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1 Introduction

Let (X,ω) be an n-dimensional compact Kähler manifold, and α ∈ C∞

1,1(X,R) be a closed

(1, 1) form on X , such that

(1) α ≥ 0 pointwise on X and
∫
X
αn > 0;

(2) ωn

αn ∈ Lε0(X,ω) for some ε0 > 0.

A large class of such (1, 1)-forms can be obtained as follows: let π : X → Y be a generically

finite map, and let ωY be a Kähler metric on Y . Then α := π∗ωY verifies the conditions above.

We recall that, according to [3], a function φ : X→ [−∞,∞) is called quasi-plurisubharmonic

(quasi-psh for short) if it is locally equal to the sum of a smooth function and a plurisubharmonic

(psh) function. Then there exists a constant C ∈ R such that
√
−1∂∂φ ≥ −Cω in the sense

of currents on X . We say that a function ψ has logarithmic poles if for each open set U ⊂ X

there exists a family of holomorphic functions (fUj ) such that ψ ≡
∑
j

|fUj |2 modulo C∞(U). It

is an important class of quasi-psh functions.

In this setting, the aim of our note is to prove the next result.

Theorem 1.1 Let (X,ω) be a compact Kähler manifold, and α be a smooth (1, 1) form on

X, having the properties (1) and (2) above. Consider the quasi-psh functions ψ1, ψ2, such that

( i )
∫
X

exp(p(ψ1 − ψ2))dVω <∞ for some p > 1;

(ii)
∫
X
αn =

∫
X

exp(ψ1 − ψ2)dVω.

Then for each γ ∈ [0, 1), there exists Yγ ⊂ X such that the solution ϕ of the equation

(α+
√
−1∂∂ϕ)n = exp(ψ1 − ψ2)ω

n (1.1)

belongs to the Hölder class C1,γ(X \ Yγ).
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The estimates for the norm of the solution above can be obtained from the proof, but since

they are not very enlighting, we have decided to skip them.

Before stating the next result, we would like to recall the following conjecture, formulated

by J.-P. Demailly and J. Kollár [4].

Conjecture 1.1 (see [4]) Let ψ be a psh function on the unit ball B ⊂ Cn, such that∫
B

exp(−ψ)dλ <∞. Then there exists a positive real number δ > 0 such that
∫
(Cn,0)

exp(−(1+

δ)ψ)dλ <∞.

A consequence of this conjecture would be the following statement.

Conjecture 1.2 Let (X,ω) be a compact Kähler manifold, and ψ be a quasi-psh function

such that
∫
X
ωn =

∫
X

exp(−ψ)dVω <∞. Then the Monge-Ampère equation

(ω +
√
−1∂∂ϕ)n = exp(−ψ)ωn

has a unique continuous solution up to normalisation.

Now if the previous statement is correct, then by the Chern-Levine-Nirenberg inequalities

we get ψ exp(−ψ) ∈ L1(X). Let us assume for simplicity that ψ ≤ −1 on X . Then the

function ψ−log(−ψ) is equally quasi-psh, so inductively we would get (−ψ)k exp(−ψ) ∈ L1(X).

Unfortunately, the L1-integrability statements above seem to be more or less equivalent to the

existence of the continuous solution in (1.1).

Anyway, an immediate consequence of the theorem above is the next statement, which

addresses a question proposed in [7].

Corollary 1.1 Let (X,ω) be a compact Kähler manifold, and α be a smooth (1, 1) form

on X, with the properties (1)–(2) above. Consider the quasi–psh functions ψ1, ψ2, which are

assumed to have logarithmic poles and satisfy the following conditions
∫
X
αn =

∫
X

exp(ψ1 −
ψ2)dVω <∞. Then there exists an analytic set Y ⊂ X such that the solution ϕ of the equation

(α+
√
−1∂∂ϕ)n = exp(ψ1 − ψ2)ω

n (1.2)

is smooth on X \ Y .

In [7], the authors proved the corollary under the assumptions that the manifold X is

projective, and the cohomology class {α} lies in the real Neron-Severi group of X . We remark

that the same result was obtained by Tian-Zhang [13] (see also [9], as well as [6]).

Let us outline the main steps in the proof of Theorem 1.1. First of all, if the functions

(ψj)j=1,2 are regular enough and α is a genuine Kähler metric, then the question was completely

solved by S.-T. Yau [15]. Therefore, the natural idea under the hypothesis of the theorem is to

regularise the functions (ψj)j=1,2, then to use the result of Yau in order to solve the equations

with the regularised right-hand side member, and finally to take the limit. As it is well-known,

to carry out this programme, we have to provide uniform a priori estimates for the solutions.

Now, if α is a Kähler metric, the C0-estimates we need were obtained by S. Kolodziej [8]

by using simple, tricky and elegant considerations in the pluripotential theory. In [7, 13], the

authors proved that the methods of S. Kolodziej can be extended to cover the case where α is

only semi-positive on X and strictly positive at some point of X . Therefore, the solution of the

equation (1.1) is known to be continuous.

In order to achieve further regularity, we would like to use the C2-estimates in the theory

of Monge-Ampère equations, but a new difficulty occurs: since the (1, 1)-form α may be zero
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at some points of X , the quantity trα∂∂f (clearly needed in the estimates) will be unbounded,

even for smooth functions f . This difficulty already appeared in [14], where he considered

the case where X is projective, and α = c1(L), for some big line bundle L. He solved the

problem by modifying the (1, 1)-form α within its cohomology class in order to get a strongly

positive representative. Remark that this is possible by the well-known fact (the Kodaira’s

lemma): a big line bundle can be decomposed as a sum of effective and ample Q-line bundles.

Then he observed that the singularities which come into the picture via the effective part of

the decomposition do not affect in a significant way the usual C2-estimates (recently, the same

circle of ideas were used in [7, 13]).

In our case, the (1, 1)-form α does not correspond to a line bundle, and X is not necessarily

projective. But recall that a result of J.-P. Demailly and ourself [5] shows that if α is a semi-

positive (1, 1)-form such that
∫
X
αn > 0, then there exists a function τ with at worst logarithmic

poles, such that the current T := α+
√
−1∂∂τ dominates a small multiple of the Kähler metric

ω. Thus, we “trade” the smoothness of α for the strong positivity of T , as in the case of line

bundles. The only new phenomenon is that the poles of τ may not be of divisorial type. The

existence of this current is crucial for the regularity analysis, since it is the right substitute for

the Kodaira lemma quoted above.

For the rest of the proof, we follow the classical approach in the Monge-Ampère theory and

we show that Y.-T. Siu’s version of the second order estimates in [11] can be adapted in our

context to give the result.

2 Regularization of Currents and C0-Estimates

As the title of this paragraph tries to suggest, we will collect here some facts about the

regularization of quasi-psh functions. We also recall some results concerning the C0-estimates

for the Monge-Ampère operators which will be used later. The convention all over this paper

is that we will use the same letter “C” to denote a generic constant, which may change from

one line to another, but it is independent of the pertinent parameters involved.

Let (X,ω) be an n-dimensional compact Kähler manifold, and ψ be a quasi-psh function.

By definition, there exists a constant C > 0 such that Cω+
√
−1∂∂ψ ≥ 0 on X . We recall the

next result due to J.-P. Demailly, on the regularization of ψ. In fact, the statement in [3] is

much more precise, but all we need is the following particular case.

Theorem 2.1 (see [3]) There exist a family of smooth functions (ψε) ⊂ C∞(X) and a

constant C > 0 such that

( i ) ψε → ψ in L1(X) as ε→ 0, and ψε ≥ ψ − 1 for all 0 < ε≪ 1;

(ii) Cω +
√
−1∂∂ψε ≥ 0.

The functions ψε are obtained by means of the flow of the Chern connection on the tangent

bundle TX . This can be seen as a global version of the familiar local convolution by smoothing

kernels. We apply the previous regularization theorem to ψ1 and ψ2. Thanks to the fact that

exp(ψ1−ψ2) is in Lp, for some p > 1, by the above considerations we infer that exp(ψ1;ε−ψ2;ε) →
exp(ψ1 − ψ2) in Lp.

We recall now the theorem of S.-T. Yau [15], which will be used (in direct or indirect manner)

several times in this note.

Theorem 2.2 (see [15]) Let (X,ω) be a compact Kähler manifold, and dV be a smooth

volume element, such that
∫
X

dV =
∫
X
ωn. Then there exists a smooth function ϕ, unique up
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to normalisation, such that ω +
√
−1∂∂ϕ > 0 and such that

(ω +
√
−1∂∂ϕ)n = dV.

By hypothesis, α is a semi-positive (1, 1)-form of positive top self-intersection. Thus for

each ε > 0 we have α+ εω > 0, and by the previous result, there exists a function ϕε ∈ C∞(X)

such that α+ εω +
√
−1∂∂ϕε > 0 on X and it is a solution of the equation

(α + εω +
√
−1∂∂ϕε)

n = (1 + δε) exp(ψ1;ε − ψ2;ε)ω
n (2.1)

on X . We assume that
∫
X
ϕεdVω = 0; in the previous expression, the real numbers δε are

normalisation constants, and we have δε → 0 as ε→ 0.

We want to prove that some subsequence of the family (ϕε) converges to the solution of the

equation (1.2), and that this limit has the regularity properties stated in the theorem.

The first step in this direction is provided by the next result, due to S. Kolodziej [8].

Theorem 2.3 (see [8]) Let (X,α) be a compact Kähler manifold and (fj) ⊂ C∞(X) be a

sequence of functions on X, such that the following requirements are satisfied:

(a) sup
j

‖ exp(fj)‖Lp(X) <∞ for some p > 1;

(b)
∫
X

exp(fj)dVα =
∫
X
αn for j ≥ 1.

Then there exists a constant C ∈ R such that for each solution ϕj of the equation

(α+
√
−1∂∂ϕj)

n = exp(fj)α
n

such that
∫
X
ϕjdVα = 0, we have sup

X

|ϕj | ≤ C. Moreover, if exp(fj) → exp(f∞) in Lp, then

there exists a continuous function ϕ∞ such that ϕj → ϕ∞ and it is the solution of the equation

(α+
√
−1∂∂ϕ∞)n = exp(f∞)αn. (2.2)

Remark at this point that if the number p above is large enough (compared to the dimension

of X), then the above result follows from S.-T. Yau’s original proof of the C0 estimates (by an

obvious modification). But the arguments provided by S. Kolodziej seem to be more flexible,

since they were adapted in [7, 13] by Eyssidieux, Guedj and Zeriahi, respectively Tian and

Zhang, to get the next statement.

Proposition 2.1 (see [7, 13]) The above statement holds true, if α ≥ 0 pointwise on X,

and
∫
X
αn > 0.

As a consequence of this proposition the family of solutions of the equation (1.2) admits an

a priori L∞ bound; this is the part of the argument where the integrability condition (2) on α

is needed (to insure the Lp integrability hypothesis; remark that in the equation (1.1), we have

ωn instead of αn in the right-hand side).

A general conclusion of the results collected here is the next statement.

Corollary 2.1 There exists a constant C > 0 depending on p and the geometry of (X,ω)

such that |ϕε|L∞ ≤ C for each ε > 0. In addition, we can extract a continuous limit ϕ of the

family (ϕε).

Remark 2.1 Quite recently, S. Kolodziej proved that the solution of the equation (2.2)

belongs to the Hölder space Cγ(X) (for some γ depending on p) if α is the inverse image of a

Kaehler metric by a generically finite map. At this moment, it is unclear whether his methods

can be used to prove an analogous regularity result in the hypothesis of the proposition above.
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3 End of the Proof

In order to achieve further regularity, we would like to use the C2-estimates in the theory of

Monge-Ampère equations. But we cannot do it directly, because the eigenvalues of αmay vanish

at some points of X . We overcome this difficulty by using the next result of J.-P. Demailly and

ourself (see [5]).

Theorem 3.1 (see [5]) Let (X,ω) be a compact Kähler manifold, and let α be a semi-

positive, closed (1, 1)-form on X, such that
∫
X
αn > 0. Then there exist ε0 > 0 and τ ∈ L1(X)

which have at worst logarithmic poles, such that

α+
√
−1∂∂τ ≥ ε0ω

as currents on X.

Thus, even if the eigenvalues of the (1, 1)-form α may be zero on an open set of X , we can

modify it by the Hessian of a function τ , such that it dominates a small multiple of the Kähler

metric. Of course, now we have to deal with the poles of τ . But along the following lines we

will show that a careful reading of the computations performed by Y.-T. Siu [11] will give the

result.

Before that, remark that in general we cannot expect the poles of τ to be divisorial (as

in the case of line bundles), so we have to proceed to an intermediate step. There exists a

modification (composition of blow-up maps with smooth centers) π : X̂ → X such that

π∗α = ω̂ + [E] −
√
−1∂∂η, (3.1)

where ω̂ is a Kähler metric on X̂, E is an effective Q-divisor on X̃, and η is a quasi-psh function

on X̂. Indeed, we first use a sequence of blow up maps to get rid of the poles of τ . Thus on

a model of X the absolutely continuous part of the inverse image of α +
√
−1∂∂τ dominates

a small multiple of the inverse image of a Kähler metric, and now just recall the way one

constructs a metric on the blow-up of a manifold; we refer to [5] for a complete description of

this process.

We are going to use the equality (3.1) in order to study the regularity of ϕ := lim
ε
ϕε. We

will use along the next lines the following notation: if f is a function on X , we denote by f̂ the

function f ◦ π.

On X̂, the equality (2.1) reads as

(π∗(α + εω) +
√
−1∂∂ϕ̂ε)

n = (1 + δε) exp(ψ̂1;ε − ψ̃2;ε)‖J(π)‖2ω̂n, (3.2)

where ‖J(π)‖2 := ωn/ω̂n. We denote Φε := ϕ̂ε − η, and ω̂ε := ω̂ + επ∗ω. Remark that the

geometry of (X̂, ω̂ε) is bounded independently of ε. By using the relations (3.1) and (3.2) we

get

(ω̂ε +
√
−1∂∂Φε)

n = (1 + δ′ε) exp(ψ̂1;ε − ψ̂2;ε)‖J(π)‖2ω̂nε (3.3)

pointwise on X̂ \ E (the symbols δ′ε are functions which tend to zero in C∞ norm).

The inequality we start with is borrowed from Y.-T. Siu [11, p. 99]. Considering in general

a compact Kähler manifold (X̂, ω̂), we denote by ∆ one half of the Laplace-Beltrami operator

associated to the metric ω̂, and for each function Φ such that ω̂ +
√
−1∂∂Φ > 0 we denote by

∆Φ the Laplacian of the metric ω̂ +
√
−1∂∂Φ on X̂ .
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Lemma 3.1 (see [11]) Let Φ, f ⊂ C∞(X̂) be smooth functions on an open subset U of X̂,

such that

(ω̂ +
√
−1∂∂Φ)n = exp(f)ω̂n

pointwise on U . Then there exists a constant C depending on the geometry of (X̂, ω̂) only, such

that the following inequality holds true (pointwise on the open set U):

∆Φ

(
log(n+ ∆Φ)

)
≥ 1

n+ ∆Φ

(
∆f − C

)
− C

n∑

j=1

1

1 + Φ,jj
. (3.4)

In our case, the geometry of the family of Kähler manifolds (X̂, ω̂ε) is uniformly bounded;

therefore the constant C above can be assumed to be independent of ε. Also, the Hessian of

ψ̂1;ε is bounded from below independently of ε; thus we have ∆ε(ψ̂1;ε + log ‖J(π)‖2) ≥ −C
uniformly with respect to ε. Thus, the inequality (3.4) implies

∆Φε
log(n+ ∆εΦε) ≥ − 1

n+ ∆Φε

(
∆εψ̂2;ε + C

)
− C

n∑

j=1

1

1 + Φε,jj
. (3.5)

We want next to move the term containing ψ̂2;ε inside the ∆Φε
; for this, we need the following

simple observation.

Lemma 3.2 There exists a constant C > 0 such that

∆Φε
ψ̂2;ε ≥

∆εψ̂2;ε

n+ ∆εΦε
− C

n∑

j=1

1

1 + Φε,jj
. (3.6)

Proof We will prove the lemma by a local computation. By using an appropriate coordinate

system (zj) at a point x ∈ X̂, the quantities under consideration are

(1) ∆Φε
ψ̂2;ε =

∑
j

ψ̂
2;ε,jj

1+Φε,jj

;

(2) ∆εψ̂2;ε =
∑
j

ψ2;ε,jj .

We use again at this point the fact that the geometry of (X̂, ω̂ε) is bounded, and thus there

exists a constant C > 0 independent of ε, such that
√
−1∂∂ψ̂2;ε ≥ −Cω̂ε on X̂ (we use the

statement (ii) of the regularization theorem quoted above). Therefore we have ψ̂2;ε,jj ≥ −C for

all j = 1, · · · , n. At the point x we have

∆Φε
ψ̂2;ε =

∑

j

ψ̂2;ε,jj

1 + Φε,jj
=

∑

j

ψ̂2;ε,jj + C

1 + Φε,jj
− C

∑

j

1

1 + Φε,jj

and this quantity is greater than

∆εψ̂2;ε

n+ ∆ε(Φε)
− C

n∑

j=1

1

1 + Φε,jj

and thus the lemma is proved.

By the inequalities (3.5) and (3.6), we get

∆Φε
(ψ̂2;ε + log(n+ ∆ε(Φε))) ≥ −C

n∑

j=1

(
1 +

1

1 + Φε,jj

)
.
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Noting also the previous inequality and the fact that

∆Φε
(Φε) = n−

n∑

j=1

1

1 + Φε,jj
,

we infer

∆Φε
(−2CΦε + ψ̂2;ε + log(n+ ∆ε(Φε))) ≥ C

n∑

j=1

1

1 + Φε,jj
− C. (3.7)

Recall now that Φε = ϕ̂ε − η, where the function η has at most logarithmic poles along an

analytic set E. Thus for each ε > 0, there exists a constant Cε > 0 such that the next

inequality holds true uniformly on X̂ \ E:

−2CΦε + ψ̂2;ε + log(n+ ∆εΦε) ≤ Cε

(this is so because η and ∆ε(−η) are bounded from above).

We are now in good position to apply the maximum principle: consider xε ∈ X̂ \ E the

point where the maximum of the function considered above is achieved; at xε the relation (3.7)

gives

n∑

j=1

1

1 + Φε,jj
≤ C. (3.8)

On the other hand, the Monge-Ampère equation (3.2) implies

n∏

j=1

(1 + Φε,jj) ≤ C exp(−ψ̂2;ε).

Thus, for each j = 1, · · · , n, we get

(1 + Φε,jj) exp(ψ̂2;ε) ≤ C

and therefore at the point xε we obtain

(n+ ∆εΦε) exp(ψ̂2;ε) ≤ C.

Observe that so far, we did not use the uniform L∞ bound for the functions ϕε. We do it now

and infer that at xε the next relation holds:

(n+ ∆εΦε) exp(ψ̂2;ε − 2CΦε) ≤ C. (3.9)

Since xε is the maximum point of the previous function, we see that the inequality (3.9) holds

true at any point of X1 \ E.

In conclusion, we have a uniform constant C > 0 such that

n+ ∆ε(ϕ̂ε − η) ≤ C exp(−ψ̂2;ε + 2C(ϕ̂ε − η)). (3.10)

Now we have ψ2;ε ≥ ψ2 by the regularization theorem, and moreover, we claim that for each

p > 0 there exists Yp ⊂ X̂ such that exp(−ψ̂2 − 2Cη) ∈ Lploc(X̂ \ Yp). Indeed, it is enough to

consider the analytic set Yp where the Lelong numbers of the quasi-psh function ψ̂2 + 2Cη are
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larger than 1
p

(for the analyticity of the level sets, see [10]) and the local integrability of the

function in the complement of this set is a consequence of a result of H. Skoda [12].

We quote now the next regularity result (see e.g. [1]).

Theorem 3.2 (Kondrakov) Let B ⊂ Cn be the unit ball. Then the inclusion

Lp2(U) 7→ C1,γ(U)

is compact, provided that q(1 − γ) > n.

Thus Theorem 1.1 is proved. As for Corollary 1.1, it is an easy consequence of the previous

considerations and the classical Schauder theory, as it is usually applied in the context of the

Monge-Ampère operators (see e.g. [11, 15]).

Remark 3.1 Let us consider the following geometric context: Y is a compact complex

Kähler space (eventually singular), X is a compact Kähler (smooth) manifold, π : X → Y is

a generically finite map, α = π∗ωY is the inverse image of a Kähler metric on Y and finally

the functions ψj have logarithmic poles. Then it is very likely that all the results proved here

are an obvious consequence of the original proof of the Calabi conjecture. Indeed, a strong

indication in this direction is the next observation, due to Cascini-LaNave [2]: the holomorphic

bisectional curvature of π∗(ωY ) is bounded. On the dark side, the matter is not completely

clear, since for example the components of the Ricci tensor of π∗(ωY ) are not bounded (because

of the additional contraction with the singular metric).
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