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1 Introduction

Let E be an elliptic curve over an algebraically closed field k. A rational function sheaf
KC on E is the constant sheaf having section the function field of E. It is known that K is a
quasi-coherent sheaf, but not a coherent sheaf. By [15] the rational function sheaf K on E is
the unique big injective sheaf, i.e., K is the unique indecomposable injective sheaf such that
EndK is a division ring and every quasi-coherent sheaf on E is a subquotient of a direct sum of
copies of IC. In particular, each coherent sheaf is a subquotient of a finite direct sum of copies
of K, and every simple sheaf is a subquotient of . In [5], we proved that the rational function
sheaf K is a generic sheaf, i.e., for all coherent sheaves F, both Hom(F,K) and Ext!(F,K)
have finite End/C-length. Therefore, it is significant to study the rational function sheaf on E.

C. M. Ringel [14, Proposition 5.2] provided a method to construct the unique indecompos-
able torsionfree divisible module over the ring of tame representation type. Geigle-Lenzing [7]
and Lenzing-Meltzer [11] pointed out that there is a classification of finite dimensional modules
over a tubular algebra which is closely related to the Atiyah’s classification of vector bundle
on an elliptic curve (see [1]). All these encourage us to consider the problems: How many
indecomposable torsionfree divisible objects are there in the category of quasi-coherent sheaves
on an elliptic curve? And how do we construct them?

It is pleased that many main statements which have been proved in [14] for module cate-
gories also hold in the category QcohlE of quasi-coherent sheaves on E by some corresponding
relationship. We show in this paper that IC is the only indecomposable torsionfree divisible ob-
ject in QcohE, and we can construct the rational function sheaf K in a way similar to Ringel’s
method (see [14]). Indeed, the rank functor plays an important role in this construction. Using
this construction, we study the relationship between I and any coherent sheaf on E, and then
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prove that the category of all coherent sheaves of finite length on E is completely characterized
by K.

2 The Category of Coherent Sheaves on an Elliptic Curve

By definition, an elliptic curve E over an algebraically closed field k is a smooth plane
projective curve of genus one admitting a k-rational point py. Every quasi-coherent sheaf on E
is a direct limit of coherent sheaves, and the category QcohlE of quasi-coherent sheaves on E is
a locally noetherian Grothendieck category. Hence, the structure of a quasi-coherent sheaf on
E much depends on that of coherent sheaves on E. In this section, we recall some well-known
results on the category cohlE of coherent sheaves on E.

Lemma 2.1 (see [10]) Let H = cohE be the category of coherent sheaves on E.

(1) H is an Abelian, Ext-finite, noetherian, hereditary and Krull-Schmidt k-category.

(2) H is a 1-Calabi-Yau category, that is, for any two coherent sheaves F and G, there is
an isomorphism Hom(F,G) = DExt! (G, F), where D = Homy,(—, k).

(3) H = Hy \ Ho, that is, each indecomposable object of H lies either in Hy or in Hy,
and there are no nonzero morphisms from Hy to Hy, where H4 denotes the full subcategory
of H consisting of all objects which do not have a simple subobject, and Ho denotes the full
subcategory of H consisting of all objects of finite length.

Remark 2.1 From [13], we know that QcohEE is also hereditary.

There is an additive function rk : H — Z, called rank function, separating the objects of
H,4 and Hop, that is, an object in Hy has rank > 0 and in Hp has rank 0. Objects of Hy are
called bundles and those of rank one are called line bundles. In particular, Of is a line bundle.
It is known that if £ is a line bundle and S is a simple sheaf, then Hom(L, S) = k (see [10]).

Lemma 2.2 (see [10]) Line bundles have the following properties.

(1) Each nonzero morphism from a line bundle to any bundle is a monomorphism. In
particular, the endomorphism ring of a line bundle is isomorphic to k.

(2) Each bundle F with rank n has a line bundle filtration, that is, a chain

OZFnglgg]:n—lg]:n:]:

of subobjects of F, satisfying each quotient F;y1/F; is isomorphic to a line bundle.

Lemma 2.3 (see [10]) Ho has the following characteristics.
(1) Ho is a hereditary Abelian length category with Serre duality.

(2) Ho is uniserial, and decomposes into a coproduct [ Uy of connected uniserial subcat-
€k
egories, whose associated quivers are homogeneous tubes, and the mouth of each homogeneous

tube is a simple sheaf.

For objects F, G € H, we define

(F,G) = dimy Hom(F,G) — dimy Ext*(F,G).

Then the slope of a coherent sheaf F is an element in QU {oo} defined as p(F) = ff(((—];)), where

X(F) = (O, F).
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Lemma 2.4 (Riemann-Roch Formula) For any two coherent sheaves F and G on an elliptic
curve [E, we have
(F,G) = X(G)rk(F) = x(F)rk(G).
In particular, (F,G) = —(G,F).

A coherent sheaf F is called stable (resp. semistable) if for any nontrivial exact sequence
0-F - F—>F"—=0, l(F) < w(F) (resp. (F') < p(F)) holds.

Lemma 2.5 (see [1, 2]) Any indecomposable coherent sheaf F on E is semistable. If two
semistable coherent sheaves F, H € cohE satisfy u(F) > u(H), then Hom(F,H) = 0.

Lemma 2.6 (see [2, 4]) H has the following detailed description.

(1) Let coh™E be the category of semistable sheaves of slope oco. Then coh™E is just Ho.
The category of simple sheaves is precisely {k(x)}.cr, where k(x) is a skyscraper sheaf supported
at x and it is the mouth of a homogeneous tube T, which is the associated quiver of Uy.

(2) The indecomposable objects of H are semistable, and

H:add( U coth),
q€QU{oco}

where cohE = {semistable sheaves of slope q}.
(3) For any p € QU {oc}, there is an equivalence of Abelian categories coh’E = coh™E
induced by an autoequivalence of D®(cohE).

3 A Construction of the Rational Function Sheaf on Elliptic Curves
First, we extend the notions of torsion sheaves and torsionfree sheaves in [9] to cohE.

Definition 3.1 For a quasi-coherent sheaf F, its torsion part tF is defined to be the sum
of all subsheaves of F having finite length. If tF = F, then F is called a torsion sheaf. If
tF =0, i.e., Hom(S,F) =0 for each simple sheaf S, then F is called torsionfree.

It is easy to see that each object in H is torsion and each object in H is torsionfree. And
the class of torsion sheaves is closed under quotients and extensions; the class of torsionfree
sheaves is closed under subsheaves and extensions.

For a quasi-coherent sheaf F on E, the torsion part ¢F is always a pure subsheaf of F (see
[6]). In particular, if F is a coherent sheaf, tF is a direct summand of F (see [10]).

By definition, the following lemma is easy.

Lemma 3.1 In QcohE, there is no nonzero morphism from a torsion sheaf to a torsionfree

sheaf.

Proof Suppose that there exist a torsion sheaf F and a torsionfree sheaf &£ satisfying
Hom(F, &) # 0. Each 0 # f € Hom(F, £) induces two short exact sequences:

0 — Kerf — F — Imf — 0

and
0 — Imf — & — Cokerf — 0.

The first short exact sequence implies that Im f is torsion, but the second one implies that Im f
is torsionfree. Then Imf = ¢tImf = 0, a contradiction.
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Let F be a coherent sheaf, and S be a simple sheaf. Then the dimension of Ext!(S,F) as
EndS-vector space is finite. We set
s, = dim Ext' (S, F)gnds-

Since EndS 2 k, we write e, = dimy, Ext'(S, F).
The following lemma shows that [14, Lemma 5.2] also holds in cohE by some corresponding
relationships.

Lemma 3.2 Let F be a bundle, and S be a simple sheaf. If there exists an exact sequence
0 —F —F — ®nS — 0,

where F' is a bundle and ®,S denotes the direct sum of m copies of S, then m < eg,.

Conversely, form <e there exists such an exact sequence with F' being a bundle.

SF

Proof See the proof of [14, Lemma 5.2], and we only need to replace P, X and S by F,F’
and S respectively.

Next, we extend the notion of divisible in [14, Definition 4.6] to QcohE.

Definition 3.2 A quasi-coherent sheaf F is called divisible if Extl(S, F) =0 for all simple
sheaves S.

It is easy to check that the class of divisible sheaves is closed under quotients and extensions.
And then the class of torsionfree divisible sheaves is closed under direct summands.

Lemma 3.3 A quasi-coherent sheaf I is divisible if and only if it is an injective sheaf.

Proof By definition, an injective sheaf is obviously a divisible sheaf. And by Baer’s test,
it is not hard to see that the “only if” part holds.

Now we can show that [14, Lemma 5.1] also holds in QcohE.

Lemma 3.4 Let £, F be torsionfree divisible sheaves, &' C £, F' C F be subsheaves such
that E/E" and F/F' are torsion sheaves. Then any homomorphism ¢’ : £ — F' has a unique
extension ¢ : € — F. In particular, if ¢’ is an isomorphism, then its extension ¢ is an
isomorphism.

Proof Consider the following two short exact sequences
0—& -6/ —0

and
0—F L F 2 FIF —.

Forming the pushout of « and B¢’ induces the following commutative diagram

0 &’ & g/e 0
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According to Lemma 3.3, F is an injective sheaf. Then Ext'(£/&’, F) = 0. This shows that
there exists a homomorphism § : F”/ — F such that o’ = idg. Let ¢ = dy. Then ¢ is an
extension of ¢’ and pa = dya = da/ By’ = By'.

In order to prove the uniqueness, it is sufficient to show that the extension of zero homomor-
phism must be zero. If ¢’ = 0, then pa = F¢’ = 0. Thus, there exists a unique homomorphism
0:&/E" — F such that ¢ = 7. However, £/&’ is torsion and F is torsionfree, so 0 = 0, and
then ¢ = 0.

Now assume that ¢’ is an isomorphism. Since pa = ¢’, we have the following commutative

diagram
0 g s " sgg 0
@P’l Lpl LPN\L
ﬁ !
0 F F F|F ——0.

Since ¢’ is an isomorphism, there exists a homomorphism v’ : 7/ — £’ such that ¢¥'¢" = ide/
and ¢y’ = idz/. Using a similar argument as above, we see that v’ has a unique extension
9 : F — & such that ¢¥8 = at)’. Therefore, ¢'¢" has an extension ¥p. But '’ = ides has
an extension idg, so ¥ = ide holds by the uniqueness of the extension. Similarly, we have
oY = idg, and then ¢ is an isomorphism.

Under the previous groundwork, and by a little change of the proof of [14, Proposition 5.2],
it is not hard to obtain the following theorem.

Theorem 3.1 Let F be a bundle. Then there exists a torsionfree divisible sheaf Gr with
an ezactl sequence

0—’f—>g}'—’®$@es}_8m—’07

where S runs through all simple sheaves, Soo is the direct limit of the homogeneous tube whose
mouth is S.

Proof Let S be a simple sheaf. According to the structure of cohlE, we have Extl(S, F)
Hom(F,S) # 0. By Lemma 3.2, there exists a short exact sequence

/., /
s 0 —F —Fsg— @ S —0,

such that F§ is a bundle. Since the inclusion ~s : EBeSfS — @Beg . Soo induces an epimorphism
Extl(@esf Sooy F) — Extl(GBeSFS, F), we choose {s € Extl(GBGSF Soo, F) corresponding to 5.
Thus, we have the following commutative diagram

€0 F Fo—" @, S —>0
H ’Ys/l "/Sl
s: 0 F Fé S Beg, Soo —= 0.

Let € = (£s)s € HsExt! (@ Soo, F) = Ext! (B @e, Seo, F) be as follows:
O—>fi>gfi’®5®es}_soo—’07

where S runs through all simples. Then for each s, we have the following commutative diagram
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0 F Gr ——> ®s Begr Sco —>0

EN

by
0 F Fg s @ES]__SOO — 0.

In order to show that G is torsionfree, suppose that there is a nonzero monomorphism ¢ : 7 —
Gr, where T is a simple sheaf. It is easy to see from Hom(7,F) = 0 that mc # 0. According
to the structure of cohE, we know m € Hom(7, e, 7). Thus, there is a monomorphism
ST — @e,, . T such that ~yrt" = ormi. By the universal property of pullback, there exists
a nonzero homomorphism f : 7 — F/ such that 74 f = o/t and 74 f =, a contradiction.
Thus we conclude that Gr is torsionfree.

Now we are going to show that Gr is divisible. Suppose that there exists a simple sheaf 7
such that Ext'(7,Gx) # 0. Then a nonzero element ¢ in Ext*(7,G),

€:0-—Ggr g T o,

induces the following commutative diagram

0 0
F F
8
0 Gr e—L>7 0
! Tr/ H
ﬁl /7/
0 —> ®s e, Soo & T 0

Since Ext! (T, ®s De,, Soo) = 0, the lower short exact sequence splits. Consequently, & has
(e, ,T)®T as a subsheaf. Considering the pullback of . and 7', where /' : (& T)&T — &'
is the embedding, we have the following commutative diagram

0 F g (Bey, T)BT ——0
0 F £ & 0.

The fact that ¢/ is a monomorphism implies that so is :”. On the other hand, £” has a subsheaf
isomorphic to 7 by Lemma 3.2. Thus we have the inclusion o : 7 — £. It is obvious that
~vyo # 0 and + is a split monomorphism, a contradiction.

Now we begin to prove that there is only one indecomposable torsionfree divisible sheaf.
Lemma 3.5 Let £ be a line bundle, G be a torsionfree divisible sheaf. Then Hom(L,G) # 0.

Proof Tt is sufficient to prove that Hom(£,G) = 0 implies G = 0.
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Suppose G # 0 and Hom(L,G) = 0. Since G is torsionfree, all the coherent subsheaves of
G are bundles. Note that each bundle has a line bundle filtration. Then G has a subsheaf £’
which is a line bundle with the inclusion ¢ : £ — G. Now we consider three possibilities.

(1) w(L") < pu(L). Then Hom(L', £) # 0, and there is a short exact sequence

0—L -5 L—E—0.

Note that & € Hy since rk(E) = rk(L) — k(L) = 0. The pushout of ¢ and « induces the
following commutative diagram

[e3

0 c c & 0
0 G—>rF £ 0.

Since G is a divisible sheaf, we get Ext' (£, G) = 0. Then there exists a homomorphism 7 : F — G
such that 7o/ = idg. Let f = m/ : L — G. We have « = 7o/t = m/a = fa, which implies
f # 0. This contradicts the fact that Hom(L, G) = 0.

(2) w(L) < p(L’). Then Hom(L, L") # 0, and there is a monomorphism " : £ — £’. Thus,
0+# u” : L — G implies that Hom(L, G) # 0. Tt is a contradiction.

(3) w(L') = u(L). Let £” be a line bundle with u(L£"”) < u(£). Similarly to (2), we can
regard £” as a subsheaf of G. Then the result is true by an analogue to case (1).

Lemma 3.6 Let G be an indecomposable torsionfree divisible sheaf, Q be a torsionfree
divisible sheaf which has no subsheaf isomorphic to G. Then Hom(G, Q) = 0.

Proof Suppose Hom(G, Q) # 0. Then, for each 0 # f € Hom(G, Q), there are two short
exact sequences
0— Kerf — G —Imf —0 (3.1)

and

0— Imf — Q — Cokerf — 0 (3.2)

We consider two possibilities.

(1) Kerf = 0. Then G = Imf. Thus, Q has a subsheaf Imf isomorphic to G. It is a
contradiction.

(2) Kerf # 0. Then Imf is divisible according to (3.1), and is torsionfree according to (3.2).
Let S be any simple sheaf. Applying Hom(S, —) to (3.1), we obtain the long exact sequence

0 — Hom(S, Kerf) — Hom(S,G) — Hom(S,Imf)
— Ext'(S,Kerf) — Ext'(S,G) — Ext!(S,Imf) — 0.

Then Kerf is torsionfree divisible since G and Imf are torsionfree divisible. Thus, (3.1) splits,
and then Kerf is a direct summand of G. Hence Kerf = G since G is indecomposable. This
means Imf = 0, which contradicts f # 0.

Lemma 3.7 Let L be a line bundle, and G be an indecomposable torsionfree divisible sheaf.
Then G/L is a torsion sheaf.

Proof By Lemma 3.5, there exists a short exact sequence

0—>£;ng/£—>0
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Set G1 = G/L. Suppose that G; is not a torsion sheaf, i.e., tG; # G;. Then there is a short
exact sequence

0 — tGy — G = Gy /tG; — 0.

Thus, the composition 7'7 : G — Gy /tG; is an epimorphism. Note that the class of divisible
sheaves is closed under quotients. We have that G;/tG; is a torsionfree divisible sheaf. By
Lemma 3.6, G1 /tGy has a subsheaf isomorphic to G. Thus, we can regard G as a direct summand
of G1/tGy. This induces an epimorphism (3 : G; /tG; — G which gives a short exact sequence

O—»Kerﬂ7r’7r—>g&r—/7>rg—>0.

If Kergn'm # 0, then Kerfn'm is torsionfree divisible since G is torsionfree divisible. Thus,
Kerfn'm is a direct summand of G, and then Kerfn'm = §. This is impossible. Hence
Kerfn’m = 0 and then fS7'wm is an isomorphism. This implies that 7 is a monomorphism
and then 7 is an isomorphism. This is a contradiction. Therefore, we conclude that G; is a

torsion sheaf.

Theorem 3.2 There exists a unique indecomposable torsionfree divisible sheaf. Its endo-
morphism ring is a division ring.

Proof Let £ be a line bundle. By Theorem 3.1, there exists a short exact sequence
0— LG — BsBe_, Soc — 0,

where G, is a torsionfree divisible sheaf. According to the structure of cohE, we have that
dim Ext'(S, £)gnas = dimg Ext'(S,£) = dimy Hom(£,S) = 1 for each simple sheaf S, i.e.,

es. = 1. Thus, the above exact sequence is just

S
0— LG ®sSec — 0.

We claim that G, is the unique indecomposable torsionfree divisible sheaf. Denote G, by G.

First, we prove that G is indecomposable. Let G; be a direct summand of G. Then there
exist homomorphisms ¢ : G; — G and ¢ : § — G; such that ov = idg,. If m¢ = 0, then there
exists a homomorphism f : G; — £ such that « = af and caf = o0 = idg,. This means £ = G;
and then £ is a direct summand of G. This contradicts the fact that £ is not divisible. Therefore
mt # 0. If Kerme = 0, then we can regard G; as a subsheaf of ©sS.. This contradicts the fact
that Gy is a torsionfree divisible. If Kerme # 0, then we have mia; = 0, where o : Kerme — Gy
is the inclusion. Thus, there exists a monomorphism ¢/ : Kerm: — L such that tay = /. This
induces the following commutative diagram

’

0 Kerm, — L L/Kerme —= 0
0 G ———=G———>G/G 0.

It is obvious that Kerm: is a line bundle and that rk(£/Kermt) = rkL — rk(Kerme) = 0. This
means that £/Kerm is torsion. Note that G = G, ®G/G1. We know that G/G; is torsionfree and
that Hom(L/Kerme,G/G1) = 0. This implies that 7’a = 0. So there exists a homomorphism
B : @DsSs — G/G1 such that 7/ = . Thus 7’ = 0 since Hom(®sSs0,G/G1) = 0. This means
G = Gy. Therefore, G is indecomposable.
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Next, we show that the endomorphism ring EndG of G is a division ring. For a homomor-
phism 0 # ¢ : G — G, we claim that (L) # 0. In fact, otherwise, ¢(£) = 0 implies pa = 0.
This induces a homomorphism ~ : ©sS, — G such that ¢ = ymw. This contradicts the fact
that Hom(®sSx0,G) = 0. Thus ¢(L£) # 0. Thus, p(L), as a subsheaf of G, is torsionfree. Note
that a nonzero homomorphism from a line bundle to a torsionfree sheaf is a monomorphism.
We have that ¢|, : £ — ¢(L) is an isomorphism. Following Lemma 3.4, the fact that ¢ is an
extension of ¢|, implies that ¢ is an isomorphism. Consequently, Endg is a division ring.

Finally, we show the uniqueness. Let G,G’ be two indecomposable torsionfree divisible
sheaves. For any line bundle £, both G/L£ and G'/L are torsion sheaves by Lemma 3.7. Thus,
by Lemma 3.4, id, induces the isomorphism ¢ : G — G'.

As we know, the rational function sheaf IC on E is the constant sheaf having section the
function field of E, and K is an indecomposable injective sheaf. In addition, by [15], K is
torsionfree. Thus, the uniqueness in Theorem 3.2 implies that I coincides with G, constructed
in the proof of Theorem 3.2. In other words, the proof of Theorem 3.2 in fact gives a construction
of K.

4 The Relationship Between K and Coherent Sheaves

In this section, we use the construction to study the relationship between I and coherent
sheaves on E.

Lemma 4.1 K is a direct summand of any torsionfree divisible sheaf.

Proof Let G be a torsionfree divisible sheaf, and £ be a line bundle. By Lemma 3.5, there
are monomorphisms « : £ — G and ¢ : £ — K. Considering the pushout of o and ¢, we have
the following commutative diagram

@

0 c g g/c 0
0 K —>gr G/ 0.

Then ¢/ is a monomorphism. Since G is divisible, i.e., it is injective, there exists a homomorphism
7w : G — G such that 7/ = idg. Set 8 = 7a’. We have 8t = 7o/t = wi/a = «, and then § # 0.
By Lemma 3.6, there is a monomorphism 3 : K — §G. Since K is injective, we obtain that K is
a direct summand of G.

Theorem 4.1 Any torsionfree divisible sheaf is a direct sum of copies of K.

Proof Let G be a torsionfree divisible sheaf. By transfinite induction, we shall construct

a torsionfree divisible subsheaf G\ with Gy = Gy_1 @ K for any ordinal A, and Gy = |J G, for
pn<A
any limit ordinal A, such that for any A, G = G, & H), where H,) is a torsionfree divisible sheaf.

The construction will stop when Hy = 0.

Let Go = 0. Assume that Gy has been defined for an ordinal A\, with G = G\ @ H,, where
‘H, is a nonzero torsionfree divisible sheaf. By Lemma 4.1, I is a direct summand of Hy.
This means that there exists a torsionfree divisible sheaf Hyy; such that Hy = K & Hyi1.
Let Gyy1 = Gy ® K. Then Gyyq is also a torsionfree divisible sheaf and G = Gy11 ® Hyt1-

Assume that G, has been defined for all ¢ < A. Let Gy = |J G,. We claim that G, is also
<A



594 J. M. Chen and Y. N. Lin

a torsionfree divisible subsheaf of G. In fact, suppose that there is a simple sheaf S satisfying
Hom(S,Gy) # 0; then there exists p < A such that Hom(S,G,) # 0. This is a contradiction.
Suppose that there is a simple sheaf 7 satisfying Ext! (7,G) # 0. Since QcohE is a hereditary
Abelian category, we have Ext'(7,Gy) = Hom(7,G,[1]) in the derived category of QcohkE,
where [1] is the translation functor (see [10, Theorem 2.1]). Then there exists v < \ with
Hom(7T,G,[1]) # 0 and then Ext'(7,G,) # 0. This is also a contradiction. Thus, Gy is also a
torsionfree divisible subsheaf of G. Then there exists a torsionfree divisible sheaf H ) such that
G = G, @ H,. By the construction, we know that any Gy is the direct sum of copies of K. The
proof is completed.

By Theorem 3.1, for each bundle F, there exists a short exact sequence
0—’f—>g}-—’®$@es}_8m—’0-

Theorem 4.2 Let F be a bundle with tkF =n. Then Gr = @, K.

Proof In view of the structure of cohlE, F has a line bundle filtration. That is, there exists
a chain
O:]:Og]_-lg"'g]:n—l g]:n:]:

of subsheaves of F, such that each filtration quotient F;11/F; is isomorphic to a line bundle,
denoted by £;41. Then there are short exact sequences

0—>fii>fi+1ﬂ>£i+1—>0, OSZSTL—l
According to Lemma 3.4, it is sufficient to construct the following exact sequence
0— Fj 5 @,k HD; — 0, 0<j<n,

with D; torsion by using induction on j. By the construction of K, the assertion holds obviously
in case i = 1. Assume that there is a short exact sequence

0— F; = ;K = D; — 0

with D; torsion. Considering the pushout of ¢; and «a;, we have the following commutative

diagram
0 0
Qg
0 Fi Fit1 Liy1 0
23 Tit+1
0 he Eit1 Lit1 0.
D; D;
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Then &;11/Fiy1 =2 Dy, and E;41/Fiq1 is torsion. In addition, the short exact sequence
0— @i’C e 5¢+1 — £i+1 — 0
splits since @;/C is an injective sheaf. This induces a short exact sequence
Yi+4+1
0— Liy1 — &1 — &KL — 0.
Again by the construction of I, there is a short exact sequence
Ti+1

0— Ei—i—l — K — K/£i+1 — 0,

where K/L; 11 is torsion. Considering the pushout of 7,41 and 7;41, we have the following

commutative diagram

0 0
Yi+1
0 Lit1 Eit1 @i 0
Tit1 iy
0 K &g @K 0
’C/ﬁi+1 _ ’C/[ri+1
0 0

Then & /&1 = K/Liy1, and &/ /&1y is torsion. In addition, the short exact sequence
0—K—&,, — &K—0

splits, and & | = @©;41K. Set 1,41 = 0}, ,0i41. We have the exact sequence

0— Fit1 ASY i1/ At @iHIC/]-}-H — 0.

Since there is a short exact sequence
0— &Eiy1/Fivs — Eip1/Fir1 — &41/Eiv1 — 0

and the class of torsion sheaves is closed under extensions, we see that &, /Fi;1 is torsion,
e, ®;+1/C/Fit1 is torsion. This finishes the proof.

Remark 4.1 The proof of Theorem 4.2 can be simplified by taking into account the quotient
category QcohE/QcohyE, where QcohyE is the full subcategory of QcohE consisting of all
torsion sheaves. In fact, by [12], QcohE/QcohyE 2 Mod(K'), where K is the function field of E,
and then the bundles of rank n become an n-dimensional vector space in the quotient category.
The proof we present above is more constructible.

By Theorem 4.2, Hom(F, K) # 0 for each bundle F. The following consequence is obvious,
which is formulated in [9, Theorem 5.2] where the context is that of tubular weighted projective
line.
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Theorem 4.3 We have Ho =+ K Ncoh(E), where LK = {F € QcohE | Hom(F,K) = 0} is

the left perpendicular category of K.
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