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Abstract The authors study the bifurcation of homoclinic orbits from a degenerate ho-

moclinic orbit in reversible system. The unperturbed system is assumed to have saddle-

center type equilibrium whose stable and unstable manifolds intersect in two-dimensional

manifolds. A perturbation technique for the detection of symmetric and nonsymmetric

homoclinic orbits near the primary homoclinic orbits is developed. Some known results

are extended.
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1 Introduction

In recent years, a new class of solitary waves has been found in a number of examples from

nonlinear optics and water wave theory (see [1] and references therein). They are typically

presented by homoclinic solutions to saddle-center equilibrium in the associated ordinary dif-

ferential equation that describes traveling waves in the original partial differential equation.

Many important examples lead to a reversible traveling wave ODE, i.e., an ODE that is invari-

ant under time reversal up to some linear involution R that fixes half the phase space variables

(see [2, 3] and references therein). The corresponding homoclinic solution is invariant under

time-reversal, and therefore it is called symmetric.

In this paper, we consider the bifurcation of symmetric homoclinic orbits to saddle-center

equilibrium in reversible systems of ODE.

We consider a reversible system

ẋ = f(x, λ), x ∈ R2n+2, λ ∈ R2, f ∈ Cr, r ≥ 2, (1.1)

which has, for λ = 0, a symmetric homoclinic orbit Γ asymptotic to a saddle-center x = 0.

Here reversibility means that there is a linear involution R (R2 = I) with

Rf(x, λ) = −f(Rx, λ).

A fundamental characteristic of reversible systems is that if x(t) is a solution, then so is Rx(−t).

We call a solution symmetric if x(t) = Rx(−t). It is well-known that an orbit is symmetric
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if and only if it intersects the space FixR = {x ∈ R2n+2 | Rx = x} (see [4]). Obviously the

equilibrium x = 0 is symmetric.

When λ = 0, we make the following assumption.

Assumption 1.1 The origin 0 is an equilibrium of saddle-center type. More precisely,

the Jacobian matrix A = D1f(0, 0) has one pair of purely imaginary eigenvalues ±i and 2n

hyperbolic eigenvalues:

σ(A) = {±i} ∪ {±µ} ∪ {σss} ∪ {σuu},

where µ ∈ R+, |Reµ̃| > µ, ∀ µ̃ ∈ σss ∪ σuu, and σss(uu) denotes the strong stable (unstable)

spectrum of D1f(0, 0). Because of the R-reversibility, we have σss = −σuu.

Note that D1f(0, 0) is nonsingular. Therefore, we have, for all sufficiently small λ, a unique

equilibrium point xλ nearby x = 0. Without loss of generality, we always assume f(0, λ) = 0 for

|λ| ≪ 1. The spectrum of D1f(0, λ) contains exactly one pair of purely imaginary eigenvalues

as well. This is due to the reversibility which prevents simple eigenvalues from moving off the

imaginary axis. So the saddle-center o has n-dimensional stable and unstable manifolds W s
λ and

Wu
λ , and a two-dimensional center manifold W c

λ filled with symmetric periodic orbits (Liapunov

orbits) surrounding the equilibrium. Also from [5], we know that the center manifold, the

center-stable manifolds W cs
λ and the center-unstable manifolds W cu

λ respectively are uniquely

determined.

Due to our assumption of reversibility, we will have no local bifurcations (around the equi-

librium x = 0) of fixed points or periodic orbits.

Next, we assume the existence of homoclinic solutions to (1.1) as follows:

Assumption 1.2 At λ = 0, system (1.1) possesses a homoclinic orbit Γ = {γ(r) : t ∈ R},

γ(t) → 0 as t → ±∞, RΓ = Γ. Furthermore, we suppose that

dim(Tγ(0)W
s ∩ Tγ(0)W

cu) = 2,

where Tγ(0)W
s(cu) is the tangent space of the stable (center-unstable) manifold W s(cu)(O) of

the nonhyperbolic equilibrium x = 0. By reversibility, we also have

dim(Tγ(0)W
cs ∩ Tγ(0)W

u) = 2.

So Assumption 1.2 ensures that Γ is contained in the intersection of the stable and un-

stable manifold of O and Γ is a symmetric homoclinic orbit. Homoclinic orbits with such an

exponential bound will play a distinguished role in the forthcoming analysis and we call them

fast decaying. We study bifurcation of homoclinic orbits from the primary one Γ. Therefore

we concentrate on the existence of one-homoclinic orbits (fast decaying) to the origin, that is,

orbits which are contained in a tubular neighborhood of Γ and make exactly one winding.

In [6], K. Yagasaki and T. Wagenknecht have analyzed the situation of degenerate homoclinic

orbits to a saddle-center which possesses one pair of imaginary eigenvalues. They used an idea

similar to that of Melnikov’s method to discuss the existence of a symmetric homoclinic orbit

to equilibrium. In this paper, we will present a technique to give a more complete description of

the bifurcation of one-homoclinic orbits to the saddle-center equilibrium. The ideas come from
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Lin’s method which has been proved to be a powerful tool for the investigation of the dynamics

near connecting orbits. Originally, this method has been used for orbits connecting hyperbolic

fixed points (see [7]), and extended to study the bifurcation of nondegenerate homoclinic orbits

to a saddle-center (see [8]). The main technical difference to the analysis for homoclinic orbits

to hyperbolic equilibrium is that in the nonhyperbolic situation the variational equation along

the homoclinic orbit possesses an exponential trichotomy, instead of an exponential dichotomy.

This requires a modified approach. Inspired by [8], we will adapt Lin’s method to discuss the

bifurcation of degenerate homoclinic orbits.

2 Homoclinic Orbits to the Equilibrium

In this section, we give the precise analysis leading to this bifurcation equation. Let γ(0) ∈

FixR. This is always possible because Γ is symmetric and it has exactly one common point

with FixR. Then by reversibility, we have

f(γ(0), 0) ∈ Fix(−R).

The following direct sum decomposition is fundamental for all of our considerations:

R2n+2 = span{f(γ(0), 0)} ⊕ U ⊕ W+ ⊕ W− ⊕ Z, (2.1)

where
span{f(γ(0), 0)} ⊕ U = Tγ(0)W

s(0) ∩ Tγ(0)W
u(0),

(Tγ(0)W
s(0) ∩ Tγ(0)W

u(0)) ⊕ W+(−) = Tγ(0)W
s(u)(0),

Z ∈ (Tγ(0)W
s(0) + Tγ(0)W

u(0))⊥.

(2.2)

This means dim Z = 4 and dimU = 1. We define the transversal section
∑

by

∑
= γ(0) + {U ⊕ W+ ⊕ W− ⊕ Z}. (2.3)

Due to the reversibility of the vector field, we have RW s = Wu. Hence RTγ(0)W
s = Tγ(0)W

u.

Then we have

RW+ = W−, R(U) = U.

Obviously, if η+ ∈ W+, then η+ + Rη+ ∈ FixR ∩ (W+ ⊕ W−), and η+ − Rη+ ∈ Fix(−R) ∩

(W+ ⊕ W−). We obtain the following result:

Lemma 2.1 The space W+ ⊕W− contains (n− 2)-dimensional subspace of both FixR and

Fix(−R), where dim W+(−) = n − 2.

A consequence of (2.3) is

RZ = Z, Z = (Z ∩ FixR) ⊕ (Z ∩ Fix(−R)). (2.4)

Taking into consideration that dimU = 1, we have R|U = −id or R|U = id. In the first case,

i.e., R|U = −id, U is a subspace of Fix(−R). Because of R2n+2 = FixR⊕Fix(−R) and Lemma

2.1, we obtain
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Lemma 2.2 The space Z is a direct sum of a one-dimensional subspace of Fix(−R) and

a three-dimensional subspace of FixR.

Remark 2.1 In the second case, i.e., R|U = id, U is a subspace of Fix(R) and Z is a direct

sum of a two-dimensional subspace of Fix(−R) and a two-dimensional subspace of FixR.

Following Lin’s method for hyperbolic fixed points, we would look for solutions γ± to (1.1)

defined on R± which start in
∑

with a difference lying in a certain space and approach O for

t → ±∞. Since, in our case, O is a non-hyperbolic fixed point, we will first detect exponentially

decaying solutions. So let us choose α such that 0 < α < µ (see Assumption 1.1 for the

definition of µ), and look for solutions γ± that fulfil

( i ) The orbits of γ± are near Γ,

( ii ) γ+(0), γ−(0) ∈ Σ,

(iii) sup{e±αt‖γ±(t)‖ : t ∈ R±} < ∞,

(vi) γ+(0) − γ−(0) ∈ Σ.

(Pγ)

Indeed, we consider γ± as perturbations of γ. For that we define functions v±( · ) on R± by

γ±(t) = γ(t) + v±(t), t ∈ R±. (2.5)

We will formulate an equivalent problem to (Pγ) for v±. First, the functions v± have to satisfy

the equation

v̇ = D1f(γ(t), 0)v + h(t, v, λ), (2.6)

where h(t, v, λ) = f(γ(t) + v, λ) − f(γ(t), 0) − D1f(γ(t), 0)v, h( · , 0, 0) = 0, D2h( · , 0, 0) = 0.

In order to satisfy the exponential rate for γ±, we introduce spaces

v+
α := {v ∈ C0([0,∞], R2n+2) : sup eαt‖v(t)‖ < ∞, t ≥ 0},

v−α := {v ∈ C0([−∞, 0], R2n+2) : sup e−αt‖v(t)‖ < ∞, t ≤ 0}.

We rewrite (Pγ) by (2.5). Then v+( · ) and v−( · ) have to satisfy

( i ) ‖v±(t)‖ is small for all t ∈ R±,

( ii ) v+(0), v−(0) ∈ U ⊕ W+ ⊕ W− ⊕ Z,

(iii) v+(t) ∈ v+
α , v−(t) ∈ v−α ,

(vi) v+(0) − v−(0) ∈ Z.

(Pv)

So the original task of finding solutions to the system (1.1) fulfilling (Pγ) has been turned into

the problem of determining solutions to the “nonlinear” variational equation (2.6) satisfying

(Pv).

In order to find solutions to (2.6) that fulfil (Pv), we use the fact that the variational equation

along the homoclinic orbit Γ

v̇ = D1f(γ(t), 0)v (2.7)

possesses exponential trichotomies on R± (see [8]). This means that there exist projections

P±
u (t), P±

s (t) and P±
c (t) such that

P±

s (t) + P±

u (t) + P±

c (t) = Id, t ∈ R±
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and

Φ(t, s)P±

i (s) = P±

i (t)Φ(t, s), i = u, s, c,

where Φ( · ) denotes the transition matrix of (2.7). Moreover, for t ≥ s ≥ 0 and for all αc with

µ > α > αc > 0, we have

‖Φ(t, s)P+
s (s)‖ ≤ Ke−α(t−s), ‖Φ(s, t)P+

u (t)‖ ≤ Ke−α(t−s),

‖Φ(t, s)P+
c (s)‖ ≤ Keαc(t−s), ‖Φ(s, t)P+

c (t)‖ ≤ Keαc(t−s).

Using reversibility, one can define P−

i (t) such that similar relation holds on R−. Furthermore,

we demand that

ImP+
s (t) = Tγ(t)W

s, ImP−

u (t) = Tγ(t)W
u,

and we can choose

KerP+
s (0) = Z ⊕ W−, KerP−

u (0) = Z ⊕ W+.

These results are proved in [8] (see also [7]).

Solutions to (2.6) satisfy the following fixed point problem

v+(t) = Φ(t, 0)η+ +

∫ t

0

Φ(t, s)P+
s (s)h(s, v+, λ)ds

−

∫ ∞

t

Φ(t, s)(Id − P+
s (s))h(s, v+, λ)ds,

v−(t) = Φ(t, 0)η− −

∫ 0

t

Φ(t, s)P−

u (s)h(s, v−, λ)ds

+

∫ t

−∞

Φ(t, s)(Id − P−

u (s))h(s, v−, λ)ds,

(2.8)

where η+ ∈ Tγ(0)W
s, η− ∈ Tγ(0)W

u. Using the definition of h and Taylor expansion of f , we

obtain the following estimate:

‖h(t, v, λ)‖ ≤ K1‖v‖
2 + K2‖λ‖(‖γ(t)‖ + ‖v‖). (2.9)

Hence, v± ∈ v±α implies h( · , v±( · ), λ) ∈ v±α . Now we consider the function defined by the

right-hand side of (2.8):

L+(t, h) :=

∫ t

0

Φ(t, s)P+
s (s)h(s, v+, λ)ds −

∫ ∞

t

Φ(t, s)(Id − P+
s (s))h(s, v+, λ)ds,

L−(t, h) := −

∫ 0

t

Φ(t, s)P−

u (s)h(s, v−, λ)ds +

∫ t

−∞

Φ(t, s)(Id − P−

u (s))h(s, v−, λ)ds.

The norm of L+(t, h) can be estimated as

‖L+(t, h)‖ ≤
∥∥∥

∫ t

0

Φ(t, s)P+
s (s)h(s, v+, λ)ds

∥∥∥ +
∥∥∥

∫ ∞

t

Φ(t, s)P+
u (s)h(s, v+, λ)ds

∥∥∥

+
∥∥∥

∫ ∞

t

Φ(t, s)P+
c (s)h(s, v+, λ)ds

∥∥∥.
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Now using the exponential trichotomy and h( · , v+( · ), λ) ∈ v+
α , we can obtain

∥∥∥
∫ ∞

t

Φ(t, s)P+
c (s)h(s, v+, λ)ds

∥∥∥ ≤ Ke−αct

∫ ∞

t

e(αc−α)sds ≤ K̂e−αt

for some positive constants K and K̂. Similar estimations hold for L−(t, h).

Remark 2.2 This estimation is not possible if h( · , v±, λ) is only bounded.

Now we see that the right-hand side of (2.8) is a map

Tγ(0)W
s(u) × R2 × v±α → v±α .

Therefore, the exponentially bounded solutions to (2.6) are exactly the solutions to (2.8)

considered in v±α . By the implicit function theorem, this problem can be solved around

(η±, v±, λ) = (0, 0, 0) for v± = v±(η±, λ). So the problem ((2.6), (Pv)(i), (iii)) has been solved.

Now regarding the requirements on v±(η±, λ)(0) in ((Pv)(ii), (iv)) and writing U as U =

span{u0}, we decompose both v+(η+, λ)(0) and v−(η+, λ)(0) as follows:

v+(η+, λ)(0) = η+ −

∫ ∞

0

Φ(0, s)(Id − P+
s (s))h(s, v+, λ)ds

= ρ1u0 + w+ + w̃−(η+, λ) + z+(η+, λ),

v−(η−, λ)(0) = η− +

∫ 0

−∞

Φ(0, s)(Id − P−

u (s))h(s, v−, λ)ds

= ρ2u0 + w− + w̃+(η−, λ) + z−(η−, λ),

(2.10)

where w+(−), w̃± ∈ W+(−), z± ∈ Z, ρ1u0 + w+ = η+, ρ2u0 + w− = η−, ρiu0 ∈ U , i = 1, 2.

Moreover, in (Pv) we demand

v+(η+, λ)(0) − v−(η−, λ)(0) ∈ Z.

Therefore,

w+ = w̃+(η−, λ), w− = w̃−(η+, λ), ρ1 = ρ2 = ρ (2.11)

have to be satisfied. Together with h( · , 0, 0) = 0 and D2h( · , 0, 0) = 0, we obtain

w̃+(0, 0) = 0, D1w̃
+(0, 0) = 0,

w̃−(0, 0) = 0, D1w̃
−(0, 0) = 0.

By implicit function theorem, we can solve (2.11) for

w+ = w+(ρ, λ), w− = w−(ρ, λ). (2.12)

We thus obtain the following lemma in complete analogy to [8, Lemma 2.7].

Lemma 2.3 For each sufficiently small λ, there is a pair (γ+(ρ, λ), γ−(ρ, λ)) of solutions

to (1.1) satisfying the properties (Pγ).

We find homoclinic orbits asymptotic to the fixed point x = 0 with some minimal exponential

rate by solving the following bifurcation equation

ξ∞(ρ, λ) = γ+(ρ, λ)(0) − γ−(ρ, λ)(0) = 0, (2.13)
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which satisfies

ξ∞(0, 0) = 0, D1ξ
∞(0, 0) = 0.

The reversibility of f and the symmetry of the homoclinic orbit γ( · ) imply

RD1f(γ(t), 0) = −D1f(γ(−t), 0)R,

Rh(t, x, λ) = −h(−t, Rx, λ).
(2.14)

This means equation (2.6) is reversible. Similarly to [8], we have

Lemma 2.4 The solutions v± to the fixed point equation (2.8) satisfy

Rv+(η+, λ)(t) = v−(Rη+, λ)(−t),

Rv−(η−, λ)(t) = v+(Rη−, λ)(−t).

Proof The lemma is an immediate consequence of the reversibility of (2.7). For the

transition matrix Φ of this equation, we have

RΦ(t, s) = Φ(−t,−s)R. (2.15)

Then we get

RP+(s) = P−(−s)R.

Together with the uniqueness of the solution to (2.8), the lemma can be proved.

Now we want to investigate Rξ. For this we have to distinguish U ∈ Fix(−R) and U ∈ FixR.

First we turn to the case U ∈ Fix(−R). From Lemma 2.4 and (2.10), we know

Rw̃−(ρ, w+, λ) = w̃+(−ρ, Rw+, λ),

Rw̃+(ρ, w−, λ) = w̃−(−ρ, Rw−, λ)
(2.16)

and
Rz+(ρ, w+, λ) = z−(−ρ, Rw+, λ),

Rz−(ρ, w−, λ) = z+(−ρ, Rw−, λ).
(2.17)

Exploiting the implicit function theorem applied to (2.11), we get

w+(−ρ, λ) = Rw−(ρ, λ), (2.18)

w−(−ρ, λ) = Rw+(ρ, λ). (2.19)

Together with (2.17), we obtain

Rξ∞(ρ, λ) = −ξ∞(−ρ, λ). (2.20)

Before starting our analysis, we use the refinement of decomposition (2.1):

R2n+2 = span{f(γ(0), 0)} ⊕ U ⊕ W+ ⊕ W− ⊕ Y c ⊕ Z̃, (2.21)

where

span{f(γ(0), 0)} ⊕ U ⊕ Y c = Tγ(0)W
cs ∩ Tγ(0)W

cu
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and

Z = Z̃ ⊕ Y c.

Since W cs and W cu intersect transversally in γ(0), when restricted to the space

span{f(γ(0), 0)} ⊕ U ⊕ W+ ⊕ W− ⊕ Y c,

from [9], it is easy to see that ξ∞(ρ, λ) ∈ Z̃. Next, we assume that the primary homoclinic

orbits Γ is elementary; that is,

Assumption 2.1 W cu intersects FixR transversally at γ(0).

Again counting dimensions, we see that this time dim(Tγ(0)W
cs ∩ FixR) = 1. Since

RTγ(0)W
s = Tγ(0)W

u, we have

dim(Y c ∩ FixR) = 1.

Hence Y c is spanned by a one-dimensional subspace of FixR and a one-dimensional subspace

of Fix(−R). From the direct sum decomposition (2.21) and Lemma 2.2, we get

Z̃ ∈ FixR,

which means that ξ∞(ρ, λ) ∈ FixR since ξ∞(ρ, λ) ∈ Z̃. Together with (2.20), this means that

ξ∞(−ρ, λ) = −ξ∞(ρ, λ). (2.22)

First, we know that

ξ∞(0, λ) ≡ 0. (2.23)

From (2.5) and (2.10), we get

0 = ξ∞(0, λ) = γ+(w+(0, λ), λ)(0) − γ−(w−(0, λ), λ)(0)

= v+(w+(0, λ), λ)(0) − v−(w−(0, λ), λ)(0)

= w+(0, λ) + w̃−(0, w+(0, λ), λ) + z+(0, w+(0, λ), λ)

− w−(0, λ) − w̃+(0, w−(0, λ), λ) − z−(0, w−(0, λ), λ).

According to (2.16)–(2.19), we know

v+(w+(0, λ), λ)(0) ∈ FixR.

Hence

γ+(0, λ)(0) ∈ FixR.

This means that (0, λ) is associated with a symmetric homoclinic orbit of (1.1). Because

U ∈ Fix(−R), we have

v+(ρu0 + w+(ρ, λ), λ)(0) = ρu0 + w+(ρ, λ) + w̃−(ρ, w+(ρ, λ), λ)

+ z+(ρ, w+(ρ, λ), λ) /∈ FixR
(2.24)

for ρ 6= 0. This means that each solution (ρ, λ), ρ 6= 0 to ξ∞(ρ, λ) = 0 corresponds to a

nonsymmetric homoclinic orbit.
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Due to (2.23), we get

ξ∞(ρ, λ) = ρφ(ρ, λ). (2.25)

Obviously, φ is even with respect to ρ. Moreover, from (2.13), it follows that

φ(0, 0) = 0, D1φ(0, 0) = 0. (2.26)

In order to describe the solution set to ξ∞(ρ, λ) = 0, we impose another transversality condition

by assuming that

Assumption 2.2 ∂
∂λ

φ(0, 0) has rank two.

Combining this with (2.24), we can get the following results:

Theorem 2.1 Suppose that Assumptions 1.1–2.2 are valid for system (1.1). Then there

exists a unique symmetric homoclinic orbit nearby Γ. Moreover, there is a curve κ ⊂ R2, such

that for each point λ ∈ κ, system (1.1) has two nonsymmetric homoclinic orbits. Also, these

two homoclinic orbits approach each other for λ → 0 and merge to the degenerate homoclinic

orbit Γ for λ = 0.

Next, we consider the case U ⊂ FixR. Instead of (2.16)–(2.20), we get

Rξ∞(ρ, λ) = −ξ∞(ρ, λ),

which means ξ∞(ρ, λ) ∈ Fix(−R). Therefore, we get a two-dimensional bifurcation equation

ξ∞(ρ, λ) = 0. (2.27)

Let (ρ, λ) be a solution to (2.27). Taking into account (2.10) and (2.16)–(2.19), we see that the

corresponding solutions v+(−)(ρu0 + w+(−)(ρ, λ), λ)(t) satisfy

Rv+(ρ, λ)(0) = v−(ρ, λ)(0).

Hence v+(ρ, λ)(0) ∈ FixR, which proves that the homoclinic orbit corresponding to (ρ, λ) is

symmetric.

Suppose that

Assumption 2.3 ∂
∂λ

ξ∞(0, 0) has rank two.

Putting things together, we obtain the following theorem.

Theorem 2.2 Under Assumptions 1.1, 1.2 and 2.3, there is a smooth manifold H in the

parameter space, such that, for each λ ∈ H, there is a one-homoclinic orbit Γ̃ to the equilibrium

and when λ → 0, Γ̃ → Γ. Moreover, these homoclinic orbits are symmetric.
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