumption condition (1.1), there exist

nontrivial solutions of (2.3). Since η1 is nontrivial and η1V3 = 0, we have η1V4 = (d1, · · · , dm2
) 6=

0.

Set

ξ = η

(
0
I

)

(n2+m2)×(n1+m1)

R−1 = (c1, · · · , cn1+m1
).
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From (2.3), we get grad(|w|2 − 1)ξt = 0. On the other hand, by the coefficient matrices of

Levi-forms of |w|2 − 1, we have

L(|w|2 − 1)(ξ, ξ) = (c1, · · · , cn1+m1
)

(
0 0
0 Im1

)

(c1, · · · , cn1+m1
)T ≥ 0. (2.4)

From the expression of ξ,

ξ(F ′)t = η

(
0 0
V3 V4

)

= (0, · · · , 0, d1, · · · , dm2
︸ ︷︷ ︸

n2+m2

), (2.5)

then

L((|z′|2 − |w′|2) ◦ F )(ξ, ξ) = ξ(F ′)t

(
In2

0
0 −Im2

)

(F ′ )ξt = −
m2∑

j=1

|dj |
2 < 0. (2.6)

But it is impossible. Because |w|2 − 1 and (|z′|2 − |w′|2) ◦ F are local defining functions of B,

their Levi-forms L(|w|2 − 1), L((|z′|2 − |w′|2) ◦ F ) considered as Hermitian quadratic form on

T (1,0)(B) are only different by a positive factor, so (2.4), (2.6) deduce contradiction. Therefore

the assumption F (x0) ∈ A′ is impossible.

We now only need to verify that when x0 ∈ B, F (x0) ∈ C′ is impossible. If x0 ∈ B,

F (x0) = 0, and there exists an open set U of x0, such that F (B ∩ U) ≡ 0. Since B ∩ U is a

real manifold of dimension 2(n1 +m1)− 1 in Ω(n1,m1), we have F ≡ 0 on Ω(n1,m1), which is

impossible by the definition of F . Otherwise there exists an open set U of x0. By the continuity

of F , F ((B\S)∩U)∩A′ 6= ∅ is impossible, so we have proved that if x0 ∈ B, F (x0)/∈C
′. Thus,

we complete the proof of Lemma 2.1.

Lemma 2.2 F = (F1, F2) is a proper holomorphic mapping as in Lemma 2.1. Then F2 is

independent of z = (z1, · · · , zn1
).

Proof Let w = (w1, · · · , wm1
) ∈ B. From Lemma 2.1, we have F (B) ⊂ B′, i.e.,

m2∑

j=1

| Fn2+j(z, w) |2 = 1. (2.7)

Operating
n1∑

k=1

∂2

∂zk∂zk
to (2.7), we have

n1∑

k=1

m2∑

j=1

∣
∣
∣
∂Fn2+j(z, w)

∂zk

∣
∣
∣

2

= 0.

Therefore
∂Fn2+j(z, w)

∂zk

≡ 0, 1 ≤ k ≤ n1, 1 ≤ j ≤ m2

on B. Since B is a real manifold of dimension 2(n1 +m1) − 1 in Ω(n1,m1), and
∂Fn2+j

∂zk
is a

holomorphic function, we have
∂Fn2+j

∂zk
≡ 0, 1 ≤ k ≤ n1, 1 ≤ j ≤ m2, on Ω(n1,m1), which

means that F2 is independent of z.
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3 Proof of Main Results

Proof of Theorem 1.1 Step 1 Fix w0 such that |w0|2 = 1. From Lemmas 2.1 and 2.2,

we can get |F2(w0)|2 = 1. Set

Fw0
: {z ∈ C

n1 : 0 < |z|2 < |w0|
2 = 1} → {z′ ∈ C

n2 : 0 < |z′|2 < |F2(w0)|
2 = 1},

which is a proper holomorphic mapping. Since Fw0
: B → B′, we have ∀zn → 0, where

zn ∈ {z ∈ Cn1 : 0 < |z|2 < |w0|2 = 1}, Fw0
(zn) → 0. Otherwise, Fw0

(zn) → B′. By Hartogs

extension theorem, we can extend Fw0
and we will still use Fw0

to denote this extended mapping:

Fw0
: {z ∈ C

n1 : |z|2 < |w0|
2 = 1} → {z′ ∈ C

n2 : |z′|2 ≤ |F2(w0)|
2 = 1}.

If Fw0
(zn) → B′, then |Fw0

(0)| = 1, which contradicts the maximum principle. So |Fw0
(0)|

= 0.

By Theorem A, we have

Fw0
= θ2( θ1z

︸︷︷︸

n1

, 0, · · · , 0
︸ ︷︷ ︸

n2−n1

), (3.1)

where θ1 ∈ Aut(Bn1
), θ2 ∈ Aut(Bn2

). Using the representation of automorphism of the unit

ball, and θ1(z
0) = 0, θ2(u

0) = 0, z0 ∈ Cn1 , u0 ∈ Cn2 , we have

θ1 : (z1, · · · , zn1
) → (u1, · · · , un1

) and uj =

n1∑

k=1

qjk(zk − z0
k)

(

1 −
n1∑

k=1

z0
kzk

)

R1

,

where

z0 = (z0
1 , · · · , z

0
n1

) ∈ C
n1 , Q = (qjk)1≤j,k≤n1

,

Q(I − z0
t
z0)Qt = In1

, R1(1 − z0z0
t
)R1 = 1;

θ2 : (u1, · · · , un1
, 0, · · · , 0) → (f1, · · · , fn2

) and fj =

n1∑

k=1

q∗jk(uk − u0
k)

(

1 −
n1∑

k=1

u0
kuk

)

R2

,

(3.2)

where

u0 = (u0
1, · · · , u

0
n2

) ∈ C
n2 , Q∗ = (q∗jk)1≤j,k≤n2

,

Q∗(I − u0
t
u0)Q∗t = In2

, R2(1 − u0u0
t
)R2 = 1.

(3.3)

Set

λ1 =
(

1 −
n1∑

k=1

z0
kzk

)

R1, λ2 =
(

1 −
n1∑

k=1

u0
kuk

)

R2.

By the properties of Fw0
(0, w0) = 0, we have

u0 =
(−z0Qt

R1
, 0
)

. (3.4)
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Then from (3.1), (3.2), F t
w0

can be expressed as follows:

F t
w0

=
1

λ1λ2
Q∗

(

Q(zt − z0t
) +Qz0t

(1 − z0zt)

0

)

=
1

λ1λ2
Q∗

(

(Qzt −Qz0t
z0zt)

0

)

=
1

λ1λ2
Q∗

(

Q(I − z0t
z0)zt

0

)

=
1

λ1λ2
Q∗

(

Qt
−1
zt

0

)

. (3.5)

By (3.3), (3.4),

λ1λ2 = (1 − u0ut)R2(1 − z0zt)R1

= (1 − z0zt)R1R2 +
z0QtQ(zt − z0t

)R2

R1

=
R2

R1

(R1(1 − z0zt)R1 + z0QtQ(zt − z0t
)) (3.6)

and

I − z0
t
z0 = Q

−1
Qt−1

.

Then

F t
w0

=
R1

R2

Q∗
(

Qt
−1

zt

0

)

R1(1 − z0zt)R1 + z0QtQ(zt − z0t)
. (3.7)

Without loss of generality, let

z0 = (z0, 0, · · · , 0), z = (eiθ, 0, · · · , 0), (3.8)

since (U, Im1
) is an automorphism of Ω(n1,m1), where U is a unitary matrix.

Using (3.2) again, we have

|R1|
2 =

1

1 − |z0|2
,

Q

(
1 − |z0|2 0

0 In1−1

)

Qt = I,

Q−1Qt−1 = (QtQ)−1 =

(
1 − |z0|2 0

0 In1−1

)

.

(3.9)

Then

QtQ =

( 1
1−|z0|2 0

0 In1−1

)

. (3.10)

Similarly, using (3.3) and (3.4) again, we have

|R2|
2 =

1

1 − |u0|2
=

1

1 − z0 QtQz0t

|R1|2

=
|R1|2

|R1|2 − |R1|2|z0|2
= |R1|

2,

Q∗ (I − u0
t
u0)Q∗t = Q∗

(

I −

(
−Q z0t

R1

0

)
(−z0Qt

R1
, 0
)
)

Q∗t = I,

(Q∗tQ∗)−1 = Q∗−1Q∗t−1
=

(

In1
− Q z0tz0Qt

|R1|2
0

0 In2−n1

)

.

(3.11)
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Then

Q∗tQ∗ =

(

In1
− Qz0t

z0 Qt

|R1|2
0

0 In2−n1

)−1

. (3.12)

By (3.2),

QQt −Qz0t
z0Qt = In1

and Qz0t
z0Qt = QQt − In1

.

Then from (3.12), we have

Q∗tQ∗ =

(

In1
−

QQt−In1

|R1|2
0

0 In2−n1

)−1

. (3.13)

On the other hand, by (3.8)–(3.10)

R1(1 − z0zt)R1 + z0QtQ(zt − z0t
) = |R1|

2(1 − z0zt) + |R1|
2(z0zt − z0z0t

)

= |R1|
2(1 − z0z0t

) = 1. (3.14)

Now we can rewrite (3.7) as follows:

Fw0

t =
R1

R2
Q∗

(

Qt
−1
zt

0

)

. (3.15)

So

|Fw0
|2 = (zQ−1, 0)Q∗tQ∗

(

Qt−1zt

0

)

= (zQ−1, 0)

(

In1
−

QQt−In1

|R1|2
0

0 In2−n1

)−1(

Qt−1zt

0

)

= zQ−1
(

In1
−
QQt − In1

|R1|2

)−1

Qt−1zt, (3.16)

where

Q−1
(

In1
−
QQt − In1

|R1|2

)−1

Qt−1

=
(

Qt

(

In1
−
QQt − In1

|R1|2

)

Q
)−1

=
(

QtQ+
QtQ

|R1|2
−
QtQQtQ

|R1|2

)−1

=

(

1 +
1

|R1|2

(
|R1|2 0

0 In1−1

)

−
1

|R1|2

(
|R1|4 0

0 In1−1

))−1

=

(
1

|R1|2

(
|R1|

2 0
0 |R1|2In1−1

))−1

= In1
. (3.17)

Let

γ∗ =






1
|R1|

0 0

0
√

1 − 1
|R1|2

In1−1 0

0 0 In2−n1




 and γ =

( 1
|R1|

0

0
√

1 − 1
|R1|2

In1−1

)

. (3.18)
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From (3.2), (3.10), (3.13),

Q∗tQ∗ =

(

In1
−

QQt−In1

|R1|2
0

0 In2−n1

)−1

=





1
|R1|2

0 0

0 1 − 1
|R1|2

In1−1 0

0 0 In2−n1





−1

= (γ∗γ∗
t
)−1 = γ∗

t−1
γ∗−1. (3.19)

Now, let Bt(w0) = Q∗γ∗. Then

B(w0)Bt(w0) = γ∗
t
Q∗t

Q∗γ∗ = In2
,

which means that B(w0) ∈ U(n2), where U(n2) is the unitary group of degree n2.

Since |R1|2 = |R2|2, we have R1

R2
= eiα, α ∈ R. Let At(w0) = eiαγ−1Qt−1. Then from (3.17)

and the definition of γ, we have

At(w0)A(w0) = In1
,

which means that A(w0) ∈ U(n1), where U(n1) is the unitary group of degree n1.

Now we can rewrite (3.15) as

F t
w0

= Bt(w0)

(

At(w0)z
t

0

)

, i.e., Fw0
= (zA(w0), 0)B(w0). (3.20)

Step 2 From Lemma 2.2, F2 is independent of z.

F2 : {w ∈ C
m1 : 0 < |w|2 < 1} → {w′ ∈ C

m2 : 0 < |w′|2 < 1}

is a proper holomorphic mapping. Then by Hartogs extension theorem, we can extend F2 so

that

F2 : {w ∈ C
m1 : |w|2 < 1} → {w′ ∈ C

m2 : |w′|2 < 1}

with F2(0) = 0. Use Theorem A again,

F2 = θ′2(θ
′
1w
︸︷︷︸

m1

, 0, · · · , 0
︸ ︷︷ ︸

m2−m1

).

By the proper properties of F2, for every w : |w| = 1, |F2| = 1. With the same argument

used in Step 1, we have that θ′1, θ
′
2 are unitary transformations.

Now we can assume

θ′(z) = zA′, A′ ∈ U(m1), θ′1(w) = wB′, B′ ∈ U(m2),

where z ∈ Cm1 , w ∈ Cm2 , U(m1), U(m2) are unitary groups of degree m1 and m2 respectively.

Then

F2(w) = (wA′, 0)B′. (3.21)

Step 3 From the above expression of F2, we have |F2(w)| = |w|, ∀w : |w| = l ≤ 1. Now

for a given w : |w| = l ≤ 1, set

F1(z, w) : {z ∈ C
n1 : 0 < |z|2 < |w|2 = l2} → {z′ ∈ C

n2 : 0 < |z′|2 < |F2(w)|2 = l2},
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which is a proper holomorphic mapping. By Hartogs extension theorem, we can extend F1 so

that

F1(z, w) : {z ∈ C
n1 : |z|2 < |w|2 = l2} → {z′ ∈ C

n2 : |z′|2 < |F2(w)|2 = l2}

is a proper holomorphic mapping with F1(0, w) = 0. It is easy to see that

F1(z, w) =
|F2(w)|

|w|
(zA(w), 0)B(w) =

l

l
(zA(w), 0)B(w) = (zA(w), 0)B(w),

where A(w) ∈ U(n1), B(w) ∈ U(n2), U(n1),U(n2) are unitary groups of degree n1 and n2

respectively. Since F1(z, w) is holomorphic on z and w, we have

d

dw
(A(w), 0)B(w) = 0.

As we know, A(w)At(w) = In1
, B(w)Bt(w) = In2

. Set

B(w) =

(
B1(w) B2(w)
B3(w) B4(w)

)

,

where B1(w) is an n1 × n1 matrix, B2(w) is an n1 × (n2 − n1) matrix. Then (A(w), 0)B(w) =

(A(w)B1(w),A(w)B2(w)), and

(A(w)B1(w),A(w)B2(w))(A(w)B1(w),A(w)B2(w))
t

= A(w)B1(w)(A(w)B1(w))
t
+ A(w)B2(w)(A(w)B2(w))

t

= A(w)(B1(w)B1(w)
t
+ B2(w)B2(w)

t
)A(w)

t
= A(w)A(w)

t
= In1

.

Set (A(w)B1(w)) = (ϕij)1≤i,j≤n1
, and (A(w)B2(w)) = (ψiα)1≤i≤n1,1≤α≤n2−n1

, where ϕij , ψiα

are holomorphic dependent on w1, · · · , wm1
, and

∑

1≤i,j≤n1

|ϕij |
2 +

∑

1≤i≤n1,1≤α≤n2−n1

|ψiα|
2

= tr[(A(w)B1(w),A(w)B2(w))(A(w)B1(w),A(w)B2(w))
t
]

= n1.

Operating
m1∑

k=1

∂2

∂wk∂wk
on the above equation, we have

∑

1≤i,j≤n1

1≤k≤m1

∣
∣
∣
∂ϕij

∂wk

∣
∣
∣

2

+
∑

1≤i≤n1

1≤α≤n2−n1

1≤k≤m1

∣
∣
∣
∂ψiα

∂wk

∣
∣
∣

2

= 0,

i.e., ϕij , ψiα are all independent of w1, · · · , wm1
, so that A(w)B1(w) and A(w)B2(w) are all

independent of w1, · · · , wm1
. Hence, there exist constant matrices A ∈ U(n1) and B ∈ U(n2)

such that (A(w), 0)B(w) = (A, 0)B. Thus

F1(z, w) = (zA, 0)B. (3.22)

Step 4 Now it is obvious from (3.21), (3.22) that

F = (F1, F2) : (z, w) → ((zA, 0)B
︸ ︷︷ ︸

n2

, (wA′, 0)B′

︸ ︷︷ ︸

m2

). (3.23)
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By the main theorem in [7], any proper holomorphic self-mapping of Ω(n1,m1) or Ω(n2,m2) is

automorphism. Without loss of generality, let σ ∈ Aut(Ω(n1,m1)), τ ∈ Aut(Ω(n2,m2)), such

that

σ : (z, w) → (zA, wA′),

τ : (z′, w′) → (z′B, w′B′),

where A,A′,B,B′ are unitary matrices of degree n1,m1, n2,m2 respectively. Then from (3.23),

for the proper holomorphic mapping: F : Ω(n1,m1) → Ω(n2,m2), that is twice continuously

differentiable up to the boundary, there exist σ, τ which are automorphisms of Ω(n1,m1) and

Ω(n2,m2) respectively, such that

τ ◦ F ◦ σ(z, w) = (z1, · · · , zn1
, 0, · · · , 0
︸ ︷︷ ︸

n2−n1

, w1, · · · , wm1
, 0, · · · , 0
︸ ︷︷ ︸

m2−m1

).

The proof of Theorem 1.1 is completed.
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