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1 Introduction

Consider the Euler system of conservation laws of energy and momentum in special relativity
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(1.1)

where ρ(t, x), p(t, x) and v(t, x) represent the proper mass-energy density, the pressure, and the

particle speed respectively, and the constant c is the speed of light. The equation of state is

p = p(ρ),

where p(ρ) is a smooth function of ρ and satisfies p(0) = 0, and for ρ > 0,

p(ρ) > 0, p′(ρ) > 0 (hyperbolicity)

and

p′′(ρ) ≥ 0.
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For a perfect fluid,

p(ρ) = κ2ργ , γ ≥ 1,

where γ = 1 models an isothermal gas and γ > 1 a polytropic gas, and κ is the speed of sound

satisfying κ < c.

System (1.1) models the dynamics of plane waves in special relativistic fluids (see [1, 3, 5,

11, 14, 16–26, 29–32]) in a two-dimensional Minkowski space-time (x0, x1):

divT = 0,

with the stress-energy tensor for the fluid:

T ij = (p + ρc2)uiuj + pηij ,

where all indices run from 0 to 1 with x0 = ct, and

ηij = ηij = diag(−1, 1)

denotes the flat Minkowski metric, u the 2-velocity of the fluid particle, and ρ the mass-energy

density of the fluid measured in units of mass in a reference frame moving with the fluid particle;

and p = p(ρ, S) is the pressure with the specific entropy S.

In a Lorents transformation, the barred frame (t, x) moves with velocity τ measured in the

unbarred frame (t, x), and if v denotes the velocity of a particle measured in the unbarred frame,

and v the velocity of the same particle measured in the barred frame, then v = τ+v
1+ τv

c
2

. It is not

difficult to check that system (1.1) is invariant under the Lorents transformation.

Formally, system (1.1) in the Newtonian limit reduces to the classical isentropic Euler equa-

tions for compressible fluids (see [31]):

{

∂tρ + ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv2 + p(ρ)) = 0,
(1.2)

which was studied systematically in the last decades (see [2, 9, 12, 13, 27, 28]). Thus system

(1.1) can be viewed as a relativistic version of (1.2).

In 1993, T. Smoller and B. Temple [29] obtained the existence of solutions with shocks with

the equation of state p = κ2ρ and the geometric properties of nonlinear wave curves. In 2001,

C. H. Hsu, S. S. Lin and T. Makino [10] proved the existence of a weak solution for the system

(1.1) by generalizing a method of DiPerna and G. Q. Chen under a mild hypothesis on the

initial data. G. Q. Chen and Y. C. Li [4] established the uniqueness of Riemann solutions to

the system (1.1) in the class of entropy solution in L∞∩BVloc with arbitrarily large oscillation,

and then considered the uniqueness and stability of Riemann solutions with vacuum in the class

of entropy solutions in L∞ with large oscillation. In 2005, Y. C. Li et al [15] obtained the global

existence of solutions to the isentropic relativistic Euler system using the Glimm scheme.

In 1999, using viscous vanishing method, W. C. Sheng and T. Zhang [27] obtained the

Riemann solutions for the transportation equations of zero-pressure flow in gas dynamics con-

structively, in which delta shock wave and vacuum appeared. J. Q. Li [13] and G. Q. Chen

and H. L. Liu [6, 7] presented the asymptotic properties of solution of the compressible Euler

equations as pressure vanishes.

In this paper, we consider the Riemann problem for the relativistic Euler equations with

zero-pressure and derive the behavior of the solution as κ drops to zero (i.e., temperature goes
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to zero) to the relativistic Euler equations in special relativity with the equation of state of the

form

p(ρ) = κ2ρ. (1.3)

For a polytropic gas γ > 1, one can obtain the same results in a similar way, by a bit more

complicated calculations.

This paper is organized as follows. In Section 2, we display the Riemann solutions to the

relativistic Euler equations (1.1). Then, in Section 3, we solve the Riemann problem for the

relativistic Euler equations with zero-pressure, and construct the solutions with delta shock

waves or vacuums. Finally, in Section 4, we develop the behavior of solutions to (1.1) as

pressure vanishes.

2 Riemann Problems for the Relativistic Euler Equations

Consider the Riemann problem for system (1.1) with initial data:

(ρ, v)(0, x) = (ρ±, v±), ±x > 0 (2.1)

with the equation of state p = p(ρ), where ρ±, v± are constants with ρ± > 0.

We can easily obtain the eigenvalues of system (1.1) in the form

λ1 =
c2(v −√

p′)

c2 − v
√

p′
, λ2 =

c2(v +
√

p′)

c2 + v
√

p′
(2.2)

and the corresponding right-eigenvectors

rj(ρ, v) = αj(ρ, v)
( (−1)j

c2 − v2
,

√
p′

p + ρc2

)⊤

, j = 1, 2, (2.3)

where

αj(ρ, v) =
2(c2 + (−1)j+1v

√
p′)2(p + ρc2)

√
p′

c2(ρp′′ + 2p′) + pp′′ − 2p′2
> 0, j = 1, 2. (2.4)

Direct calculations give

∇λj(ρ, v) · rj(ρ, v) = 1, j = 1, 2.

So both families of (1.1) are genuinely nonlinear.

Denote 1- (2-) rarefaction wave curve by R1 (R2), which means a curve consisting of all

the possible states (ρ, v) that can be connected on the right to the left state (ρl, vl) by 1- (2-)

rarefaction wave.

Lemma 2.1 (see [15, 29]) The 1- (and 2-) rarefaction wave curves are given by

R1 :
c

2
ln

c + v

c − v
+ c2

∫ ρ

0

√

p′(s)

p(s) + c2s
ds = const.,

R2 :
c

2
ln

c + v

c − v
− c2

∫ ρ

0

√

p′(s)

p(s) + c2s
ds = const.

(2.5)

In addition, dv
dρ

< 0 (> 0) on R1 (R2).

Next we discuss the shock curves. Given a left state (ρl, vl), we consider all the states (ρ, v)

that can be connected to (ρl, vl) on the right by a shock wave curve. The Rankine-Hugoniot
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condition gives

σ
[ (p + ρc2)v

c2 − v2

]

=
[ (p + ρc2)v2

c2 − v2
+ p

]

,

σ
[ (p + ρc2)v2

c2(c2 − v2)
+ ρ

]

=
[ (p + ρc2)v

c2 − v2

]

,

(2.6)

where [s] = s(σ − 0) − s(σ + 0). We give the following two lemmas without proof (see [15, 29]

for more details).

Lemma 2.2 The shock curves are given by

v − vl

c2 − v2
l

= −
√

Θ(ρ, ρl)

1 − vl

√

Θ(ρ, ρl)
, v < vl, (2.7)

with ρ > ρl for a 1-shock curve S1, and ρ < ρl for a 2-shock curve S2, where

Θ(ρ, ρl) =
(p − pl)(ρ − ρl)

(p + ρlc2)(pl + ρc2)

with pl = p(ρl). Furthermore, dv
dρ

< 0 (> 0) on S1 (S2).

Lemma 2.3 Assume that (ρl, vl) and (ρ, v) satisfy (2.7) for system (1.1) with equation of

state (1.3). Then the following relations hold:

ρ

ρl

= 1 + β ±
√

β2 + 2β, (2.8)

where

β =
(κ2 + c2)2

2κ2

(v − vl)
2

(c2 − v2)(c2 − v2
l )

, (2.9)

and the plus sign and minus sign correspond respectively to S1 and S2.

-
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Figure 2.1

The solution of the Riemann problem for system (1.1), consisting of constant states, the

rarefaction wave curves R1, R2 and the shock curves S1, S2, can be sketched in the (ρ, v) plane.

The region Ω = {(ρ, v) | ρ ≥ 0, −c < v < c} can be divided into four parts I(ρl, vl), II(ρl, vl),

III(ρl, vl) and IV(ρl, vl) by the rarefaction wave curves, R1 and R2, and the shock wave curves,

S1 and S2 (see Figure 2.1).

3 Riemann Problem for the Zero-Pressure Relativistic Euler Equations

Consider the relativistic zero-pressure Euler equations
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with the initial condition

(ρ, v)(0, x) = (ρ±, v±), ±x > 0. (3.2)

We seek the self-similar solution (ρ(ξ), v(ξ)) (ξ = x
t
), due to the invariant of (3.1) and (3.2).

Then (3.1) and (3.2) become










−ξ∂ξ

( ρ

c2 − v2

)

+ ∂ξ

( ρv

c2 − v2

)

= 0,

−ξ∂ξ

( ρv

c2 − v2

)

+ ∂ξ

( ρv2

c2 − v2

)

= 0
(3.3)

and

(ρ, v)(±∞) = (ρ±, v±). (3.4)

(3.1) can be rewritten as AUξ = 0 for smooth solutions, where

A =









v − ξ

c2 − v2

ρ(c2 + v2 − 2vξ)

(c2 − v2)2

v(v − ξ)

c2 − v2

ρ(2c2v − (c2 + v2)ξ)

(c2 − v2)2









, U =

(

ρ

v

)

.

It provides that the smooth solutions of (3.1) involve general solutions

(ρ(ξ), v(ξ)) = const., ρ > 0

and singular solutions
{

ρ = 0,

v = v(ξ),

where v(ξ) is an arbitrary smooth function.

For a bounded discontinuity at ξ = σ, the Rankine-Hugoniot conditions read:










−σ
[ ρ

c2 − v2

]

+
[ ρv

c2 − v2

]

= 0,

−σ
[ ρv

c2 − v2

]

+
[ ρv2

c2 − v2

]

= 0.

(3.5)

Solving (3.5), we obtain

ξ = σ = vl(= λl) = vr(= λr). (3.6)

It is a slip line, denoted by J . Then two states (ρl, vl) and (ρr, vr) can be connected by J , if

and only if vl = vr.

We now construct the solutions of the Riemann problem (3.3) and (3.4) with constant states,

vacuum and contact discontinuity. In the case v− < v+ , we can draw contact discontinuity

curve v = v− from (ρ−, v−) in (ρ, v) plane, and it can be extended at (ρ, v) = (0, v−) with

vacuum curve ρ = 0 (v− < v < c). Similarly, we can draw contact discontinuity curve v = v+

from (ρ+, v+) and extend it at (ρ, v) = (0, v+) with vacuum curve ρ = 0 (−c < v < v+) (see

Figure 3.1).
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Then we can obtain the solution consisting of two contact discontinuities and a vacuum

state besides two constant states (ρ±, v±), which can be written in the form

(ρ(ξ), v(ξ)) =











(ρ−, v−), −∞ < ξ ≤ v−,

(0, v(ξ)), v− ≤ ξ ≤ v+,

(ρ+, v+), v+ ≤ ξ < +∞,

(3.7)

where v(ξ) is an arbitrary smooth function satisfying v(v−) = v− and v(v+) = v+.

In the case v− > v+, the characteristic lines from initial data will overlap in the domain

Ω shown in Figure 3.2, which shows that singularity must happen in Ω. Consider a piecewise

smooth solution of (3.3) and (3.4) of the form

(ρ, v)(t, x) =











(ρ−, v−)(t, x), x < x(t),

(ω(t)δ(x − x(t)), vδ(t)), x = x(t),

(ρ+, v+)(t, x), x > x(t),

(3.8)

where (ρ±, v±)(t, x) ∈ C1, x(t), vδ(t) ∈ C1. ω(t)δ(x− x(t)) denotes the weighted delta function

supported on a smooth curve x = x(t).
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It can be verified that (3.8) is a delta shock wave of (3.3) if the generalized Rankine-Hugoniot

condition






























dx(t)

dt
= vδ(t),

d
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( ω(t)

c2 − v2
δ (t)

)

=
[ ρ

c2 − v2

]

vδ(t) −
[ ρv
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]

,

d

dt

( ω(t)vδ(t)

c2 − v2
δ (t)

)

=
[ ρv

c2 − v2

]

vδ(t) −
[ ρv2

c2 − v2

]

(3.9)

and the generalized entropy condition

λ+ <
dx(t)

dt
< λ−,

which means that in (x, t)-plane the characteristic lines on both sides of delta wave are in-

coming, are satisfied. By solving (3.9), we can obtain the solution of Riemann problem (3.3)

and (3.4), which is of the form (3.8) with x(t), vδ(t) and ω(t) satisfying
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√
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c2−v2
+

+ v−
√
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−

√

ρ+

c2−v2
+

+
√
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−

t,

vδ(t) =: vδ =
v+

√

ρ+

c2−v2
+

+ v−
√

ρ−

c2−v2
−

√

ρ+

c2−v2
+

+
√

ρ−

c2−v2
−

,
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√

ρ+

c2 − v2
+

ρ−

c2 − v2
−

(v− − v+)(c2 − v2
δ )t.

(3.10)
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The reason that we choose vδ(t), x(t) and ω(t) as in (3.10) is that dx(t)
dt

= vδ(t) should be

located in the region Ω (see Figure 3.2).

Above discussions immediately give the following results.

Theorem 3.1 The Riemann problem for the zero-pressure relativistic Euler equations (3.1)

and (3.2) can be solved constructively:

( i ) When v− < v+, the solution is of the form in (3.7), consisting of two contact disconti-

nuities and a vacuum state besides two constant states (ρ±, v±).

(ii) When v− > v+, the solution, which is a delta shock wave, is of the form (3.8) with

x(t), vδ(t) and ω(t) satisfying (3.10).

4 The Limits of Solutions of (1.1) and (2.1) as κ → 0

In this section, we consider the behavior of the solution to the Euler system of conservation

laws of energy and momentum in special relativity (1.1) as κ → 0.

We divide our issues into two different cases.

Case 1 v− > v+

Theorem 4.1 If v− > v+, then there exists κ0 > 0 such that (ρ+, v+) ∈ IV(ρ−, v−) when

0 < κ < κ0, where IV(ρ−, v−) = {(v, ρ) | ρ2 < ρ < ρ1,−c < v < v−}, and (vi, ρi) ∈ Si (see

Figure 2.1).

Proof By (2.8) and (2.9), all possible states (ρ, v) that can be connected on the right side

to the left state (ρ−, v−) by a backward shock wave S1 or a forward shock wave S2 satisfy

S1 :
ρ

ρ−
= 1 + β +

√

β2 + 2β, ρ ≥ ρ−

or

S2 :
ρ

ρ−
= 1 + β −

√

β2 + 2β, ρ ≤ ρ−,

where

β =
(κ2 + c2)2

2κ2

(v − v−)2

(c2 − v2)(c2 − v2
−)

.

If ρ− = ρ+, the conclusion is obviously true. Otherwise, we can obtain the result by taking κ0

as the form

κ0 = (M0 − c2 −
√

M0(M0 − 2c2) )
1
2 ,

where

M0 =
(ρ+ − ρ−)2(c2 − v2

−)(c2 − v2
+)

2ρ+ρ−(v+ − v−)2
≥ c2.

From this theorem, we observe that the curves S1 and S2 become steeper when κ is much

smaller. As 0 < κ ≤ κ0, the solution consists of two constant states (ρ±, v±), an intermediate

state (ρ∗, v∗) and two shock curves S1,2. According to Lemma 2.3, we have

S1 :















ρ∗

ρ−
= 1 + β1 +

√

β2
1 + 2β1, ρ∗ ≥ ρ−,

β1 =
(κ2 + c2)2

2κ2

(v∗ − v−)2

(c2 − v2
∗)(c

2 − v2
−)

,

(4.1)
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S2 :















ρ+

ρ∗
= 1 + β2 −

√

β2
2 + 2β2, ρ∗ ≥ ρ+,

β2 =
(κ2 + c2)2

2κ2

(v∗ − v+)2

(c2 − v2
∗)(c

2 − v2
+)

.

(4.2)

We will now discuss the behavior of the two shock wave curves S1 and S2 and the intermediate

state (ρ∗, v∗) when κ → 0. We have the following theorem.

Theorem 4.2

lim
κ→0

σ1 = lim
κ→0

σ2 = lim
κ→0

v∗ =
v+

√

ρ+

c2−v2
+

+ v−
√

ρ−

c2−v2
−

√

ρ+

c2−v2
+

+
√

ρ−

c2−v2
−

. (4.3)

Proof According to (4.1) and (4.2), we have

ρ+

ρ−
= (1 + β1 +

√

β2
1 + 2β1 )(1 + β2 −

√

β2
2 + 2β2 ), (4.4)

where the expressions of β1 and β2 are the same as those in (4.1) and (4.2). Observe that

(1 + β +
√

β2 + 2β)(1 + β −
√

β2 + 2β) = 1.

Then (4.4) becomes

ρ+

ρ−
=

1 + β2 −
√

β2
2 + 2β2

1 + β1 −
√

β2
1 + 2β1

.

That is

l(c2 − v2
∗) +

kl

c2 − v2
−

(v∗ − v−)2 − l

√

k2

(c2 − v2
−)2

(v∗ − v−)4 +
2k

c2 − v2
−

(c2 − v2
∗)(v∗ − v−)2

= c2 − v2
∗ +

k

c2 − v2
+

(v∗ − v+)2 −
√

k2

(c2 − v2
+)2

(v∗ − v+)4 +
2k

c2 − v2
+

(c2 − v2
∗)(v∗ − v+)2,

where k = (κ2+c2)2

2κ2 , l = ρ+

ρ−

.

By some direct calculations, we have

0 = (l − 1)4(c2 − v2
∗)

2 +
4k2l2

(c2 − v2
−)2

(v∗ − v−)4 +
4k2l2

(c2 − v2
+)2

(v+ − v∗)
4

− 4kl(l − 1)2

c2 − v2
−

(v∗ − v−)2(c2 − v2
∗) −

4kl(l − 1)2

c2 − v2
+

(c2 − v2
∗)(v+ − v∗)

2

− 4k2l(l2 + 1)

(c2 − v2
−)(c2 − v2

+)
(v∗ − v−)2(v∗ − v+)2.

It is equivalent to

0 =
(

(l − 1)2(c2 − v2
∗) −

2kl

c2 − v2
−

(v∗ − v−)2 − 2kl

c2 − v2
+

(v∗ − v+)2

+
2kl(l + 1)

√
l
√

(c2 − v2
−)(c2 − v2

+)
(v∗ − v−)(v+ − v∗)

)(

(l − 1)2(c2 − v2
∗) −

2kl

c2 − v2
−

(v∗ − v−)2

− 2kl

c2 − v2
+

(v∗ − v+)2 − 2kl(l + 1)
√

l
√

(c2 − v2
−)(c2 − v2

+)
(v∗ − v−)(v+ − v∗)

)

.
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Because v+ < v∗ < v−, we take v∗ as the form

v∗ =
b +

√
b2 − 4ac

2a
,

where

a = (l − 1)2 +
2kl

c2 − v2
−

+
2kl

c2 − v2
+

+
2kl(l + 1)

√
l
√

(c2 − v2
−)(c2 − v2

+)
,

b =
4klv−

c2 − v2
−

+
4klv+

c2 − v2
+

+
2kl(l + 1)(v− + v+)

√

l(c2 − v2
−)(c2 − v2

+)
,

c =
2klv2

−

c2 − v2
+

+
2klv2

+

c2 − v2
+

+
2kl(l + 1)v−v+

√

l(c2 − v2
−)(c2 − v2

+)
− (l − 1)2c2.

Let κ → 0. Then

lim
κ→0

v∗ =
v+

√

ρ+

c2−v2
+

+ v−
√

ρ−

c2−v2
−

√

ρ+

c2−v2
+

+
√

ρ−

c2−v2
−

. (4.5)

Based on the Rankine-Hugoniot condition (3.5), we have

σ1 =

(κ2+c2)ρ∗v2
∗

c2−v2
∗

− (κ2+c2)ρ−v2
−

c2−v2
−

+ κ2(ρ∗ − ρ−)

(κ2+c2)ρ∗v∗

c2−v2
∗

− (κ2+c2)ρ−v−

c2−v2
−

, (4.6)

σ2 =

(κ2+c2)ρ∗v2
∗

c2−v2
∗

− (κ2+c2)ρ+v2
+

c2−v2
+

+ κ2(ρ∗ − ρ+)

(κ2+c2)ρ∗v∗

c2−v2
∗

− (κ2+c2)ρ+v+

c2−v2
+

, (4.7)

which leads to

lim
κ→0

σ1 = lim
κ→0

κ2(κ2+c2)ρ∗v2
∗

c2−v2
∗

+ κ4ρ∗

κ2(κ2+c2)ρ∗v∗

c2−v2
∗

= lim
κ→0

v∗ = lim
κ→0

σ2. (4.8)

From (4.5) and (4.8), we arrive at (4.4).

This proposition shows that the two shock curves S1 and S2 coincide as κ drops to zero.

Next we want to see the distribution of density on this coincidental shock.

Theorem 4.3

lim
κ→0

∫ σ2t

σ1t

ρ∗dx =

√

ρ+

c2 − v2
+

ρ−

c2 − v2
−

(v− − v+)(c2 − v2
δ )t.

Proof From (4.6) and (4.7), we deduce

σ2 − σ1 =
1

(κ2 + c2)2(b∗ρ∗ − b−)(b∗ρ∗ − b+)
((κ2 + c2)2(a∗b+ − a+b∗ + a−b∗ − b−a∗)ρ∗

+ κ2(κ2 + c2)(ρ− − ρ+)b∗ρ∗ + κ2(κ2 + c2)(b+ − b−)ρ∗ + (κ2 + c2)2(a−b+ − a+b−)),

where

a∗ =
v2
∗

c2 − v2
∗

, b∗ =
v∗

c2 − v2
∗

, a± =
ρ±v2

±

c2 − v2
±

, b± =
ρ±v±

c2 − v2
±

.
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Then, we have

lim
κ→0

∫ σ2t

σ1t

ρ∗dx = lim
κ→0

ρ∗(σ2 − σ1)t

= lim
κ→0

b+a∗ − b−a∗ + a−b∗ − a+b∗

b2
∗

t

= lim
κ→0

[ ρv
c2−v2 ]vδ(t) − [ ρv2

c2−v2 ]
v∗

c2−v2
∗

t

=

√

ρ+

c2 − v2
+

ρ−

c2 − v2
−

(v− − v+)(c2 − v2
δ )t.

We find from this proposition that the measure of ρ on the coincidental shock does not

vanish as κ drops to zero. That is to say, the density, which is a linear function of t, becomes

a singular measure as κ = 0. Therefore, the solution is no longer self-similar, although the

equations (1.1) and the initial data (2.1) are invariant under the self-similar transformation.

Furthermore, we observe that the velocity, which is the weighted average of two initial states,

still keeps bounded. This brings us naturally to recall the results of the relativistic zero-pressure

Euler equations (3.1), which exactly verify the conclusions above.

Case 2 v− < v+

In this case, the solution involves the vacuum. The results are in the following theorems.

Theorem 4.4 If v− < v+, then there exists κ0 > 0 such that (ρ+, v+) ∈ I(ρ−, v−) when

0 < κ < κ0, where I(ρ−, v−) = {(v, ρ) | ρ1 < ρ < ρ2, v− < v < −c}, and (vi, ρi) ∈ Ri (see

Figure 2.1).

Proof All possible states (ρ, v) that can be connected on the right side to the left state

(ρ−, v−) by a backward rarefaction wave R1 or a forward rarefaction wave R2 satisfy

R1 :
c

2
ln

(c − v−)(c + v)

(c + v−)(c − v)
+

κ

1 + κ2

c2

ln
ρ

ρ−
= 0, ρ ≤ ρ−

and

R2 :
c

2
ln

(c − v−)(c + v)

(c + v−)(c − v)
− κ

1 + κ2

c2

ln
ρ

ρ−
= 0, ρ ≥ ρ−

according to (2.5). The conclusion is obviously true when ρ− = ρ+. If ρ− 6= ρ+, we can reach

the conclusion by taking

κ0 =
(1

2
M −

√

1

4
M2 − 1

)

c,

where

M =
2 ln ρ+

ρ−

ln (c+v+)(c−v−)
(c−v+)(c+v−)

≥ 2.

This theorem shows that when 0 < κ < κ0, the solution consists of two rarefaction waves

R1,2 and an intermediate state (ρ∗, v∗) besides two constant states (ρ±, v±). By Lemma 2.1,

they satisfy the following expressions:

R1 :















λ1 =
v − κ

1 − κv
c2

,

c

2
ln

(c − v−)(c + v)

(c + v−)(c − v)
+

κ

1 + κ2

c2

ln
ρ

ρ−
= 0, ρ∗ ≤ ρ ≤ ρ−,

(4.9)
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R2 :















λ2 =
v + κ

1 + κv
c2

,

c

2
ln

(c + v+)(c − v)

(c − v+)(c + v)
− κ

1 + κ2

c2

ln
ρ+

ρ
= 0, ρ∗ ≤ ρ ≤ ρ+.

(4.10)

In virtue of the above formulas (4.9) and (4.10), we consider the properties of the two rarefaction

wave curves R1 and R2, and the behavior of the solution when κ drops to zero. We have the

theorem below.

Theorem 4.5 As κ drops to zero, ρ∗ vanishes and two rarefaction waves, R1 and R2,

become two contact discontinuities connecting the two constant states (ρ±, v±) and the vacuum

(ρ∗ = 0).

Proof (4.9) and (4.10) imply

(c − v−

c + v−

c + v+

c − v+

)
c

2

=
(ρ−ρ+

ρ2
∗

)

κ

1+ κ
2

c
2 .

So the intermediate state (ρ∗, v∗) can be expressed as

ρ∗ =
√

ρ−ρ+

(c − v−

c + v−

c + v+

c − v+

)

(

1+ κ
2

c
2

)

c

4κ

.

It is easy to know that

0 <
c − v−

c + v−

c + v+

c − v+
< 1, v− < v+,

and

(

1+ κ
2

c
2

)

c

4κ
→ +∞ when κ → 0, which shows that ρ∗ → 0 and λ1, λ2 → v as κ → 0. That

is to say, as κ drops to zero, ρ∗ vanishes and two rarefaction waves R1 and R2 become two

contact discontinuities connecting the constant states (ρ±, v±) and the vacuum (ρ∗ = 0).

As a result, the solution of (1.1) and (2.1) accords with that of (3.1) and (3.2), as κ goes

to zero, and it presents us two extreme states: one turns into delta shock wave, and the other

involves the vacuum. Therefore, system (3.1) can be viewed as the limit of the relativistic Euler

equations (1.1) as κ goes to zero.
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