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Abstract The authors consider a differentiable manifold with Π-structure which is an

isomorphic representation of an associative, commutative and unitial algebra. For Rie-

mannian metric tensor fields, the Φ-operators associated with r-regular Π-structure are

introduced. With the help of Φ-operators, the hyperholomorphity condition of B-manifolds

is established.
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1 Introduction

Let Am be an associative commutative unitial algebra (hypercomplex algebra) of order

m over the field of real numbers R. We consider the exact (monomorphic) representation

Φ : Am → EndLn of algebra Am in a linear space Ln over R. Note that the algebra Am admits

in its vector space, the so-called regular representation, given by linear operators Sα(x) = ax,

where a is a fixed element of Am. It is not difficult to see that the regular representation is

exact. For the regular representation, we have

(Sα)β
α = Cβ

σαaσ, α, β, σ = 1, · · · , m,

where Cβ
σα are structure constants of the algebra Am. In particular, to the base units eσ ∈ Am,

there correspond the matrices Sσ = (Cβ
σα). It is known that for the linear operator (affinor) to

belong to regular representation {Sα}, the necessary and sufficient condition is that it commutes

with all Sα (see [3]). With the aid of regular representation, we build the so-called r-regular

representation of algebra Am in the linear space Ln (n = mr), which is also exact, and the

matrix of r-regular representation has the form

(ϕ
α
)i
j = δu

v (Sα)α
β ,
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where δu
v is the Kronecker symbol and u, v = 1, · · · , r, i, j = 1, · · · , n.

In this work, we consider only r-regular representations of algebra Am.

Let Lr(Am) be an A-module or a module over algebra Am of order r (see [9, p. 65]), which

is defined with the aid of the operators {ϕ} or r-regular representation

Φ : Am → EndLn,

where {ϕ} = Φ(Am) ⊂ EndLn, n = mr. Note that the A-module Lr(Am) arises after compar-

ison

ξi = ξ(u−1)m+α = ξuα →
∗

ξu = ξuαeα.

In fact, if ηi = ϕi
jξ

j , where ϕi
j ∈ Φ(Am), then ηuα = δu

v Cα
σβξvβ , or

∗

ηu = ηuαeα = Cα
σβξuβeα = eσeβξuβ = eσ

∗

ξu.

The vector transformation law for quantities
∗

ξu is verified after the definition of a funda-

mental group of module Lr(Am). The fundamental group of the module Lr(Am) is realized in

Ln as the subgroup Gϕ ⊂ GL(n, R), which preserves affinors of representation, i.e., ∀ p ∈ Gϕ

and ∀ϕ ∈ Φ(Am),

ϕp = pϕ, det(pi
j′) 6= 0.

Thus, any block of matrix P of order m commutes with all Sα. That is why

pi
j′ = ∆σu

u′ Cα
σα′ ,

where ∆σu
u′ are arbitrary coefficients subject only to the regularity condition det(pi

j′) 6= 0. It

is easily seen that
∗

ξu = Su
u′

∗

ξu′

, where Su
u′ = ∆σu

u′ eσ, i.e., the comparison ξuα →
∗

ξu is defined

correctly on the vector module Lr(Am) over algebra Am.

Let z = xαeα be a variable in algebra Am and f1(x), f2(x), · · · , fm(x) be the set of functions

of all xα. Then ω = fα(x)eα is a function of z. We define the differentials

dω = dfαeα, dz = dxαeα.

The function ω = ω(z) is called hyperholomorphic, if there exists a function ω′(z) such that

dω = ω′(z)dz.

The necessary and sufficient condition for hyperholomorphity of function ω = ω(z) is the

condition (see [3])

SαD = DSα′ , (1.1)

where

Sσ = (Cγ
αβ), D =

(∂fα

∂xβ

)
.

Condition (1.1) will be called the Scheffers condition (see [8]). In particular, in the case of the

algebra of complex numbers A2 = R(i), where i2 = −1, the Scheffers condition coincides with

Cauchy-Riemann conditions. If we consider the algebra of dual numbers A2 = R(ε), where

ε2 = 0, then from (1.1) it follows that the condition of existence of derivative

ω′(z) =
dω

dz
, ω = f1(x1, x2) + εf2(x1, x2), z = x1 + εx2
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has the form
∂f1

∂x2
= 0,

∂f2

∂x2
=

∂f1

∂x1
.

Hence, we obtain that the dualholomorphic function ω = ω(z) has the structure

ω = F (x1) + ε(x2F ′(x1) + G(x1)). (1.2)

The dualholomorphic function in form (1.2) is called synectic. In particular, if G(x1) = 0 in

(1.2), then the dualholomorphic function in form (1.2) is called the natural extension of real

differentiable function F (x1) to the algebra R(ε).

The notion of hyperholomorphic function of several variables from algebra is introduced in

a natural way (see [9]): the function ω = fα(x1, · · · , xrm)eα is hyperholomorphic with respect

to zu = x(u−1)m+αeα, u, v = 1, · · · , r, if and only if the Scheffers condition is valid for Jacobian

matrix
D(f1, · · · , fm)

D(x(u−1)m+1, · · · , xum)
, u = 1, · · · , r.

Let Mn be a connected manifold of class C∞. The field of endomorphisms Π = {ϕ} is

called an algebric hypercomplex Π-structure over Mn. By the structure, we mean affinors

ϕ
α
, α = 1, · · · , m, which correspond to the base units eα ∈ Am under the isomorphism Φ. Then

ϕ
α

i
mϕ

β

m
j = C

γ
αβϕ

γ

i
j . (1.3)

If Φ is the r-regular representation of algebra Am, then the hypercomplex Π-structure is

called an r-regular Π-structure over Mn (n = mr). Note that if A2 is a complex algebra, then

the r-regularity of its representation over Mn at once follows from (1.3). Therefore, an almost

complex structure over M2r is an example of r-regular Π-structure. A. P. Shirokov proved in

[2] that in the tangent bundle, the r-regular Π-structure arises in a natural way and is defined

by algebra of dual numbers.

If the coordinate neighbourhood U ⊂ Mn is endowed with an affine connection in which

∇ϕ = 0, ∀ϕ ∈ Π, then such a connection is called a Π-connection. A Π-structure is called

integrable, if Mn admits a smooth atlas of local charts such that any affinor ϕ ∈ Π in any of

the charts of this atlas has constant components. A Π-structure is called almost integrable, if

in a neighbourhood of any point of Mn, there exists at least one Π-connection without torsion.

It is known that any integrable r-regular Π-structure is almost integrable and vice versa.

From the facts mentioned above, it follows that if on Mrm the r-regular Π-structure is given,

then the tangent space Tx(Mrm) at any point x ∈ Mn is transformed to the module Lr(Am)

over algebra Am. Moreover, if the r-regular Π-structure on Mn is integrable, then as proved

in [3], the adapted charts on Mrm consist of charts that are connected by hyperholomorphic

transition functions, i.e., Mn carries the structure of hyperholomorphic manifold of order r over

algebra Am : Xr(A).

2 Φϕ-Operator

Let Am be a Frobenius hypercomplex algebra and
∗

K = (
∗

K
u1···up

v1···vq
) be a hypercomplex tensor

field on Xr(Am). Then the real model of such a tensor field is a tensor field K = (K
i1···ip

j1···jq
)

on Mmr of the same order that is independent of whether its vector or covector arguments
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are subject to the action of affinors ϕ
α
, α = 1, · · · , m. Such tensor fields are said to be pure

with respect to Π = {ϕ
α
}, α = 1, · · · , m. They were studied by many authors (see [3, 5–7, 9]).

Applied to K ∈ ℑp
q(Mn), p + q > 1, the purity means that for any X1, X2, · · · , Xq ∈ ℑ1

0(Mn)

and ξ1, ξ2, · · · , ξp ∈ ℑ0
1(Mn) the following conditions should hold:

K(ϕX1, X2, · · · , Xq, ξ1, ξ2, · · · , ξp)

= K(X1, ϕX2, · · · , Xq, ξ1, ξ2, · · · , ξp) = · · · = K(X1, X2, · · · , ϕXq, ξ1, ξ2, · · · , ξp)

= K(X1, X2, · · · , Xq, ϕ
′ξ1, ξ2, · · · , ξp) = K(X1, X2, · · · , Xq, ξ1, ϕ

′ξ2, · · · , ξp)

= · · · = K(X1, X2, · · · , Xq, ξ1, ξ2, · · · , ϕ′ξp),

where ϕ′ is the adjoint operator of ϕ. The vector (covector) field and scalar is considered to be

pure by convention.

We denote by
∗

ℑp
q(Mn) the module of all pure tensor fields of type (p, q) on Mn with respect to

the affinor field ϕ ∈ ℑ1
1(Mn). We now fix a positive integer λ. If K and L are pure tensor fields

of types (p1, q1) and (p2, q2) respectively, then the tensor product of K and L with contraction

K
C
⊗L = K

i1···mλ···ip1

j1···jq1
L

r1···rp2

s1···mλ···sq2
is also a pure tensor field. We shall prove only the case when

K ∈
∗

ℑ1
1(Mn) and L ∈

∗

ℑ0
2(Mn). In fact, we have

(K
C
⊗ L)(ϕX, Y ) = K(L(ϕX, Y )) = K(L(X, ϕY )) = (K

C
⊗ L)(X, ϕY ).

We shall now make the direct sum
∗

ℑ(Mn) =
∞∑

p,q=0

∗

ℑp
q(Mn) into an algebra over the real

number R by defining the pure product (denoted by
C
⊗) of K ∈

∗

ℑp1

q1
(Mn) and L ∈

∗

ℑp2

q2
(Mn) as

follows:

C
⊗ : (K, L) → K

C
⊗L =






K
i1···mλ···ip1

j1···jq1
L

r1···rp2

s1···mλ···sq2
for λ ≤ p1, q2 (λ is a fixed positive integer),

K
i1···ip1

j1···mµ···jq1
L

r1···mµ···rp2

s1···sq2
for µ ≤ p2, q1 (µ is a fixed positive integer),

0 for p1 = 0, p2 = 0,

0 for q1 = 0, q2 = 0.

Let K ∈ ℑ1
0(Mn) and L ∈ Λq2

(Mn) be a q2-form. Then the pure product coincides with the

interior product iXL.

Definition 2.1 A map Φϕ :
∗

ℑ(Mn) → ℑ(Mn)
(
ℑ(Mn) =

∞∑
p,q=0

ℑp
q(Mn)

)
is a Φϕ-operator

on Mn, if

(a) Φϕ is linear with respect to constant coefficients,

(b) for all p, q, Φϕ :
∗

ℑp
q(Mn) → ℑp

q+1(Mn),

(c) for all K, L ∈
∗

ℑ(Mr),

Φϕ(K
C
⊗ L) = (ΦϕK)

C
⊗ L + K

C
⊗ ΦϕL,

(d) for all X, Y ∈ ℑ1
0(Mn), ΦϕXY = −(LY ϕ)X, where LY is the Lie derivation with

respect to Y .

(e) for all ω ∈ ℑ0
1(Mn) and X, Y ∈ ℑ1

0(Mn), ΦϕX(iY ω) = (ϕX)(iY ω) − X(iϕY ω).
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Remark 2.1 It follows that Φϕ possesses also the following property:

ΦϕX(ω(Y1, · · · , Yq)) = (ϕX)(ω(Y1, · · · , Yq)) − X(ω(ϕY1, · · · , Yq)).

Proof We shall prove the formula for the case q = 2. By Definition 2.1(d) and the purity

of ω, we have

ΦϕX(ω(Y, Z)) = ΦϕX((iY ω)Z) = ΦϕX(iZ(iY ω)) = (ϕX)(iZ(iY ω)) − X(iϕZ(iY ω))

= (ϕX)(iY ω)(Z) − X(iY ω)(ϕZ) = (ϕX)(ω(Y, Z)) − X(ω(ϕY, Z)).

Let K ∈
∗

ℑ1
q(Mn). Using the condition (c) of Definition 2.1, we have, for any operator Φϕ,

ΦϕX(K(Y1, · · · , Yq)) = (ΦϕXK)(Y1, · · · , Yq) +

q∑

λ=1

K(Y1, · · · , ΦϕXYλ, · · · , Yq).

Then Definition 2.1(d) implies

(ΦϕK)(X ; Y1, · · · , Yq) = (ΦϕXK)(Y1, · · · , Yq)

= −(LK(Y1,··· ,Yq)ϕ)X +

q∑

λ=1

K(Y1, · · · , (LYλ
ϕ)X, · · · , Yq).

Using (e) by similar devices for ω ∈
∗

ℑ0
q(Mn), we have

(Φϕω)(X ; Y1, · · · , Yq) = (LϕXω − LX(ω ◦ ϕ))(Y1, Y2, · · · , Yq)

+

q∑

λ=2

ω(Y1, Y2, · · · , ϕ(LXYλ), · · · , Yq)

−

q∑

λ=2

ω(ϕY1, Y2, · · · , LXYλ, · · · , Yq). (2.1)

The following theorem is true.

Theorem 2.1 Let on Mrm be given the integrable r-regular hypercomplex Π-structure. For

hypercomplex tensor field
∗

t of type (1, q) (or of type (0, q)) on Xr(A) to be A-holomorphic tensor

field, it is necessary and sufficient that

Φϕ
α

t = 0, α = 1, · · · , m, t ∈
∗

ℑ(Mrm).

Proof For simplicity, let
∗

t ∈ ℑ0
q(Xr(A)). By setting X = ∂k, Yλ = ∂jλ

, λ = 1, · · · , q in

the equation of (2.1), we see that the components (Φϕ
α

t)kj1···jq
of Φϕ

α

t with respect to local

coordinate system x1, · · · , xrm may be expressed as follows:

(Φϕ
α

t)kj1···jq
= ϕ

α

m
k ∂mtj1···jq

− ∂k(t(ϕ
α
))j1···jq

+

q∑

λ=1

(∂jλ
ϕ
α

m
k )tj1···m···jq

.

By virtue of [3],

tj1···jq
= ℑv1···vqσCσ

β1λ1
Cλ1

β2λ2
· · ·C

λq−2

βq−1βq
.
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In the adapted charts, we have (jλ = vλβλ, k = ωγ, λ = 1, · · · , q)

(Φϕ
α

t)kj1···jq
= ϕ

α

m
k ∂mtj1···jq

− ∂k(t(ϕ
α
))j1···jq

= (Cµ
αγ∂ωµℑv1···vqσ − Cλ

ασ∂ωγℑv1···vsλ)Cσ
β1λ1

Cλ1

β2λ2
· · ·C

λq−2

βq−1βq
= 0

or

Cµ
αγ∂ωµℑv1···vqσ = Cµ

ασ∂ωγℑv1···vqµ,

which is the Scheffers condition of A-holomorphity of
∗

tv1···vq
= ℑv1···vqσeσ (eσ = qσαeα, qσα is

a Frobenius metric) with respect to local coordinates zu = xuαeα from Xr(A). This completes

the proof.

3 Hyperholomorphic B-Manifold

Let Mrm be a Riemannian manifold with metric g, which is not necessarily positive definite.

A pure metric with respect to the hypercomplex structure is a Riemannian metric g such that

g(ϕ
α
X, Y ) = g(X, ϕ

α
Y ), α = 1, · · · , m (3.1)

for any X, Y ∈ ℑ1
0(Mrm). Such Riemannian metrics were studied in [9], where they were said to

be B-metrics, since the metric tensor g with respect to the Π-structure is B-tensor according to

the terminology accepted in [4]. If (Mrm, Π) is an almost hypercomplex manifold with B-metric,

we say that (Mrm, Π, g) is an almost hypercomplex B-manifold. If Π = {ϕ
α
} is integrable, we

say that (Mrm, Π, g) is a hypercomplex B-manifold.

In a B-manifold, a B-metric is called hyperholomorphic, if

(Φϕ
α

g)(X, Y, Z) = 0, α = 1, · · · , m.

If (Mrm, Π, g) is a B-manifold with hyperholomorphic B-metric g, we say that (Mrm, Π, g) is a

hyperholomorphic B-manifold. Since in dimension m, such a manifold is flat (see [9, p. 113]),

we assume in the sequel that dim M ≥ 2m, i.e., r ≥ 2.

Theorem 3.1 An almost B-manifold is a hyperholomorphic B-manifold, if and only if the

almost hypercomplex structure is parallel with respect to the Levi-Civita connection ∇.

Proof By virtue of (3.1) and ∇g = 0, we have

g(Z, (∇Y ϕ
α
)X) = g((∇Y ϕ

α
)Z, X). (3.2)

Using (3.1) and [X, Y ] = ∇XY −∇Y X , we have transform Φϕ
α

g as follows:

(Φϕ
α

g)(X ; Z1, Z2) = −g((∇Xϕ
α
)Z1, Z2) + g((∇Z1

ϕ
α
)X, Z2) + g(Z1, (∇Z2

ϕ
α
)X). (3.3)

From this, we have

(Φϕ
α

g)(Z2; Z1, X) = g((∇Z2
ϕ
α
)Z1, X) + g((∇Z1

ϕ
α
)Z2, X) + g(Z1, (∇Xϕ

α
)Z2). (3.4)
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If we add (3.3) to (3.4), we find

(Φϕ
α

g)(X ; Z1, Z2) + (Φϕ
α

g)(Z2; Z1, X) = 2g(X, (∇Z1
ϕ
α
)Z2). (3.5)

Putting Φϕ
α

g = 0 in (3.5), we find ∇ϕ
α

= 0. Conversely, if ∇ϕ
α

= 0, then the condition Φϕ
α

g = 0

follows from (3.3) or (3.4).

4 Examples of Hyperholomorphic B-Manifolds

A Kahler-Norden manifold (see [1]) can be defined as a triple (M2n, ϕ, g), n ≥ 2, which con-

sists of a manifold M2n, endowed with an almost complex structure ϕ and a pseudo-Riemannian

metric g such that ∇ϕ = 0, where ∇ is the Levi-Civita connection of g and the metric g is as-

sumed to be Nordenian: g(ϕX, Y ) = g(X, ϕY ). Thus, the Kahler-Norden manifold is a complex

holomorphic B-manifold.

Let T (Mn) be a tangent bundle of a Riemannian manifold (Mn, g). It is well-known that

there exists a tensor field of type (1, 1) which has components of the form

γ =

(
0 0
E 0

)

with respect to the induced coordinates (xi, xn+i) in T (Mn), E being unit matrix in Mn and γ

satisfying γ2 = 0. Thus T (Mn) has a natural integrable n-regular dual Π-structure Π = {I, γ},

where I denotes the identity transformation. The complete lift Cg of g is a B-metric with

respect to γ. Thus (T (Mn), γ,Cg) is a B-manifold. Moreover, we easily see that C∇γ = 0,

where C∇ is the complete lift of the Levi-Civita connection ∇ in Mn. Thus (T (Mn), Π,Cg) is a

dualholomorphic B-manifold.

By similar devices, we can prove that (T (Mn), γ,Cg) is also a dualholomorphic B-manifold,

where Cg =Sg +Va (Va is a vertical lift of a symmetric tensor field a ∈ T 0
2 (Mn)) is a synectic lift

of g (see [2]).

Let, now, T 2(Mn) be a tangent bundle of order 2 over Mn. It is also well-known that there

exists an affinor field γ ∈ ℑ1
1(T

2(Mn)) which has components of the form

γ̂ =




0 0 0
E 0 0
0 E 0



 , γ̂3 = 0

with respect to the induced coordinates (xi, xn+i, x2n+i) in T 2(Mn), i.e., T 2(Mn) has a natural

integrable n-regular plural Π-structure Π = {I, γ̂, γ̂2}. The second lift of g, i.e., CCg =IIg (see

[10, p. 332]), is a B-metric with respect to γ̂ and CC∇Cg = 0 where CC∇ denotes the second

lift of the Levi-Civita connection ∇, which is necessarily the Levi-Civita connection determined

by CCg. Thus, (T 2(Mn), Π̂, CCg) is a pluralholomorphic B-manifold.

A locally decomposable Riemannian manifold M2k is a paraholomorphic B-manifold (see

[7]).

5 Curvature Tensors in a Hyperholomorphic B-Manifold

Let R be the Riemannian curvature tensor formed by g. If a torsion free connection ∇

preserving the structure (∇ϕ
α

= 0) satisfies the condition ∇ϕ
α

XY = ϕ
α
(∇XY ), then ∇ is called
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a hyperholomorphic connection (see [9, p. 185]). The purity of the curvature tensor field of a

connection ∇ is a necessary and sufficient condition for its holomorphy (see [3, 9]). Since the

Levi-Civita connection of hyperholomorphic B-manifold is hyperholomorphic (see [3, 9]), we see

that in a hyperholomorphic B-manifold, the Riemannian curvature tensor R of B-metric g is

pure.

Since the Riemannian curvature tensor R is pure, we can apply the Φ-operator to R. By

similar devices (see the proof of Theorem 3.1), we can prove that

(Φϕ
α

R)(X, Y1, Y2, Y3, Y4) = (∇ϕ
α

XR)(Y1, Y2, Y3, Y4) − (∇XR)(ϕ
α
Y1, Y2, Y3, Y4). (5.1)

Applying the Ricci’s identity to ϕ
α
, we get

ϕ
α
(R(X, Y )Z) = R(X, Y )ϕ

α
Z (5.2)

by virtue of ∇ϕ
α

= 0. Using (5.2) and applying the second Bianchi identity to (5.1), we get

(Φϕ
α

R)(X, Y1, Y2, Y3, Y4) = g((∇ϕ
α

XR)(Y1, Y2, Y3) − (∇XR)(ϕ
α
Y1, Y2, Y3), Y4)

= g((∇ϕ
α

XR)(Y1, Y2, Y3) − ϕ
α
((∇XR)(Y1, Y2, Y3)), Y4)

= g(−(∇Y1
R)(Y2, ϕ

α
X, Y3) − (∇Y2

R)(ϕ
α
X, Y1, Y3)

− ϕ
α
((∇XR)(Y1, Y2, Y3)), Y4). (5.3)

On the other hand, using ∇ϕ
α

= 0, we find

(∇Y2
R)(ϕ

α
X, Y1, Y3) = ∇Y2

(R(ϕ
α
X, Y1, Y3)) − R(∇Y2

(ϕ
α
X), Y1, Y3)

− R(ϕ
α
X,∇Y2

Y1, Y3) − R(ϕ
α
X, Y1,∇Y2

Y3)

= (∇Y2
ϕ
α
)(R(X, Y1, Y3)) + ϕ

α
(∇Y2

R(X, Y1, Y3))

− R((∇Y2
ϕ
α
)X + ϕ

α
(∇Y2

X), Y1, Y3)

− R(ϕ
α
X,∇Y2

Y1, Y3) − R(ϕ
α
X, Y1,∇Y2

Y3)

= ϕ
α
(∇Y2

R(X, Y1, Y3)) − ϕ
α
(R(∇Y2

X, Y1, Y3))

− ϕ
α
(R(X,∇Y2

Y1, Y3)) − ϕ
α
(R(X, Y1,∇Y2

Y3))

= ϕ
α
((∇Y2

R)(X, Y1, Y3)). (5.4)

Similarly,

(∇Y1
R)(Y2, ϕ

α
X, Y3) = ϕ

α
((∇Y1

R)(Y2, X, Y3)). (5.5)

Substituting (5.4) and (5.5) in (5.3) and using again the second Bianchi identity, we obtain

(Φϕ
α

R)(X, Y1, Y2, Y3, Y4) = g(−ϕ
α
((∇Y1

R)(Y2, X, Y3)) − ϕ
α
((∇Y2

R)(X, Y1, Y3))

− ϕ
α
((∇XR)(Y1, Y2, Y3)), Y4)

= −g(ϕ
α
(σ{(∇XR)(Y1, Y2, Y3)}), Y4) = 0,

where σ denotes the cyclic sum with respect to X , Y1 and Y2. Therefore, we have
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Theorem 5.1 In a hyperholomorphic B-manifold, the Riemannian curvature tensor field

is a pluralholomorphic tensor field.

Theorem 5.2 A necessary and sufficient condition for an exact 1-form df , f ∈ ℑ0
0(M2m)

to be hyperholomorphic, i.e., Φϕ
α

(df) = 0, is that an associated 1-form df ◦ ϕ
α

be closed, i.e.,

d(df ◦ ϕ
α
) = 0.

Proof Using

(dω)(X, Y ) =
1

2
{X(ω(Y )) − Y (ω(X)) − ω([X, Y ])}, X, Y ∈ ℑ1

0(M2n), ω ∈ ℑ0
1(M2n)

for (ω ◦ ϕ
α
)(X) = ω(ϕ

α
(X)), we have

(dω)(Y, ϕ
α
X) =

1

2
{Y (ω(ϕ

α
X)) − (ϕ

α
X)(ω(Y )) − ω([Y, ϕ

α
X ])}

=
1

2
{Y (ω(ϕ

α
X)) − (ϕ

α
X)(ω(Y )) + ω([ϕ

α
X, Y ])}

=
1

2
{Y (ω(ϕ

α
X))−(ϕ

α
X)(ω(Y ))+ω([ϕ

α
X, Y ]−ϕ

α
[X, Y ])+ω(ϕ

α
[X, Y ])}. (5.6)

From (2.1), we have

(Φϕ
α

ω)(X, Y ) = (ϕ
α
X)(ω(Y )) − X(ω(ϕ

α
Y )) + ω((LY ϕ

α
)(X))

= (ϕ
α
X)(ω(Y )) − X(ω(ϕ

α
Y )) − ω([ϕ

α
X, Y ] − ϕ

α
[X, Y ]). (5.7)

Substituting (5.7) into (5.6), we obtain

(dω)(Y, ϕ
α
X) =

1

2
{−(Φϕ

α

ω)(X, Y ) + Y (ω(ϕ
α
X)) − X(ω(ϕ

α
Y )) + ω(ϕ

α
[X, Y ])}

= −
1

2
{(Φϕ

α

ω)(X, Y ) + Y ((ω ◦ ϕ
α
)(X)) − X((ω ◦ ϕ

α
)(Y )) − (ω ◦ ϕ

α
)([Y, X ])}

= −
1

2
(Φϕ

α

ω)(X, Y ) + (d(ω ◦ ϕ
α
)(Y, X)).

From this we see that the equation Φϕ
α

ω = 0 is equivalent to

(d(ω ◦ ϕ
α
))(Y, X) = (dω)(Y, ϕ

α
X). (5.8)

For ω = df , equation (5.8) turns into the following simple form

(d(df ◦ ϕ
α
))(Y, X) = (d2f)(Y, ϕ

α
X) = 0, i.e., d(df ◦ ϕ

α
) = 0. (5.9)

Thus Theorem 5.2 is proved.

If there exists a function g in a hyperholomorphic B-manifold such that df ◦ ϕ
α

= dg
α

for a

function f , then we call f a hyperholomorphic function and g an associated function. If such a

function f is defined locally, then we call it a locally hyperholomorphic function.
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We notice that equation (5.9) is equivalent to df ◦ϕ
α

= dg
α

only locally. Hence, the condition

for f to be locally hyperholomorphic (ϕ
α

m
i ∂mf = ∂ig

α
) is also given by

(Φϕ
α

df)ij = ϕ
α

m
i ∂m∂jf − ∂i(ϕ

α

m
j ∂mf) + (∂jϕ

α

m
i )∂mf = 0.

Let (M2m, ϕ
α
, g) be a hyperholomorphic B-manifold with B-metric g. Then from Theorem

5.1 and (5.1), we find that in pluralholomorphic B-manifolds the covariant derivative of the

curvature tensor field ∇R is also pure. Now, the covariant derivative of the Ricci tensor Rji =

Rs
sji = gtsRtjis is pure in all its indices and hence

ϕ
α

s
t∇sRji = ϕ

α

s
j∇tRsi.

Contracting this equation with contravariant B-metric gji, we find

ϕ
α

s
t∇sR = gjiϕ

α

s
j∇tRsi = ∇t(G

α

siRsi) = ∇t

∗

R
α
, (5.10)

where R = gijRij is the scalar curvature of B-metric g and
∗

R
α

= gjiϕ
α

s
jRsi.

From (5.10), we have

Theorem 5.3 In a hyperholomorphic B-manifold, the scalar curvature R is a locally hy-

perholomorphic function.
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