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Abstract The authors consider a differentiable manifold with Il-structure which is an
isomorphic representation of an associative, commutative and unitial algebra. For Rie-
mannian metric tensor fields, the ®-operators associated with r-regular Il-structure are
introduced. With the help of ®-operators, the hyperholomorphity condition of B-manifolds
is established.
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1 Introduction

Let 2(,, be an associative commutative unitial algebra (hypercomplex algebra) of order
m over the field of real numbers R. We consider the exact (monomorphic) representation
® : 2, — EndL, of algebra 2, in a linear space L,, over R. Note that the algebra 2, admits
in its vector space, the so-called regular representation, given by linear operators S, (z) = ax,
where a is a fixed element of ,,,. It is not difficult to see that the regular representation is
exact. For the regular representation, we have

(Sa)gzcgaaa, a,B,0=1,---,m,

where C?  are structure constants of the algebra 21,,. In particular, to the base units e, € Ay,
there correspond the matrices S, = (C2 ). It is known that for the linear operator (affinor) to
belong to regular representation {S, }, the necessary and sufficient condition is that it commutes
with all S, (see [3]). With the aid of regular representation, we build the so-called r-regular
representation of algebra 2, in the linear space L,, (n = mr), which is also exact, and the
matrix of r-regular representation has the form

(9); = 6, (Sa)5,
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where 6, is the Kronecker symbol and w,v =1,---,r, ¢,j=1,--- ,n.

In this work, we consider only r-regular representations of algebra 2,,.

Let L,(2,,) be an A-module or a module over algebra 2, of order r (see [9, p. 65]), which
is defined with the aid of the operators {¢} or r-regular representation

d:2A, — EndL,,

where {¢} = ®(2,,) C EndL,,, n = mr. Note that the 2-module L, (2,,) arises after compar-
ison .
gi _ é-(ufl)era _ é-uoc N é-u _ é-uaea.

In fact, if ' = cpz-ﬁj, where goé- € ®(A,,), then n** = 630%5”, or
;3“ =n"Yeq = Cgﬁfuﬁea = 60655“5 = e &%

The vector transformation law for quantities 2“ is verified after the definition of a funda-
mental group of module L.,.(2,,). The fundamental group of the module L,(2,,) is realized in
L,, as the subgroup G, C GL(n,R), which preserves affinors of representation, i.e., Vp € G,
and Vo € ®(2,,),

op =pp, det(p}) #0.

Thus, any block of matrix P of order m commutes with all S,. That is why

uw Yoa’

p}, — AO’U (63

where AZ} are arbitrary coefficients subject only to the regularity condition det(pé-,) #0. It

is easily seen that Z“ = S}j,g“/, where S, = Alle,, i.e., the comparison £"* — Z“ is defined
correctly on the vector module L, (2l,,) over algebra 2,,.

Let z = 2%, be a variable in algebra 2, and f1(x), f2(z),--- , f™(z) be the set of functions
of all z®. Then w = f*(x)e, is a function of z. We define the differentials

dw=df%,, dz=dzx%,.
The function w = w(z) is called hyperholomorphic, if there exists a function w’(z) such that
dw = W' (2)dz.

The necessary and sufficient condition for hyperholomorphity of function w = w(z) is the
condition (see [3])
SoD = DS, (1.1)
where
8 [e%
Sy =(Cly), D= (a—iﬁ)
Condition (1.1) will be called the Scheffers condition (see [8]). In particular, in the case of the
algebra of complex numbers 2 = R(i), where i2 = —1, the Scheffers condition coincides with
Cauchy-Riemann conditions. If we consider the algebra of dual numbers A = R(e), where

e? = 0, then from (1.1) it follows that the condition of existence of derivative

_dw

/ —_—
wiz) = dz’

w= ' 2?) +efi(at,2?), z=az"+ex?
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has the form
or' _, o5 _op

ox2 7 0x2 Ozl

Hence, we obtain that the dualholomorphic function w = w(z) has the structure
w= F(z") 4+ e(2®F'(z") + G(z')). (1.2)

The dualholomorphic function in form (1.2) is called synectic. In particular, if G(z') = 0 in
(1.2), then the dualholomorphic function in form (1.2) is called the natural extension of real
differentiable function F(x!) to the algebra R(g).

The notion of hyperholomorphic function of several variables from algebra is introduced in

a natural way (see [9]): the function w = f%(z!,--- ,2"™)e, is hyperholomorphic with respect
to 2% = glu=tmtae 4 o =1,... r, if and only if the Scheffers condition is valid for Jacobian
matrix L
D(f I fm) _
, o u=1,--- 7
D(x(u—l)m-i-l’ . ,xum)

Let M,, be a connected manifold of class C*°. The field of endomorphisms II = {¢} is
called an algebric hypercomplex Il-structure over M,,. By the structure, we mean affinors
@, =1,--- m, which correspond to the base units e, € %,, under the isomorphism ®. Then
[e3

P = Clpps- (1.3)
a g ol

If @ is the r-regular representation of algebra 2,,, then the hypercomplex Il-structure is
called an r-regular II-structure over M, (n = mr). Note that if 25 is a complex algebra, then
the r-regularity of its representation over M,, at once follows from (1.3). Therefore, an almost
complex structure over M, is an example of r-regular II-structure. A. P. Shirokov proved in
[2] that in the tangent bundle, the r-regular II-structure arises in a natural way and is defined
by algebra of dual numbers.

If the coordinate neighbourhood U C M, is endowed with an affine connection in which
Ve = 0, YV € 11, then such a connection is called a II-connection. A Il-structure is called
integrable, if M, admits a smooth atlas of local charts such that any affinor ¢ € II in any of
the charts of this atlas has constant components. A Il-structure is called almost integrable, if
in a neighbourhood of any point of M, there exists at least one II-connection without torsion.
It is known that any integrable r-regular II-structure is almost integrable and vice versa.

From the facts mentioned above, it follows that if on M,.,, the r-regular II-structure is given,
then the tangent space T, (M,,) at any point x € M, is transformed to the module L, (2,,)
over algebra 2,,,. Moreover, if the r-regular Il-structure on M,, is integrable, then as proved
in [3], the adapted charts on M,.,, consist of charts that are connected by hyperholomorphic
transition functions, i.e., M,, carries the structure of hyperholomorphic manifold of order r over
algebra 2, : X, ().

2 ®,-Operator

*

Let 2,,, be a Frobenius hypercomplex algebra and K = (K,.»") be a hypercomplex tensor

q

field on X, (,,). Then the real model of such a tensor field is a tensor field K = (Kil"'l?)

Ji-Jq
on M,,, of the same order that is independent of whether its vector or covector arguments
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are subject to the action of affinors ¢, a = 1,--- ,m. Such tensor fields are said to be pure
«
with respect to II = {¢}, a =1,--- ,m. They were studied by many authors (see [3, 5-7, 9]).
«

Applied to K € $#(M,), p+ ¢ > 1, the purity means that for any X1, Xp,---, X, € S§(M,,)
and &1, &, -+, & € SY(M,,) the following conditions should hold:

K(pX1, X2, -+, Xq,61,&2, . &)
= K(X1, X0, X 61,60, &) = - = K(X1, Xo,+,0Xg, 60,60, , &)
= K(X1, Xo, Xgo 060,60, &) = K(X1, Xa,+ Xg. 60,060, , &)
c= K(X1, Xoy o, X, 61,62, , 9,

where ¢’ is the adjoint operator of ¢. The vector (covector) field and scalar is considered to be
pure by convention.
*
We denote by 37 (M,,) the module of all pure tensor fields of type (p, ¢) on M, with respect to
the affinor field ¢ € 31(M,,). We now fix a positive integer A. If K and L are pure tensor fields
of types (p1,q1) and (p2, g2) respectively, then the tensor product of K and L with contraction

K ® L= K;i ;m i LT1 :,’{i sq, 15 also a pure tensor field. We shall prove only the case when

K ¢ %%( M,) and L € %g(Mn) In fact, we have
(K & L)(X,Y) = K(L(pX,Y)) = K(L(X,pY)) = (K & L)(X,$Y).

We shall now make the direct sum I(M,) = > SP(M,) into an algebra over the real
,q=0

=

*

c
number R by defining the pure product (denoted by ®) of K € %pl (M) and L € 32(M,,) as
follows:

K;i;tr n Sl::::ﬁi...sw for A < p1,q2 () is a fixed positive integer),
Q1eip LMy Ty . .. .
(%: (K., L) — KG%L _ ij»»ml---qu sisqn o for p<pa,q1 (pis a fixed positive integer),
0 for p1 =0, po =0,
0 for g1 =0, g2 = 0.

Let K € 34(M,,) and L € Ay, (M,,) be a ga-form. Then the pure product coincides with the
interior product ¢x L.

Definition 2.1 A map @, : I(M,,) — I(M,,) (S(Mn) = > %g(Mn)) is a ®,-operator

P,q=0

on M,, if

(a) D is linear with Tespect to constant coefficients,

(b) for all p, q, ® 0 : J;Z(Mn) — Sy (M),

(c) forall K, L € \Y(MT),

C C C
D (KDL)=(D,K) @ L+ K@ ®,L,

(d) for all X,Y € S§(M,), ®,xY = —(Lyp)X, where Ly is the Lie derivation with
respect to Y .
(e) for allw € SY(M,) and X, Y € S M,), Pux (iyw) = (¢X)(ivw) — X (ipyw).
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Remark 2.1 It follows that ®, possesses also the following property:
(I)SDX(W(Yl? T 73/;1)) = ((pX)(w(Ylv T 7}/;1)) - X(w(spylv T 7}/;1))

Proof We shall prove the formula for the case ¢ = 2. By Definition 2.1(d) and the purity

of w, we have

Byx (Y, 2)) = Bx (iyw) Z) = Box (iz(ivw)) = (pX)(iz(iyw)) — X (ipz(ivw))
— (pX)(iyw)(Z) — X (iyw)(¢Z) = (pX)(@(Y. Z)) — X (w(¢Y. 2)).

Let K € S} (M,). Using the condition (c) of Definition 2.1, we have, for any operator @,

q

Dox(K(YVi V) = (@ux K)(Ye, -+ V) + 3 K(Yi o Bux Vs, Yy).

A=1
Then Definition 2.1(d) implies
(P E) (X3 Y1, -+, Y) = (Ppx K) (Y1, -+, Yg)
q
= —(Lry, v @)X + > K1, (Ly,0) X, -+, Yy).
A=1

Using (e) by similar devices for w € gg(Mn), we have
(q)ww)(XQ Yi,--- 7}/:1) = (Lg,Xw — Lx(w o @))(Yh Yo, - 7}/;1)

q
+Zw(Y717}/27 7%0(LXY)\)7 7}/;])
A=2

q
= w(pY1,Ya, o Lx Yy, o, Yy). (2.1)
A=2

The following theorem is true.

Theorem 2.1 Let on M,,, be given the integrable r-regular hypercomplex 11-structure. For

hypercomplex tensor ﬁeld% of type (1,q) (or of type (0,q)) on X, () to be A-holomorphic tensor
field, it is necessary and sufficient that

*

O,t=0, a=1,---,m, teI(Mm).

Proof For simplicity, let ¢ € 32(%T(21)). By setting X = 0y, YA =0;,, A=1,---,¢in
the equation of (2.1), we see that the components (®,t)pj,...;, of @, with respect to local

1

coordinate system z*,--- , """ may be expressed as follows:

q
(Pt )ky-gy = PR Omts gy — Ok (t(D)) g1y + D (D5 PT iy
[e3 « « )\:1 «

By virtue of [3],
A Ag—2
gy = gvl"'vqacgﬁ\l C[bl)e o ﬁ:—lﬁq'
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In the adapted charts, we have (jx = vafx, k=w7y, A=1,---,q)

(Pot)kjs iy = Pk Omitjr-wejy — O ()14,
[e% « (e}
Ag—
= (Ch0upSurvgo = CogOunSur00)CF 0, City, - Cat 25, = 0
or
Cl DSy e = Cl g Oy Sy v

*
which is the Scheffers condition of 2(-holomorphity of t,,...., = Sy, ...o,0€” (67 = ¢7%eq, ¢ is

a Frobenius metric) with respect to local coordinates z% = z%%¢,, from X%, (2). This completes
the proof.

3 Hyperholomorphic B-Manifold

Let M,.,,, be a Riemannian manifold with metric g, which is not necessarily positive definite.
A pure metric with respect to the hypercomplex structure is a Riemannian metric g such that

g(@eXY)=9g(X,¢Y), a=1,---,m (3.1)

[e3

for any X,Y € 3§(M,,). Such Riemannian metrics were studied in [9], where they were said to

be B-metrics, since the metric tensor g with respect to the Il-structure is B-tensor according to

the terminology accepted in [4]. If (M, IT) is an almost hypercomplex manifold with B-metric,

we say that (M,,,II, g) is an almost hypercomplex B-manifold. If II = {¢} is integrable, we
«

say that (M,,, 11, g) is a hypercomplex B-manifold.
In a B-manifold, a B-metric is called hyperholomorphic, if

(B,9)(X,Y,Z) =0, a=1,---,m.

If (My, 11, g) is a B-manifold with hyperholomorphic B-metric g, we say that (M,,,II, g) is a
hyperholomorphic B-manifold. Since in dimension m, such a manifold is flat (see [9, p. 113]),
we assume in the sequel that dim M > 2m, i.e., r > 2.

Theorem 3.1 An almost B-manifold is a hyperholomorphic B-manifold, if and only if the

almost hypercomplex structure is parallel with respect to the Levi-Civita connection V.

Proof By virtue of (3.1) and Vg = 0, we have
9(Z; (Vy9)X) = g((Vy¢)Z, X). (3-2)
Using (3.1) and [X,Y] = VxY — Vy X, we have transform ®,¢ as follows:

(<1>fg)(X; Z1,Z9) = —9(Vxp)Z1,Z2) + 9(V2,0) X, Z2) + g(Z1, (V 2,) X). (3.3)

[e3

From this, we have

(‘I’ggg)(zz; Z1,X) = 9((szf)zl, X)+9((Vz, f)Z% X) +g(Z, (VXf)Z2)- (3.4)
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If we add (3.3) to (3.4), we find
(©p9)(X5 21, Z2) + (Ppg)(Z2; 21, X) = 29(X, (Vz2,0) Z2). (3-5)

Putting ®,¢g = 0 in (3.5), we find V¢ = 0. Conversely, if V¢ = 0, then the condition ®,g9 = 0
follows from (3.3) or (3.4).

4 Examples of Hyperholomorphic B-Manifolds

A Kahler-Norden manifold (see [1]) can be defined as a triple (May, ¢, g), n > 2, which con-
sists of a manifold Ms,,, endowed with an almost complex structure ¢ and a pseudo-Riemannian
metric g such that Vo = 0, where V is the Levi-Civita connection of g and the metric g is as-
sumed to be Nordenian: g(¢X,Y) = g(X, Y ). Thus, the Kahler-Norden manifold is a complex
holomorphic B-manifold.

Let T'(M,,) be a tangent bundle of a Riemannian manifold (M, g). It is well-known that
there exists a tensor field of type (1,1) which has components of the form

7= (& o)

with respect to the induced coordinates (z*, ") in T'(M,,), E being unit matrix in M,, and
satisfying v2 = 0. Thus T'(M,,) has a natural integrable n-regular dual II-structure IT = {I,~},
where I denotes the identity transformation. The complete lift “g of g is a B-metric with
respect to v. Thus (T(M,),7,%) is a B-manifold. Moreover, we easily see that “Vy = 0,
where “V is the complete lift of the Levi-Civita connection V in M,,. Thus (T'(M,),11,%) is a
dualholomorphic B-manifold.

By similar devices, we can prove that (T'(M,),~,%) is also a dualholomorphic B-manifold,
where “g =% +"a (Ya is a vertical lift of a symmetric tensor field a € T9(M,,)) is a synectic lift
of g (see [2]).

Let, now, T?(M,,) be a tangent bundle of order 2 over M,,. It is also well-known that there
exists an affinor field v € $1(7%(M,,)) which has components of the form

0 0 0
y=|E 0 0], A*=0
0 E 0

with respect to the induced coordinates (z¢, 2" "%, 22" +%) in T?(M,,), i.e., T?(M,,) has a natural
integrable n-regular plural Il-structure II = {I,7,52}. The second lift of g, i.e., ““g =g (see
[10, p. 332]), is a B-metric with respect to ¥ and ““V%g = 0 where ““V denotes the second
lift of the Levi-Civita connection V, which is necessarily the Levi-Civita connection determined
by ¢Cg. Thus, (T2(M,), I, ©Cg) is a pluralholomorphic B-manifold.

A locally decomposable Riemannian manifold My is a paraholomorphic B-manifold (see

[7)-
5 Curvature Tensors in a Hyperholomorphic B-Manifold

Let R be the Riemannian curvature tensor formed by g. If a torsion free connection V
preserving the structure (Vo = 0) satisfies the condition V,xY = ¢(VxY'), then V is called
« (o3 «
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a hyperholomorphic connection (see [9, p. 185]). The purity of the curvature tensor field of a
connection V is a necessary and sufficient condition for its holomorphy (see [3, 9]). Since the
Levi-Civita connection of hyperholomorphic B-manifold is hyperholomorphic (see [3, 9]), we see
that in a hyperholomorphic B-manifold, the Riemannian curvature tensor R of B-metric g is

pure.
Since the Riemannian curvature tensor R is pure, we can apply the ®-operator to R. By
similar devices (see the proof of Theorem 3.1), we can prove that

(¢LPR)(X7 }/17 }/27 }/3; Y4) = (VLPXR)(Ylv }/27 }/3; Y4) - (VXR)(<PY1; }/27 }/37 }/4) (51)
Applying the Ricci’s identity to ¢, we get
P(R(X,Y)Z) = R(X,Y)pZ (5.2)

[e3

by virtue of Vi = 0. Using (5.2) and applying the second Bianchi identity to (5.1), we get
(PLR)(X, Y1, Y2, Y3, Ya) = g((V wXR)(YlaY27Y3) — (VxR)(pY1,Y2,Y3), Ya)
= 9(Vex R) (Y1, Y2,Y3) — o(Vx R) (Y1, Y2, ¥3)), Ya)
= ( (VYl )
—¢((Vx R)(Y1,Y2,Y3)), Ya). (5.3)

(}/27 SOXu }/3) - (VY2R)(S0X7 Ylu }/3)

On the other hand, using Vo = 0, we find
(VYQR)(S(SX, Y1,Y3) = Vy, (R(qu Y1,Y3)) — R(VYQ(S(SX), Y1,Y3)

— R(pX, V11, ¥3) = R(X, Y1, Vi, Ys)

= (VYgf)(R(Xu Y1,Y3)) + f(szR(Xa Y1,Y3))
~ RV p)X +p(V1,X), Y1, 5)
- R(fX, Vy,Y1,Ys) — R(fX7 Y1,Vy,Y3)

= (V3 R(X, Vi, Y5) = RV X, Vi, Y3)
— P(R(X, Vi, 11, Y5)) — o(R(X, Y1, Vi, Y3))

[e3

Similarly,
(VY1R)(Y?7SDX7Y3) = @((VY1R)(E=X7}/3))' (5'5)

Substituting (5.4) and (5.5) in (5.3) and using again the second Bianchi identity, we obtain
(@ R)(X, Y1, Y2, Y3, Ya) = 9(—92((VY13)(Y2, X,Ys)) — f((ngR)(Xu Y1,Y3))
— e(VxR)(11, Y2, ¥3)), Ya)
= glo(o (VX R)(M:, Yo, ¥a)}), ¥i) =0,

where o denotes the cyclic sum with respect to X, Y7 and Y5. Therefore, we have
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Theorem 5.1 In a hyperholomorphic B-manifold, the Riemannian curvature tensor field
s a pluralholomorphic tensor field.

Theorem 5.2 A necessary and sufficient condition for an exact 1-form df, f € SY(May,)
to be hyperholomorphic, i.e., ®,(df) = 0, is that an associated 1-form d f o ¢ be closed, i.e.,

d(dfOf):O. )

Proof Using

()(X.Y) = H{X @) = Y@(0) ~ (X YD} XY € S5(0Man), w € 30z)
for (wo gap)(X) = w(f(X)), we have
(Ao)(¥:9X) = Y (wl(pX)) — (PX)(@(¥)) - (Y X))
= S (X)) = (X)) +w(lpX. V)
= SV @(eX) ~ (X)) +((pX. Y- o[ YD +(elX. V)L (56

From (2.1), we have

(2pw)(X,Y) = (pX)(w(Y)) = X(w(Y) + w((Ly ¢)(X))

= (X)) - Xl )~ w(lpX. Y] - ¢[X Y. (67
Substituting (5.7) into (5.6), we obtain

(@)(Y,X) = 3 {(~(B) (X, Y) + Y (w(pX)) — X(w(pV)) +w(elX, Y]}

[e3 @ [e3 [e3

= —%{(‘I’ggW)(X, V) +Y((wop)(X)) = X((wop)(Y)) — (wop)([Y, X])}

« [e3 «

- _%(cpfw)(x, V) + (d(w o p)(Y, X)).

[e3

From this we see that the equation ®,w = 0 is equivalent to

(d(we @)Y, X) = (dw)(Y, pX). (5.8)

[e3 [e3

For w = d f, equation (5.8) turns into the following simple form
(d(dfo@))(Y, X) = (d*N)(Y,9X) =0, e, d(dfop)=0. (5.9)

Thus Theorem 5.2 is proved.

If there exists a function ¢ in a hyperholomorphic B-manifold such that df oy = dg for a

(07 (07
function f, then we call f a hyperholomorphic function and ¢ an associated function. If such a
function f is defined locally, then we call it a locally hyperholomorphic function.
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We notice that equation (5.9) is equivalent to d f o = dg only locally. Hence, the condition
for f to be locally hyperholomorphic (¢*0,, f = 0;g) is also given by

(@pd f)ij = " Om0if — 0i(f Om f) + (950" )Om f = 0.

Let (May,, ¢, g) be a hyperholomorphic B-manifold with B-metric g. Then from Theorem

5.1 and (5.1), we find that in pluralholomorphic B-manifolds the covariant derivative of the
curvature tensor field VR is also pure. Now, the covariant derivative of the Ricci tensor Rj; =
5. = gtthjis is pure in all its indices and hence

Ssjt

0 VsRji = p;ViRs;.

Contracting this equation with contravariant B-metric ¢7¢, we find

*

@iVsR = g7 03V Ry = Vi(G*' Ry;) = ViR, (5.10)

[e3

where R = g" R;; is the scalar curvature of B-metric g and R = ¢’' ¢} Rs;.
@ o
From (5.10), we have

Theorem 5.3 In a hyperholomorphic B-manifold, the scalar curvature R is a locally hy-
perholomorphic function.
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