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1 Introduction

Let E be an elliptic curve over an algebraically closed field k. A rational function sheaf

K on E is the constant sheaf having section the function field of E. It is known that K is a

quasi-coherent sheaf, but not a coherent sheaf. By [15] the rational function sheaf K on E is

the unique big injective sheaf, i.e., K is the unique indecomposable injective sheaf such that

EndK is a division ring and every quasi-coherent sheaf on E is a subquotient of a direct sum of

copies of K. In particular, each coherent sheaf is a subquotient of a finite direct sum of copies

of K, and every simple sheaf is a subquotient of K. In [5], we proved that the rational function

sheaf K is a generic sheaf, i.e., for all coherent sheaves F , both Hom(F ,K) and Ext1(F ,K)

have finite EndK-length. Therefore, it is significant to study the rational function sheaf on E.

C. M. Ringel [14, Proposition 5.2] provided a method to construct the unique indecompos-

able torsionfree divisible module over the ring of tame representation type. Geigle-Lenzing [7]

and Lenzing-Meltzer [11] pointed out that there is a classification of finite dimensional modules

over a tubular algebra which is closely related to the Atiyah’s classification of vector bundle

on an elliptic curve (see [1]). All these encourage us to consider the problems: How many

indecomposable torsionfree divisible objects are there in the category of quasi-coherent sheaves

on an elliptic curve? And how do we construct them?

It is pleased that many main statements which have been proved in [14] for module cate-

gories also hold in the category QcohE of quasi-coherent sheaves on E by some corresponding

relationship. We show in this paper that K is the only indecomposable torsionfree divisible ob-

ject in QcohE, and we can construct the rational function sheaf K in a way similar to Ringel’s

method (see [14]). Indeed, the rank functor plays an important role in this construction. Using

this construction, we study the relationship between K and any coherent sheaf on E, and then
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prove that the category of all coherent sheaves of finite length on E is completely characterized

by K.

2 The Category of Coherent Sheaves on an Elliptic Curve

By definition, an elliptic curve E over an algebraically closed field k is a smooth plane

projective curve of genus one admitting a k-rational point p0. Every quasi-coherent sheaf on E

is a direct limit of coherent sheaves, and the category QcohE of quasi-coherent sheaves on E is

a locally noetherian Grothendieck category. Hence, the structure of a quasi-coherent sheaf on

E much depends on that of coherent sheaves on E. In this section, we recall some well-known

results on the category cohE of coherent sheaves on E.

Lemma 2.1 (see [10]) Let H = cohE be the category of coherent sheaves on E.

(1) H is an Abelian, Ext-finite, noetherian, hereditary and Krull-Schmidt k-category.

(2) H is a 1-Calabi-Yau category, that is, for any two coherent sheaves F and G, there is

an isomorphism Hom(F ,G) ∼= DExt1(G,F), where D = Homk(−, k).

(3) H = H+

∨

H0, that is, each indecomposable object of H lies either in H+ or in H0,

and there are no nonzero morphisms from H0 to H+, where H+ denotes the full subcategory

of H consisting of all objects which do not have a simple subobject, and H0 denotes the full

subcategory of H consisting of all objects of finite length.

Remark 2.1 From [13], we know that QcohE is also hereditary.

There is an additive function rk : H → Z, called rank function, separating the objects of

H+ and H0, that is, an object in H+ has rank > 0 and in H0 has rank 0. Objects of H+ are

called bundles and those of rank one are called line bundles. In particular, OE is a line bundle.

It is known that if L is a line bundle and S is a simple sheaf, then Hom(L,S) ∼= k (see [10]).

Lemma 2.2 (see [10]) Line bundles have the following properties.

(1) Each nonzero morphism from a line bundle to any bundle is a monomorphism. In

particular, the endomorphism ring of a line bundle is isomorphic to k.

(2) Each bundle F with rank n has a line bundle filtration, that is, a chain

0 = F0 ⊆ F1 ⊆ · · · ⊆ Fn−1 ⊆ Fn = F

of subobjects of F , satisfying each quotient Fi+1/Fi is isomorphic to a line bundle.

Lemma 2.3 (see [10]) H0 has the following characteristics.

(1) H0 is a hereditary Abelian length category with Serre duality.

(2) H0 is uniserial, and decomposes into a coproduct
∐

x∈E

Ux of connected uniserial subcat-

egories, whose associated quivers are homogeneous tubes, and the mouth of each homogeneous

tube is a simple sheaf.

For objects F , G ∈ H, we define

〈F ,G〉 = dimk Hom(F ,G) − dimk Ext1(F ,G).

Then the slope of a coherent sheaf F is an element in Q∪ {∞} defined as µ(F) = χ(F)
rk(F) , where

χ(F) = 〈OE,F〉.
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Lemma 2.4 (Riemann-Roch Formula) For any two coherent sheaves F and G on an elliptic

curve E, we have

〈F ,G〉 = χ(G)rk(F) − χ(F)rk(G).

In particular, 〈F ,G〉 = −〈G,F〉.

A coherent sheaf F is called stable (resp. semistable) if for any nontrivial exact sequence

0 → F ′ → F → F ′′ → 0, µ(F ′) < µ(F) (resp. µ(F ′) ≤ µ(F)) holds.

Lemma 2.5 (see [1, 2]) Any indecomposable coherent sheaf F on E is semistable. If two

semistable coherent sheaves F , H ∈ cohE satisfy µ(F) > µ(H), then Hom(F ,H) = 0.

Lemma 2.6 (see [2, 4]) H has the following detailed description.

(1) Let coh∞
E be the category of semistable sheaves of slope ∞. Then coh∞

E is just H0.

The category of simple sheaves is precisely {k(x)}x∈E, where k(x) is a skyscraper sheaf supported

at x and it is the mouth of a homogeneous tube Tx which is the associated quiver of Ux.

(2) The indecomposable objects of H are semistable, and

H = add
(

⋃

q∈Q∪{∞}

cohq
E

)

,

where cohq
E = {semistable sheaves of slope q}.

(3) For any p ∈ Q ∪ {∞}, there is an equivalence of Abelian categories cohp
E ∼= coh∞

E

induced by an autoequivalence of Db(cohE).

3 A Construction of the Rational Function Sheaf on Elliptic Curves

First, we extend the notions of torsion sheaves and torsionfree sheaves in [9] to cohE.

Definition 3.1 For a quasi-coherent sheaf F , its torsion part tF is defined to be the sum

of all subsheaves of F having finite length. If tF = F , then F is called a torsion sheaf. If

tF = 0, i.e., Hom(S,F) = 0 for each simple sheaf S, then F is called torsionfree.

It is easy to see that each object in H0 is torsion and each object in H+ is torsionfree. And

the class of torsion sheaves is closed under quotients and extensions; the class of torsionfree

sheaves is closed under subsheaves and extensions.

For a quasi-coherent sheaf F on E, the torsion part tF is always a pure subsheaf of F (see

[6]). In particular, if F is a coherent sheaf, tF is a direct summand of F (see [10]).

By definition, the following lemma is easy.

Lemma 3.1 In QcohE, there is no nonzero morphism from a torsion sheaf to a torsionfree

sheaf.

Proof Suppose that there exist a torsion sheaf F and a torsionfree sheaf E satisfying

Hom(F , E) 6= 0. Each 0 6= f ∈ Hom(F , E) induces two short exact sequences:

0 −→ Kerf −→ F −→ Imf −→ 0

and

0 −→ Imf −→ E −→ Cokerf −→ 0.

The first short exact sequence implies that Imf is torsion, but the second one implies that Imf

is torsionfree. Then Imf = tImf = 0, a contradiction.



588 J. M. Chen and Y. N. Lin

Let F be a coherent sheaf, and S be a simple sheaf. Then the dimension of Ext1(S,F) as

EndS-vector space is finite. We set

e
SF

= dim Ext1(S,F)EndS .

Since EndS ∼= k, we write e
SF

= dimk Ext1(S,F).

The following lemma shows that [14, Lemma 5.2] also holds in cohE by some corresponding

relationships.

Lemma 3.2 Let F be a bundle, and S be a simple sheaf. If there exists an exact sequence

0 −→ F −→ F ′ −→ ⊕mS −→ 0,

where F ′ is a bundle and ⊕mS denotes the direct sum of m copies of S, then m ≤ e
SF

.

Conversely, for m ≤ e
SF

, there exists such an exact sequence with F ′ being a bundle.

Proof See the proof of [14, Lemma 5.2], and we only need to replace P,X and S by F ,F ′

and S respectively.

Next, we extend the notion of divisible in [14, Definition 4.6] to QcohE.

Definition 3.2 A quasi-coherent sheaf F is called divisible if Ext1(S,F) = 0 for all simple

sheaves S.

It is easy to check that the class of divisible sheaves is closed under quotients and extensions.

And then the class of torsionfree divisible sheaves is closed under direct summands.

Lemma 3.3 A quasi-coherent sheaf I is divisible if and only if it is an injective sheaf.

Proof By definition, an injective sheaf is obviously a divisible sheaf. And by Baer’s test,

it is not hard to see that the “only if” part holds.

Now we can show that [14, Lemma 5.1] also holds in QcohE.

Lemma 3.4 Let E ,F be torsionfree divisible sheaves, E ′ ⊆ E, F ′ ⊆ F be subsheaves such

that E/E ′ and F/F ′ are torsion sheaves. Then any homomorphism ϕ′ : E ′ → F ′ has a unique

extension ϕ : E → F . In particular, if ϕ′ is an isomorphism, then its extension ϕ is an

isomorphism.

Proof Consider the following two short exact sequences

0 −→ E ′ α
−→ E

π
−→ E/E ′ −→ 0

and

0 −→ F ′ β
−→ F

σ
−→ F/F ′ −→ 0.

Forming the pushout of α and βϕ′ induces the following commutative diagram

0 // E ′

βϕ′

��

α
// E

γ

��

π
// E/E ′ // 0

0 // F
α′

// F ′′
π′

// E/E ′ // 0.
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According to Lemma 3.3, F is an injective sheaf. Then Ext1(E/E ′,F) = 0. This shows that

there exists a homomorphism δ : F ′′ → F such that δα′ = idF . Let ϕ = δγ. Then ϕ is an

extension of ϕ′ and ϕα = δγα = δα′βϕ′ = βϕ′.

In order to prove the uniqueness, it is sufficient to show that the extension of zero homomor-

phism must be zero. If ϕ′ = 0, then ϕα = βϕ′ = 0. Thus, there exists a unique homomorphism

θ : E/E ′ → F such that ϕ = θπ. However, E/E ′ is torsion and F is torsionfree, so θ = 0, and

then ϕ = 0.

Now assume that ϕ′ is an isomorphism. Since ϕα = βϕ′, we have the following commutative

diagram

0 // E ′

ϕ′

��

α
// E

ϕ

��

π
// E/E ′

ϕ′′

��

// 0

0 // F ′
β

// F // F/F ′ // 0.

Since ϕ′ is an isomorphism, there exists a homomorphism ψ′ : F ′ → E ′ such that ψ′ϕ′ = idE′

and ϕ′ψ′ = idF ′ . Using a similar argument as above, we see that ψ′ has a unique extension

ψ : F → E such that ψβ = αψ′. Therefore, ψ′ϕ′ has an extension ψϕ. But ψ′ϕ′ = idE′ has

an extension idE , so ψϕ = idE holds by the uniqueness of the extension. Similarly, we have

ϕψ = idF , and then ϕ is an isomorphism.

Under the previous groundwork, and by a little change of the proof of [14, Proposition 5.2],

it is not hard to obtain the following theorem.

Theorem 3.1 Let F be a bundle. Then there exists a torsionfree divisible sheaf GF with

an exact sequence

0 −→ F −→ GF −→ ⊕S ⊕e
SF

S∞ −→ 0,

where S runs through all simple sheaves, S∞ is the direct limit of the homogeneous tube whose

mouth is S.

Proof Let S be a simple sheaf. According to the structure of cohE, we have Ext1(S,F) ∼=

Hom(F ,S) 6= 0. By Lemma 3.2, there exists a short exact sequence

ξ′S : 0 −→ F −→ F ′
S −→ ⊕e

SF
S −→ 0,

such that F ′
S is a bundle. Since the inclusion γS : ⊕e

SF
S → ⊕e

SF
S∞ induces an epimorphism

Ext1(⊕e
SF

S∞,F) → Ext1(⊕e
SF

S,F), we choose ξS ∈ Ext1(⊕e
SF

S∞,F) corresponding to ξ′S .

Thus, we have the following commutative diagram

ξ′
S

: 0 // F // F ′
S

γ
S′

��

π′
S

// ⊕e
SF

S

γS

��

// 0

ξS : 0 // F // F ′′
S

πS
// ⊕e

SF
S∞ // 0.

Let ξ = (ξS)S ∈ ΠSExt1(⊕e
SF

S∞,F) = Ext1(⊕S ⊕e
SF

S∞,F) be as follows:

0 −→ F
α

−→ GF
π

−→ ⊕S ⊕e
SF

S∞ −→ 0,

where S runs through all simples. Then for each ξS , we have the following commutative diagram
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0 // F
α

// GF

σ′
S

��

π
// ⊕S ⊕e

SF
S∞

σS

��

// 0

0 // F // F ′′
S

πS
// ⊕e

SF
S∞ // 0.

In order to show that GF is torsionfree, suppose that there is a nonzero monomorphism ι : T →

GF , where T is a simple sheaf. It is easy to see from Hom(T ,F) = 0 that πι 6= 0. According

to the structure of cohE, we know πι ∈ Hom(T ,⊕e
T F

T∞). Thus, there is a monomorphism

ι′′ : T → ⊕e
T F

T such that γT ι
′′ = σTπι. By the universal property of pullback, there exists

a nonzero homomorphism f : T → F ′
T such that γ′T f = σ′

T ι and π′
T f = ι′′, a contradiction.

Thus we conclude that GF is torsionfree.

Now we are going to show that GF is divisible. Suppose that there exists a simple sheaf T

such that Ext1(T ,GF ) 6= 0. Then a nonzero element ξ in Ext1(T ,GF ),

ξ : 0 −→ GF
β

−→ E
γ

−→ T −→ 0,

induces the following commutative diagram

0

��

0

��
F

��

F

��
0 // GF

π

��

β
// E

π′

��

γ
// T // 0

0 // ⊕S ⊕e
SF

S∞

��

β′

// E ′

��

γ′

// T // 0.

0 0

Since Ext1(T ,⊕S ⊕e
SF

S∞) = 0, the lower short exact sequence splits. Consequently, E ′ has

(⊕e
T F

T )⊕T as a subsheaf. Considering the pullback of ι′ and π′, where ι′ : (⊕e
T F

T )⊕T → E ′

is the embedding, we have the following commutative diagram

0 // F // E ′′

ι′′

��

// (⊕e
T F

T ) ⊕ T

ι′

��

// 0

0 // F // E // E ′ // 0.

The fact that ι′ is a monomorphism implies that so is ι′′. On the other hand, E ′′ has a subsheaf

isomorphic to T by Lemma 3.2. Thus we have the inclusion σ : T → E . It is obvious that

γσ 6= 0 and γ is a split monomorphism, a contradiction.

Now we begin to prove that there is only one indecomposable torsionfree divisible sheaf.

Lemma 3.5 Let L be a line bundle, G be a torsionfree divisible sheaf. Then Hom(L,G) 6= 0.

Proof It is sufficient to prove that Hom(L,G) = 0 implies G = 0.
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Suppose G 6= 0 and Hom(L,G) = 0. Since G is torsionfree, all the coherent subsheaves of

G are bundles. Note that each bundle has a line bundle filtration. Then G has a subsheaf L′

which is a line bundle with the inclusion ι : L′ → G. Now we consider three possibilities.

(1) µ(L′) < µ(L). Then Hom(L′,L) 6= 0, and there is a short exact sequence

0 −→ L′ α
−→ L −→ E −→ 0.

Note that E ∈ H0 since rk(E) = rk(L) − rk(L′) = 0. The pushout of ι and α induces the

following commutative diagram

0 // L′

ι

��

α
// L

ι′

��

// E // 0

0 // G
α′

// F // E // 0.

Since G is a divisible sheaf, we get Ext1(E ,G) = 0. Then there exists a homomorphism π : F → G

such that πα′ = idG . Let f = πι′ : L → G. We have ι = πα′ι = πι′α = fα, which implies

f 6= 0. This contradicts the fact that Hom(L,G) = 0.

(2) µ(L) < µ(L′). Then Hom(L,L′) 6= 0, and there is a monomorphism ι′′ : L → L′. Thus,

0 6= ιι′′ : L → G implies that Hom(L,G) 6= 0. It is a contradiction.

(3) µ(L′) = µ(L). Let L′′ be a line bundle with µ(L′′) < µ(L). Similarly to (2), we can

regard L′′ as a subsheaf of G. Then the result is true by an analogue to case (1).

Lemma 3.6 Let G be an indecomposable torsionfree divisible sheaf, Q be a torsionfree

divisible sheaf which has no subsheaf isomorphic to G. Then Hom(G,Q) = 0.

Proof Suppose Hom(G,Q) 6= 0. Then, for each 0 6= f ∈ Hom(G,Q), there are two short

exact sequences

0 −→ Kerf −→ G −→ Imf −→ 0 (3.1)

and

0 −→ Imf −→ Q −→ Cokerf −→ 0 (3.2)

We consider two possibilities.

(1) Kerf = 0. Then G ∼= Imf . Thus, Q has a subsheaf Imf isomorphic to G. It is a

contradiction.

(2) Kerf 6= 0. Then Imf is divisible according to (3.1), and is torsionfree according to (3.2).

Let S be any simple sheaf. Applying Hom(S,−) to (3.1), we obtain the long exact sequence

0 −→ Hom(S,Kerf) −→ Hom(S,G) −→ Hom(S, Imf)

−→ Ext1(S,Kerf) −→ Ext1(S,G) −→ Ext1(S, Imf) −→ 0.

Then Kerf is torsionfree divisible since G and Imf are torsionfree divisible. Thus, (3.1) splits,

and then Kerf is a direct summand of G. Hence Kerf ∼= G since G is indecomposable. This

means Imf = 0, which contradicts f 6= 0.

Lemma 3.7 Let L be a line bundle, and G be an indecomposable torsionfree divisible sheaf.

Then G/L is a torsion sheaf.

Proof By Lemma 3.5, there exists a short exact sequence

0 −→ L
ι

−→ G
π

−→ G/L −→ 0.
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Set G1 = G/L. Suppose that G1 is not a torsion sheaf, i.e., tG1 6= G1. Then there is a short

exact sequence

0 −→ tG1
α

−→ G1
π′

−→ G1/tG1 −→ 0.

Thus, the composition π′π : G → G1/tG1 is an epimorphism. Note that the class of divisible

sheaves is closed under quotients. We have that G1/tG1 is a torsionfree divisible sheaf. By

Lemma 3.6, G1/tG1 has a subsheaf isomorphic to G. Thus, we can regard G as a direct summand

of G1/tG1. This induces an epimorphism β : G1/tG1 → G which gives a short exact sequence

0 −→ Kerβπ′π −→ G
βπ′π
−→ G −→ 0.

If Kerβπ′π 6= 0, then Kerβπ′π is torsionfree divisible since G is torsionfree divisible. Thus,

Kerβπ′π is a direct summand of G, and then Kerβπ′π ∼= G. This is impossible. Hence

Kerβπ′π = 0 and then βπ′π is an isomorphism. This implies that π is a monomorphism

and then π is an isomorphism. This is a contradiction. Therefore, we conclude that G1 is a

torsion sheaf.

Theorem 3.2 There exists a unique indecomposable torsionfree divisible sheaf. Its endo-

morphism ring is a division ring.

Proof Let L be a line bundle. By Theorem 3.1, there exists a short exact sequence

0 −→ L
α

−→ GL
π

−→ ⊕S ⊕e
SL

S∞ −→ 0,

where GL is a torsionfree divisible sheaf. According to the structure of cohE, we have that

dimExt1(S,L)EndS = dimk Ext1(S,L) = dimk Hom(L,S) = 1 for each simple sheaf S, i.e.,

e
SL

= 1. Thus, the above exact sequence is just

0 −→ L
α

−→ GL
π

−→ ⊕SS∞ −→ 0.

We claim that GL is the unique indecomposable torsionfree divisible sheaf. Denote GL by G.

First, we prove that G is indecomposable. Let G1 be a direct summand of G. Then there

exist homomorphisms ι : G1 → G and σ : G → G1 such that σι = idG1
. If πι = 0, then there

exists a homomorphism f : G1 → L such that ι = αf and σαf = σι = idG1
. This means L ∼= G1

and then L is a direct summand of G. This contradicts the fact that L is not divisible. Therefore

πι 6= 0. If Kerπι = 0, then we can regard G1 as a subsheaf of ⊕SS∞. This contradicts the fact

that G1 is a torsionfree divisible. If Kerπι 6= 0, then we have πια1 = 0, where α1 : Kerπι→ G1

is the inclusion. Thus, there exists a monomorphism ι′ : Kerπι → L such that ια1 = αι′. This

induces the following commutative diagram

0 // Kerπι

α1

��

ι′
// L

α

��

// L/Kerπι

��

// 0

0 // G1

ι
// G

π′

// G/G1
// 0.

It is obvious that Kerπι is a line bundle and that rk(L/Kerπι) = rkL − rk(Kerπι) = 0. This

means that L/Kerπι is torsion. Note that G ∼= G1⊕G/G1. We know that G/G1 is torsionfree and

that Hom(L/Kerπι,G/G1) = 0. This implies that π′α = 0. So there exists a homomorphism

β : ⊕SS∞ → G/G1 such that π′ = βπ. Thus π′ = 0 since Hom(⊕SS∞,G/G1) = 0. This means

G ∼= G1. Therefore, G is indecomposable.
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Next, we show that the endomorphism ring EndG of G is a division ring. For a homomor-

phism 0 6= ϕ : G → G, we claim that ϕ(L) 6= 0. In fact, otherwise, ϕ(L) = 0 implies ϕα = 0.

This induces a homomorphism γ : ⊕SS∞ → G such that ϕ = γπ. This contradicts the fact

that Hom(⊕SS∞,G) = 0. Thus ϕ(L) 6= 0. Thus, ϕ(L), as a subsheaf of G, is torsionfree. Note

that a nonzero homomorphism from a line bundle to a torsionfree sheaf is a monomorphism.

We have that ϕ|L : L → ϕ(L) is an isomorphism. Following Lemma 3.4, the fact that ϕ is an

extension of ϕ|L implies that ϕ is an isomorphism. Consequently, EndG is a division ring.

Finally, we show the uniqueness. Let G,G′ be two indecomposable torsionfree divisible

sheaves. For any line bundle L, both G/L and G′/L are torsion sheaves by Lemma 3.7. Thus,

by Lemma 3.4, idL induces the isomorphism ϕ : G → G′.

As we know, the rational function sheaf K on E is the constant sheaf having section the

function field of E, and K is an indecomposable injective sheaf. In addition, by [15], K is

torsionfree. Thus, the uniqueness in Theorem 3.2 implies that K coincides with GL constructed

in the proof of Theorem 3.2. In other words, the proof of Theorem 3.2 in fact gives a construction

of K.

4 The Relationship Between K and Coherent Sheaves

In this section, we use the construction to study the relationship between K and coherent

sheaves on E.

Lemma 4.1 K is a direct summand of any torsionfree divisible sheaf.

Proof Let G be a torsionfree divisible sheaf, and L be a line bundle. By Lemma 3.5, there

are monomorphisms α : L → G and ι : L → K. Considering the pushout of α and ι, we have

the following commutative diagram

0 // L

ι

��

α
// G

ι′

��

// G/L // 0

0 // K
α′

// G′ // G/L // 0.

Then ι′ is a monomorphism. Since G is divisible, i.e., it is injective, there exists a homomorphism

π : G′ → G such that πι′ = idG . Set β = πα′. We have βι = πα′ι = πι′α = α, and then β 6= 0.

By Lemma 3.6, there is a monomorphism β′ : K → G. Since K is injective, we obtain that K is

a direct summand of G.

Theorem 4.1 Any torsionfree divisible sheaf is a direct sum of copies of K.

Proof Let G be a torsionfree divisible sheaf. By transfinite induction, we shall construct

a torsionfree divisible subsheaf Gλ with Gλ
∼= Gλ−1 ⊕K for any ordinal λ, and Gλ =

⋃

µ<λ

Gµ for

any limit ordinal λ, such that for any λ, G ∼= Gλ ⊕Hλ, where Hλ is a torsionfree divisible sheaf.

The construction will stop when Hλ = 0.

Let G0 = 0. Assume that Gλ has been defined for an ordinal λ, with G ∼= Gλ ⊕ Hλ, where

Hλ is a nonzero torsionfree divisible sheaf. By Lemma 4.1, K is a direct summand of Hλ.

This means that there exists a torsionfree divisible sheaf Hλ+1 such that Hλ
∼= K ⊕ Hλ+1.

Let Gλ+1 = Gλ ⊕ K. Then Gλ+1 is also a torsionfree divisible sheaf and G ∼= Gλ+1 ⊕ Hλ+1.

Assume that Gµ has been defined for all µ < λ. Let Gλ =
⋃

µ<λ

Gµ. We claim that Gλ is also
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a torsionfree divisible subsheaf of G. In fact, suppose that there is a simple sheaf S satisfying

Hom(S,Gλ) 6= 0; then there exists µ < λ such that Hom(S,Gµ) 6= 0. This is a contradiction.

Suppose that there is a simple sheaf T satisfying Ext1(T ,Gλ) 6= 0. Since QcohE is a hereditary

Abelian category, we have Ext1(T ,Gλ) ∼= Hom(T ,Gλ[1]) in the derived category of QcohE,

where [1] is the translation functor (see [10, Theorem 2.1]). Then there exists ν < λ with

Hom(T ,Gν [1]) 6= 0 and then Ext1(T ,Gν) 6= 0. This is also a contradiction. Thus, Gλ is also a

torsionfree divisible subsheaf of G. Then there exists a torsionfree divisible sheaf Hλ such that

G ∼= Gλ ⊕Hλ. By the construction, we know that any Gλ is the direct sum of copies of K. The

proof is completed.

By Theorem 3.1, for each bundle F , there exists a short exact sequence

0 −→ F −→ GF −→ ⊕S ⊕e
SF

S∞ −→ 0.

Theorem 4.2 Let F be a bundle with rkF = n. Then GF
∼= ⊕nK.

Proof In view of the structure of cohE, F has a line bundle filtration. That is, there exists

a chain

0 = F0 ⊆ F1 ⊆ · · · ⊆ Fn−1 ⊆ Fn = F

of subsheaves of F , such that each filtration quotient Fi+1/Fi is isomorphic to a line bundle,

denoted by Li+1. Then there are short exact sequences

0 −→ Fi
αi−→ Fi+1

βi
−→ Li+1 −→ 0, 0 ≤ i ≤ n− 1.

According to Lemma 3.4, it is sufficient to construct the following exact sequence

0 −→ Fj

ιj

−→ ⊕jK
πj

−→ Dj −→ 0, 0 ≤ j ≤ n,

with Dj torsion by using induction on j. By the construction of K, the assertion holds obviously

in case i = 1. Assume that there is a short exact sequence

0 −→ Fi
ιi−→ ⊕iK

πi−→ Di −→ 0

with Di torsion. Considering the pushout of ιi and αi, we have the following commutative

diagram

0

��

0

��

0 // Fi

ιi

��

αi
// Fi+1

σi+1

��

// Li+1
// 0

0 // ⊕iK

��

// Ei+1

��

// Li+1
// 0.

Di

��

Di

��
0 0
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Then Ei+1/Fi+1
∼= Di, and Ei+1/Fi+1 is torsion. In addition, the short exact sequence

0 −→ ⊕iK −→ Ei+1 −→ Li+1 −→ 0

splits since ⊕iK is an injective sheaf. This induces a short exact sequence

0 −→ Li+1
γi+1

−→ Ei+1 −→ ⊕iK −→ 0.

Again by the construction of K, there is a short exact sequence

0 −→ Li+1
τi+1

−→ K −→ K/Li+1 −→ 0,

where K/Li+1 is torsion. Considering the pushout of τi+1 and γi+1, we have the following

commutative diagram

0

��

0

��

0 // Li+1

τi+1

��

γi+1
// Ei+1

σ′
i+1

��

// ⊕iK // 0

0 // K

��

// E ′
i+1

��

// ⊕iK // 0.

K/Li+1

��

K/Li+1

��
0 0

Then E ′
i+1/Ei+1

∼= K/Li+1, and E ′
i+1/Ei+1 is torsion. In addition, the short exact sequence

0 −→ K −→ E ′
i+1 −→ ⊕iK −→ 0

splits, and E ′
i+1

∼= ⊕i+1K. Set ιi+1 = σ′
i+1σi+1. We have the exact sequence

0 −→ Fi+1
ιi+1

−→ ⊕i+1K
πi+1

−→ ⊕i+1K/Fi+1 −→ 0.

Since there is a short exact sequence

0 −→ Ei+1/Fi+1 −→ E ′
i+1/Fi+1 −→ E ′

i+1/Ei+1 −→ 0

and the class of torsion sheaves is closed under extensions, we see that E ′
i+1/Fi+1 is torsion,

i.e., ⊕i+1K/Fi+1 is torsion. This finishes the proof.

Remark 4.1 The proof of Theorem 4.2 can be simplified by taking into account the quotient

category QcohE/Qcoh0E, where Qcoh0E is the full subcategory of QcohE consisting of all

torsion sheaves. In fact, by [12], QcohE/Qcoh0E ∼= Mod(K), where K is the function field of E,

and then the bundles of rank n become an n-dimensional vector space in the quotient category.

The proof we present above is more constructible.

By Theorem 4.2, Hom(F ,K) 6= 0 for each bundle F . The following consequence is obvious,

which is formulated in [9, Theorem 5.2] where the context is that of tubular weighted projective

line.
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Theorem 4.3 We have H0 =⊥ K∩ coh(E), where ⊥K = {F ∈ QcohE | Hom(F ,K) = 0} is

the left perpendicular category of K.
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