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1 Introduction

We study the global structure of all positive solutions of the equation






∆u+ λf(u) = 0, in Bn,

u > 0, in Bn,

u = 0, on ∂Bn

(1.1)

and the perturbation equation





∆u+ λf(u+ ǫ) = 0, in Bn,

u > 0, in Bn,

u = 0, on ∂Bn,

(1.2)

where Bn is the unit ball in Rn with n ≥ 1, ǫ > 0 is a constant, and λ > 0 is treated as a

bifurcation parameter. By a positive solution, we mean a solution u ∈ C
2,α
0 (0 < α ≤ 1) such

that u > 0 in Bn.

We assume that

(A1) f ∈ C2[0,∞), f(0) = 0; and either

(F1) There exists c ∈ (0,∞) such that f(u) > 0 in (0, c), f(u) < 0 in (c,∞), or

(F2) f(u) > 0 in (0,∞).

Our goal of this paper is to study the exact multiplicity of positive solutions to (1.2). Our

results are for the spherical domain Bn, and we assume most of the time that the dimension n
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is any positive integer. It is known that determining the exact number of solutions of semilinear

equations is usually a very hard and challenging task, even for the one-dimensional case (see

[17]). Recently, through the work of P. Korman, T. Ouyang, Y. Li, J. Shi, J. Wei, etc., a

systematic bifurcation analysis method has been established to study exact two or less number

of solutions for certain equations defined on a unit ball (see [12–14, 18, 19, 21]). This method

not only tells us the exact number of solutions (no more than 2), but also tells us the shape

of the bifurcation diagram, such as monotone shape, ⊂-shape and ⊃-shape. Unfortunately,

it seems at present that the bifurcation analysis method does not work well for the problem

with more than two solutions. In other words, if the bifurcation curve has two or more turning

points, such as S-shaped curve, the bifurcation analysis method will encounter some difficulties.

For all that, S-shaped bifurcation was discussed by several mathematicians in the past thirty

years. The early results on exact S-shaped bifurcation are for the one-dimensional case (see

[3, 12, 22, 23]), by using the time-map method which does not work for n ≥ 2. We note that

P. Korman and Y. Li [12] used some bifurcation analysis combined with time-map technique.

Recently, by using perturbation and continuation method, Y. Du and Y. Lou [9] get an exact

S-shaped bifurcation result of perturbed Gelfand equation from combustion theory for n = 1, 2,

and completely solve a long standing conjecture. There are some further results in [8]. By using

the idea of [8] and [9], some exact S-shaped bifurcation results are given in [24] for a perturbed

equation coming from chemical reaction. We note that the equations discussed in [8, 9, 24] are

actual special cases of the problem (1.2) in this paper.

In this paper, we also need the following assumptions:

(A2) There exists α ∈ (0,∞) (α ∈ (0, c), if f(u) satisfies (F1)) such that f ′′(u) > 0 for

u < α, f ′′(u) < 0 for u > α;

(A3) There exists β ∈ (0,∞) (β ∈ (0, c), if f(u) satisfies (F1)) such that uf ′(u)− f(u) > 0

for 0 < u < β, uf ′(u) − f(u) < 0 for u > β;

Moreover, we define ρ = α− f(α)
f ′(α) , Kf(u) = uf ′(u)

f(u) , and we assume that

(A4) Kf (u) is nonincreasing in [0, ρ], and Kf (u) ≤ Kf(ρ) for all u ∈ [ρ, α].

Remark 1.1 From the assumptions above, it is easy to check that 0 < ρ < α < β. The

assumption (A3) is equivalent to the statement that f(u)
u

is increasing in (0, β) and decreasing

in (β,∞). If the assumption (A3) holds, then either f ′(∞) ≤ 0 or 0 < f ′(∞) < ∞, where

f ′(∞) = lim
u→∞

f(u)
u

.

The following exact multiplicity results of the perturbation problem (1.2) are the main

results of this paper and can be described by the diagrams in Figure 1.

Theorem 1.1 Suppose that f satisfies (A1)–(A4) and (F1) or (F2). Suppose that either

( i ) f ′(0) > 0, or

(ii) f ′(0) = 0, n ≤ 2, or n ≥ 3 and Kf (u) ≤ n+2
n−2 .

Then for all small ǫ > 0, the bifurcation diagram of (1.2) is exactly S-shaped. More precisely,

(1) If f satisfies (F1), then there exists 0 < λ∗ǫ < Λ∗
ǫ < ∞ such that (1.2) has exactly one

positive solution for λ < λ∗ǫ or λ > Λ∗
ǫ , has exactly two positive solutions for λ = λ∗ǫ or λ = Λ∗

ǫ

and has exactly three positive solutions for λ∗ǫ < λ < Λ∗
ǫ (see Figure 1(a)).
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(2) If f satisfies (F2), then there exists 0 < λ∗ǫ < Λ∗
ǫ <∞ and λ∞ > 0, and there are three

cases:

Case 1 λ∞ = ∞, (1.2) has exactly one positive solution for λ < λ∗ǫ or λ > Λ∗
ǫ , has

exactly two positive solutions for λ = λ∗ǫ or λ = Λ∗
ǫ and has exactly three positive solutions for

λ∗ǫ < λ < Λ∗
ǫ (see Figure 1(b)).

Case 2 Λ∗
ǫ < λ∞ <∞, (1.2) has exactly one positive solution for λ < λ∗ǫ or Λ∗

ǫ < λ < λ∞,

has exactly two positive solutions for λ = λ∗ǫ or λ = Λ∗
ǫ and has exactly three positive solutions

for λ∗ǫ < λ < Λ∗
ǫ (see Figure 1(c)).

Case 3 λ∞ < Λ∗
ǫ , (1.2) has exactly one positive solution for λ < λ∗ǫ or λ = Λ∗

ǫ , has exactly

two positive solutions for λ = λ∗ǫ or λ∞ < λ < Λ∗
ǫ and has exactly three positive solutions for

λ∗ǫ < λ < λ∞ (see Figure 1(d)).

-
λ

6u(0)

c− ǫ

λ∗ǫ Λ∗
ǫ

(a) f satisfying (F1)

-
λ

6u(0)

λ∗ǫ Λ∗
ǫ

(b) f satisfying (F2) with λ∞ = ∞

-
λ

6u(0)

λ∞λ∗ǫ Λ∗
ǫ

(c) f satisfying (F2)
with Λ∗

ǫ < λ∞ <∞

-
λ

6u(0)

λ∞λ∗ǫ Λ∗
ǫ

(d) f satisfying (F2)
with λ∞ < Λ∗

ǫ

Figure 1 Bifurcation Diagram of (1.2)

Furthermore, all positive solutions of (1.2) lie on a single smooth solution curve in the space

R+ × C2(Bn). If f satisfies (F1), we denote the upper branch by

{(λ, u∗) : λ∗ǫ < λ <∞},

or if f satisfies (F2), then we denote the upper branch by

{(λ, u∗) : λ∗ǫ < λ < λ∞},

and we denote the middle and lower branches by

{(λ, ũ) : λ∗ǫ < λ < Λ∗
ǫ},
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and

{(λ, u∗) : 0 < λ < Λ∗
ǫ},

respectively. Then λ 7→ u∗(λ, r) and λ 7→ u∗(λ, r) are strictly increasing for any fixed r < 1,

λ 7→ ũ(λ, r) is strictly decreasing, and

lim
λ→0+

u∗(λ, r) = 0, ∀ r < 1.

Moreover lim
λ→∞

u∗(λ, 0) = c− ǫ if f satisfies (F1), and lim
λ→λ∞

u∗(λ, 0) = ∞ if f satisfies (F2).

The rest of this paper is organized as follows. In Section 2, we will recall some preliminaries

of bifurcation approach and analyze the limiting equation (1.1). We give the proof of the main

theorem in Section 3. For clarity, the two long technical proofs for the positivity of the solutions

of the linearized equations are put to Sections 4 and 5.

2 Some Preliminaries and Exact Multiplicity Results of Problem (1.1)

We briefly review the basic setting for bifurcation approach to the set of positive solutions

of equation (1.1). The following bifurcation theorems (Lemmas 2.1–2.3) are well-known (see

[1, 5, 7, 20]).

Lemma 2.1 (see [5]) Let X and Y be Banach spaces. Let (λ, x) ∈ R × X and let F be

a continuously differentiable mapping of an open neighborhood of (λ, x) into Y . Let the null-

space N(Fx(λ, x)) = span{x0} be one-dimensional and codimR(Fx(λ, x)) = 1. And Fλ(λ, x) 6∈

R(Fx(λ, x)). If Z is a complement of span{x0} in X, then the solutions of F (λ, x) = F (λ, x)

near (λ, x) form a curve (λ(s), x(x)) = (λ+τ(s), x+sx0 +z(s)), where s 7→ (τ(s), z(s)) ∈ R×Z

is a continuously differentiable function near s = 0 and τ(0) = τ ′(0) = 0, z(0) = z′(0) = 0.

Lemma 2.2 (Bifurcation from the Trivial Solutions) If f(0) = 0 and f ′(0) > 0, λ0 = λ1

f ′(0) ,

then all positive solutions of (1.1) near (λ0, 0) have a form of (λ(s), sw + z(s)) for s ∈ (0, δ)

and some δ > 0, and w is a positive solution of
{

∆w + λ1w = 0, in Bn,

w = 0, on ∂Bn,
(2.1)

and λ(0) = λ0, z(0) = z′(0) = 0.

Lemma 2.3 (Bifurcation from Infinity) Let f ′(∞) = lim
u→∞

f(u)
u

∈ (0,∞) and λ∞ = λ1

f ′(∞) .

Then all positive solutions of (1.1) near (λ∞,∞) has a form of (λ(s), sw+ z(s)) for s ∈ (δ,∞)

and some δ > 0, where w is a positive solution of (2.1), lim
s→∞

λ(s) = λ∞, and ‖z(s)‖C2,α(Bn) =

o(s) as s→ ∞.

The next remarkable results regarding (1.1) are due to B. Gidas, W.-M. Ni and L. Nirenberg

[10], and C-S. Lin and W-M. Ni [16].

Lemma 2.4 (1) If f is locally Lipschitz continuous in [0,∞), then all positive solutions of

(1.1) are radially symmetric, that is, u(x) = u(r), r = |x|, and satisfy
{
u′′ + n−1

r
u′ + λf(u) = 0, r ∈ (0, 1),

u′(0) = u(1) = 0.
(2.2)
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Moreover, u′(r) < 0 for all r ∈ (0, 1], and hence u(0) = max
0≤r≤1

u(r).

(2) If u is a positive solution to (1.1), and w is a solution of the linearized problem (if it

exists)

{
∆w + λf ′(u)w = 0, in Bn,

w = 0, on ∂Bn,
(2.3)

then w is also radially symmetric and satisfies

{
w′′ + n−1

r
w′ + λf ′(u)w = 0, r ∈ (0, 1),

w′(0) = w(1) = 0.
(2.4)

The next lemma plays a crucial rule in this paper.

Lemma 2.5 (1) For any d > 0, there is at most one λd > 0 such that (1.1) has a positive

solution u( · ) with λ = λd and u(0) = d.

(2) Let T = {d > 0 : (1.1) has a positive solution with u(0) = d}. Then T is open; λ(d) =

λd is a well-defined continuous function from T to R+.

Lemma 2.5 is well-known (see for example [4, 11, 18, 19]). A simple proof of the first part

of the lemma can be found in [9].

Because of Lemma 2.5, we call R+ × R+ = {(λ, d) : λ > 0, d > 0} the phase space, and

{(λ(d), d) : d ∈ T } the bifurcation diagram. A solution (λ, u) of (1.1) is called a degenerate

solution if (2.3) has a nontrivial solution. If (λ∗, u∗) is degenerate, then the solution set of (1.1)

near (λ∗, u∗) could be extremely complicated. However, if one can show that any nontrivial

solution w of (2.3) does not change sign in Bn, then it is easy to verify that the conditions of

Lemma 2.1 are satisfied, and hence, by this theorem, near the degenerate solution (λ∗, u∗), the

solutions of (1.1) form a smooth curve which is expressed in the form

(λ(s), u(s)) = (λ∗ + τ(s), u∗ + sw + z(s)), (2.5)

where s 7→ (τ(s), z(s)) ∈ R × Z is a smooth function near s = 0 with τ(0) = τ ′(0) = 0, z(0) =

z′(0) = 0, where Z is the complement of span{w} in X , and w is the positive solution of (2.3),

which is unique if normalized.

From the expression (2.5), we see that the solution curve makes a turn to the left at (λ∗, u∗)

if τ ′′(0) < 0, and it turns to the right if τ ′′(0) > 0. Substituting the expression (2.5) to (1.1),

differentiating (1.1) twice, and evaluating at s = 0, we have

∆uss + λf ′(u)uss + 2λ′f ′(u)us + λf ′′(u)u2
s + λ′′f(u) = 0,

∆uss + λ∗f ′(u)uss + λ∗f ′′(u)w2 + τ ′′(0)f(u) = 0.
(2.6)

Multiplying (2.6) by w, (2.3) by uss, subtracting and integrating, we obtain

τ ′′(0) = −λ∗
∫

Bn f
′′(u0)w

3dx∫
Bn f(u0)wdx

. (2.7)

The following lemma only needs the assumptions (A1) and (A2).
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Lemma 2.6 Suppose that f satisfies (A1) and (A2), Ω = Bn, and (λ∗, u∗) is a degenerate

solution of (1.1), u∗ 6≡ 0, with w being the corresponding solution of linearized problem (2.3).

Suppose that w > 0 in Bn. Then

(1) All solutions of (1.1) near (λ∗, u∗) have a form of (λ∗ + τ(s), u∗ + sw + z(s)), with

τ(0) = τ ′(0) = 0, z(0) = z′(0) = 0.

(2) The solution curve is C2 near (λ∗, u∗), and τ ′′(0) > 0.

Part 1 of the lemma is just the consequence of Lemma 2.1 and the proof of part 2 can be

found in [18] and the result there is more general, so we omit the proof.

Lemma 2.7 Suppose that f satisfies (A1)–(A4) and (F1) or (F2). If u is a degenerate

positive solution of (1.1) and w is the corresponding solution of (2.3), then w does not change

sign in Bn

The proof of Lemma 2.7 is now becoming standard but rather long and technical. We put

the proof, which has some new technique in it, in Section 4 for interested readers.

For f satisfying (A1)–(A3) and (F1) or (F2), we define two numbers λ0 and λ∞ as

λ0 =






λ1

f ′(0)
, if f ′(0) > 0,

∞, if f ′(0) = 0,
(2.8)

λ∞ =




∞, if f ′(∞) ≤ 0,
λ1

f ′(∞)
, if 0 < f ′(∞) <∞.

(2.9)

Note that λ∞ = ∞ if f satisfies (F1). By Lemmas 2.2 and 2.3, λ0 and λ∞ are the bifurcation

points of (1.1) when they are finite.

Now we state the exact multiplicity and bifurcation results for the equation (1.1).

Theorem 2.1 Suppose that f ′(0) > 0 and f satisfies (A1)–(A4) and (F1) or (F2). Then

there exist 0 < λ∗ <∞, 0 < λ0 <∞ and 0 < λ∞ ≤ ∞ with λ∗ < min{λ0, λ∞} such that (1.1)

has no positive solution for λ < λ∗ or λ ≥ max{λ0, λ∞}, exactly one positive solution for λ = λ∗

or min{λ0, λ∞} ≤ λ < max{λ0, λ∞}, exactly two positive solutions for λ∗ < λ < min{λ0, λ∞}.

Furthermore, all positive solutions of (1.1) lie on a single smooth solution curve in the space

R+ × C2(Bn), which for λ > λ∗ and near λ∗ has two branches denoted by uλ (the upper

branch) and uλ (the lower branch). uλ continues to the right up to (∞, c) if f satisfies (F1) and

to (λ∞,∞) if f satisfies (F2); uλ continues to the right down to (λ0, 0), where a bifurcation

from the trivial solution occurs (see Figure 2).

Proof The proof will be a standard bifurcation analysis combined with some techniques

used in [8, 9].

Step 1 Claim The problem (1.1) has no positive solution when λ > 0 is small.

Indeed under our assumptions (A2) and (A3), there is a constant a > 0 such that f(u) ≤ au

for all u > 0. Then for any solution (λ, u) of (1.1)

λ1

∫

Bn

u2dx ≤

∫

Bn

|∇u|2dx =

∫

Bn

uλf(u)dx ≤ λa

∫

Bn

u2dx,
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and the claim follows.

-
λ

6u(0)

c

λ∗ λ0

(a) f satisfying (F1)

-
λ

6u(0)

λ∗ λ0

(b) f satisfying (F2) with λ∞ = ∞

-
λ

6u(0)

λ∞λ∗ λ0

(c) f satisfying (F2)
with λ0 < λ∞ <∞

-
λ

6u(0)

λ∞λ∗ λ0

(d) f satisfying (F2)
with λ∞ < λ0

Figure 2 Bifurcation Diagram of (1.2) with f ′(0) > 0

Step 2 Let (λ(s), u(s)) be the bifurcation curve from the trivial solution (λ0, 0) described in

Lemma 2.2. We claim that the bifurcation curve goes to the left near (λ0, 0), that is, λ(s) < λ0

when s > 0 is small.

By (A3), f(u)
u

is strictly increasing for u ∈ (0, β], and so f(u)
u

> f ′(0) for 0 < u ≤ β. Since

{
∆u(s) + λ(s)f(u(s)) = 0, in Bn,

u(s) = 0, on ∂Bn,
(2.10)

by the standard regularity theory of elliptic equation, u(s) ∈ C2,α(Bn), and ‖u(s)‖C2,α(Bn) ≤ β

for s > 0 small. It follows that f(u(s))
u(s) > f ′(0) for s > 0 small.

Now let ϕ be the normalized positive eigenfunction corresponding to λ1 = λ0f
′(0). Then

{
∆ϕ+ λ0f

′(0)ϕ = 0, in Bn,

ϕ = 0, on ∂Bn.
(2.11)

By integration to (2.10) and (2.11), we get

(λ(s) − λ0)f
′(0)

∫

Bn

u(s)ϕdx+ λ(s)

∫

Bn

[f(u(s))

u(s)
− f ′(0)

]
u(s)ϕdx = 0. (2.12)

For s > 0 small, the second integral is positive, and hence λ(s) < λ0.

Step 3 Claim If f satisfies (F1), (1.1) has a positive solution for large λ.
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Choose ψ ∈ C∞
0 (Bn), ψ ≥ 0, ψ 6≡ 0, and ‖ψ‖∞ small such that the unique solution v of the

problem

{
∆v + ψ = 0, in Bn,

v = 0, on ∂Bn,

satisfies ‖v‖∞ < c, by standard prior estimate. Since v > 0 in Bn and ψ has a compact support

in Bn, it is easy to see that v is a lower solution of (1.1) for large λ. It is also evident that

v ≡ c is an upper solution of (1.1). It follows from the lower and supper solution method that

(1.1) has a positive solution for large λ.

Step 4 Claim (i) If f satisfies (F2) with f ′(∞) = 0, then (1.1) has positive solutions for

large λ; (ii) If f satisfies (F2) with f ′(∞) > 0, then (1.1) has no positive solutions for large λ.

Claim (i) is well-known (see, for example, [1]).

If f satisfies (F2) with f ′(∞) > 0, since we also have f ′(0) > 0, there exists a constant b > 0,

such that f(u) ≥ bu for all u ≥ 0. Let ϕ be the normalized positive eigenfunction corresponding

to the first eigenvalue λ1 of −∆. Then for any solution (λ, u) of (1.1)

λ1

∫

Bn

uϕdx =

∫

Bn

(−∆u)ϕdx =

∫

Bn

λf(u)ϕdx ≥ λb

∫

Bn

uϕdx,

and the claim (ii) follows.

Step 5 Claim If f satisfies (F2) with f ′(∞) > 0, then the bifurcation curve (λ(s), u(s))

from infinity are on the left of (λ∞,∞) when |λ− λ∞| is small.

Let (λ(s), u(s)) be the bifurcation curve obtained by Lemma 2.3. Similarly to (2.12), we get

(λ(s) − λ∞)f ′(∞)

∫

Bn

u(s)ϕdx+ λ(s)

∫

Bn

[f(u(s)) − f ′(∞)u(s)]ϕdx = 0. (2.13)

Let g(u) = f(u) − uf ′(u), and M be a constant such that M > max{α, β}. By (A2) and

(A3), g(u) > 0, f ′′(u) < 0 for u ≥M , and hence g′(u) = −uf ′′(u) > 0,
(

f(u)
u

)′
= − g(u)

u2 < 0 for

u ≥ M . It follows that g(u) > g(M). On the other hand, since f ′′(u) < 0 for u ≥ M , we have

f ′(∞) = lim
u→∞

f ′(u) < f ′(u) for u ≥M . Hence for u ≥M

f(u) − f ′(∞)u ≥ f(u) − uf ′(u) ≥ g(M) > 0. (2.14)

Since u(s)(x) → ∞ (s→ ∞) almost everywhere in Bn, by the Fatou’s Lemma we have

lim inf
s→∞

∫

Bn

[f(u(s)) − f ′(∞)u(s)]ϕdx ≥

∫

Bn

lim inf
s→∞

[f(u(s)) − f ′(∞)u(s)]ϕdx

≥ g(M)

∫

Bn

ϕdx > 0. (2.15)

It follows from (2.13) that λ(s) < λ∞ when s is large.

Step 6 By Step 2, the Implicit Function Theorem ensures that we can continue the bi-

furcation curve originating from (λ0, 0) in the direction of decreasing λ, and we denote the

solution by uλ. Step 1 tells us that the process of continuation towards smaller values of λ for
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the positive solution curve must stop at some 0 < λ∗ < λ0, and there are only three possibilities

for λ∗:

(a) ‖uλn
‖∞ goes to infinity for some λn → λ∗ + 0;

(b) ‖uλn
‖∞ goes to 0 for some λn → λ∗ + 0;

(c) (λ∗, uλ∗) is a degenerate solution.

However, (b) cannot occur by Lemma 2.5. If (a) occurs, then again by Lemma 2.5, all the

positive solutions (λ, u) of (1.1) are on the left of (λ0, 0), this is impossible for f satisfying

(F1) or (F2) with f ′(∞) = 0, by Steps 3 and 4. (Note that (a) can also be easily ruled out

by Maximal Principle for f satisfying (F1).) If (a) occurs and f satisfies (F2) with f ′(∞) > 0,

then denoting wn = un

‖un‖∞

, we have

∆wn + λn

f(un)

un

wn = 0.

By Sobolev Imbedding Theorems and standard regularity of elliptic equation, it is easy to show

that there exists w ∈ C2,α(Bn), w > 0 in Bn, such that

∆w + λ∗f ′(∞)w = 0,

which implies that λ∗ = λ1

f ′(∞) = λ∞. However, by Step 5, all positive solutions (λ, u) are on

the left side of (λ∞,∞), a contradiction. So in a word, (a) can not occur either. Hence (λ∗, uλ∗)

is a degenerate solution.

Step 7 Let u∗ = uλ∗ . Assume that w is the solution of corresponding linearized problem

{
∆w + λ∗f ′(u∗)w = 0, in Bn,

w = 0, on ∂Bn.

Then w can be chosen positive in Bn by Lemma 2.7. It follows from Lemma 2.6 that τ ′′(0) > 0,

so the solution curve “turn right” at (λ∗, u∗). Denote the lower branch still by uλ (with s < 0)

and upper branch by uλ (with s > 0) respectively for λ > λ∗.

As long as (λ, uλ) are non-degenerate, the Implicit Function Theorem ensures that we can

continue to extend the upper branch uλ in the direction of increasing λ. We still denote the

extensions by uλ. This process of continuation towards larger values of λ will not encounter

any other degenerate solution. This is because, if, say (λ, uλ) becomes degenerate at λ = λ#,

then Lemma 2.6 tells us that all the solutions near (λ#, uλ#

) must lie to the right-hand side of

it, which is a contradiction.

By Lemma 2.5, we see that the real functions λ 7→ uλ(0) and λ 7→ uλ(0) are strictly

increasing and decreasing, respectively, and uλ(0) > u∗(0) > uλ(0).

Step 8 Detailed analysis of the upper branch uλ.

By the discussion in Step 7, the upper branch is unbounded and there are only two possi-

bilities:

( I ) uλ stops at some finite λ# > λ∗ such that lim
λ→λ#−0

uλ(0) = ∞;

(II) uλ extends to all λ > λ∗.
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If (I) occurs, then by Lemma 2.5, all the solutions (λ, u) are contained in the bifurcation

curve uλ and uλ, and hence λ is bounded. This is impossible for the cases that f satisfies (F1)

or (F2) with f ′(∞) = 0, by Step 3 and Step 4(i).

Hence, if f satisfies (F1) or (F2) with f ′(∞) = 0, then (II) must occur. Since uλ(0) is

increasing in λ, we have

lim
λ→∞

uλ = ζ ∈ (λ∗,∞].

We claim that ζ = c for f satisfying (F1) and ζ = ∞ for f satisfying (F2) with f ′(∞) = 0.

In fact we will show a little more than that. A similar argument in the proof of Lemma 3.4 in

[14] shows that ∂uλ(r)
∂λ

> 0 for all r ∈ [0, 1) and λ > λ0. Hence λ 7→ uλ(r) is strictly increasing

and uλ(r) > u∗(r).

If f satisfies (F1), the maximum principle tells us that uλ(r) ≤ c. Hence there is a bounded

function u(r) ≤ c such that lim
λ→∞

uλ(r) = u(r). Let φ be the unique solution of the equation

{
∆φ+ 1 = 0, in Bn,

φ = 0, on ∂Bn.
(2.16)

Then we have
∫ 1

0

uλ(r)dr =

∫ 1

0

(−∆uλ(r))φ(r)dr = λ

∫ 1

0

f(uλ(r))φ(r)dr. (2.17)

Let λ → ∞. Then it follows from (2.17) that f(u(r)) ≡ 0, ∀ r ∈ [0, 1). Hence u(r) ≡ c, ∀ r ∈

[0, 1), and then ζ = c.

Now suppose that f satisfies (F2) with f ′(∞) = 0. If ζ <∞, by letting lim
λ→∞

uλ(r) = u(r),

we get (2.17) as the prior paragraph, and then f(ζ) = 0, a contradiction. Hence ζ = ∞ for f

satisfying (F2) with f ′(∞) = 0.

If f satisfies (F2) with f ′(∞) > 0, then by Step 4(ii), (II) can not occur, and hence (I)

occurs. A similar argument as in the last part of Step 6 shows that λ# = λ∞.

Step 9 Concluding of the proof.

We still need to show that all solutions are contained in the above solution curve. Suppose

that there is a positive solution (λ0, u0) not lying on the above solution curve. Then by using

a similar continuation argument as above, we obtain a second solution curve (λ, ũ) containing

(λ0, u0). The above argument shows that the curve (λ, ũ) is “ ⊂ ”-shaped, and on its upper

branch, ũ(0) → ∞ or c, as λ→ ∞ or λ∞. This implies, however, that for any large C > 0 (or

C < c sufficiently close to c), there are at last two solutions uλ and ũ with uλ(0) = ũ(0) = C,

contradicting Lemma 2.5.

Theorem 2.2 Suppose that f ′(0) = 0 and f satisfies (A1)–(A4) and (F1) or (F2). Then

there exist λ∗ > 0 and λ∞ > 0 such that (1.1) has no solution for λ < λ∗, has exactly one

solution for λ ≥ λ∞ (when λ∞ is finite) or λ = λ∗, has exactly two solutions for λ∗ < λ < λ∞.

Furthermore, all positive solutions of (1.1) lie on a single smooth solution curve in the space

R+ × C2(Bn), which for λ > λ∗ has two branches denoted by uλ (the upper branch) and uλ

(the lower branch). uλ continues to the right up to (∞, c) if f satisfies (F1) and to (λ∞,∞)

if f satisfies (F2); uλ continues to the right down to (∞, θ), θ = 0 if n ≤ 2 or n ≥ 3 and

Kf(u) ≤ n+2
n−2 , θ > 0 if n ≥ 3 and Kf (u) > n+2

n−2 (see Figure 3).



S-Shaped Bifurcation Curves 651

-
λ

6u(0)

θ
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λ∗

(a) f satisfyinf (F1)

-
λ

6u(0)
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λ∗

(b) f satisfying (F2) with λ∞ = ∞

-
λ

6u(0)

θ

λ∞λ∗

(c) f satisfying (F2) with λ∞ = ∞

Figure 3 Bifurcation Diagram of (1.1) with f ′(0) = 0

Proof The proof is just a modification of that of last theorem. Now since f ′(0) = 0,

λ0 = ∞, there is no any bifurcation curve start off from the trivial solution, that is to say, Step

2 in the proof of Theorem 2.1 does not hold now. But it is easy to see that all the conclusions

in the other steps are still true. By Steps 3–5, there exists a positive solution (λ, u). If (λ, u) is

a non-degenerate solution, then the Implicit Function Theorem implies that there is a solution

curve (λ, u(λ)) near (λ, u). We continue the solution curve in the direction of decreasing λ,

still by using the Implicit Function Theorem. Step 1 tells us that the process of continuation

towards smaller values of λ for the positive solution curve must stop at some 0 < λ∗ < λ0, and

the same argument as in the Step 6 tells us that (λ∗, u(λ∗)) is a degenerate solution. As in the

argument in Step 7, the solution curve turns left at (λ∗, u(λ∗)). Denote the lower branch by uλ

and upper branch by uλ respectively for λ > λ∗. As long as (λ, uλ) or (λ, uλ) is non-degenerate,

we continue the solution curve in the direction of increasing λ, and the extended branches are

still denoted by uλ and uλ, respectively. The upper branch’s behavior is just the same as in

Theorem 2.1 (see Step 8). Now we give a analysis for the lower branch (λ, uλ).

As we extend the lower branch (λ, uλ) towards larger value of λ, we will not meet any other

degenerate solution. This is because at any degenerate solution (λ, uλ), the solution curve turns

right. That is impossible. By Lemma 2.5, uλ(0) is strictly decreasing for λ > λ∗. So the lower

branch may be stopped at some finite λ only when uλn
(0) → 0 for some λn → λ − 0. This

cannot occur, as otherwise, denoting un = uλn
, we have

0 = λ1

(
− ∆ −

λnf(un)

un

)
→ λ1(−∆ − λ∗f ′(0)) = λ1(−∆) > 0,
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a contradiction. Therefore the lower branch of solutions can extend to λ = ∞. Let

lim
λ→∞

uλ(0) = θ ∈ [0, u0(0)).

The conclusion that θ = 0 if n ≤ 2, or n ≥ 3 and Kf (u) ≤ n+2
n−2 , and θ > 0 if n ≥ 3 and

Kf(u) > n+2
n−2 follows from the Proposition 6.6 in [19].

The same argument in Step 9 of the proof of last theroem shows that all solutions are

contained in the solution curve {(λ, uλ) ∪ (λ, uλ) ∪ (λ∗, u(λ∗)) : λ > λ∗}.

3 Proof of Theorem 1.1

Let us first observe the following simple relationship between (1.1) and (1.2).

If (λ, u) is a positive solution of (1.1), and u(0) > ǫ > 0, then we can find a unique a ∈ (0, 1)

such that u(a) = ǫ. Define

ν = ν(η, r) = u(λ, ar) − ǫ. (3.1)

Clearly

{
ν′′ + n−1

r
ν′ + ηf(ν + ǫ) = 0, r ∈ (0, 1),

ν′(0) = ν(1) = 0,

where η = a2λ. That is, (η, ν) is a positive solution of (1.2).

This relationship between (1.1) and (1.2) will be frequently used in this section. The fol-

lowing result will play a central role in this section.

Lemma 3.1 If ν coming from (3.1) is a degenerate positive solution of (1.2) and w is a

nontrivial solution to
{

∆w + λf ′(u+ ǫ)w = 0, in Bn,

w = 0, on ∂Bn,
(3.2)

where ǫ > 0, then w does not change sign in Bn.

The proof of Lemma 3.1 is very long and also needs some other knowledge. Hence we put

it in Section 5.

Using Lemma 3.1, we obtain a variant of Lemma 2.6, whose obvious proof we omit.

Lemma 3.2 Suppose that u0 is a degenerate solution of (1.2) with λ = λ∗. Then all positive

solutions (λ, u) of (1.2) that are near (λ∗, u0) in R+×C(Bn) lie on a smooth curve represented

by

(λ, u) = (λ∗ + τ(s), u0 + sw + z(s)) with s small,

where z(0) = z′(0) = 0, τ(0) = τ ′(0) = 0, and w is the positive eigenfunction given in Lemma

3.1. Moreover,

τ ′′(0) = −λ∗
∫

Bn f
′′(u0 + ǫ)w3dx∫

Bn f(u0 + ǫ)wdx
. (3.3)
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Next we will give the proof of Theorem 1.1.

Proof of Theorem 1.1 By Theorem 2.1 and Theorem 2.2, the solution curve of (1.1)

is “ ⊂ ”-shaped with exactly one turning point at (λ∗, u0), where u0 = uλ∗ = uλ∗

. Denote

ξ0 = u0(0) and denote the solution curve of (1.2) by Γ(ǫ).

Step 1 About Γ(ǫ).

Since ǫ > 0 and sufficiently small, we have ǫ ∈ (0, ξ0). Then for any λ ≥ λ∗, we can find

aλ ∈ (0, 1) such that uλ(aλ) = ǫ. Moreover, λ 7→ aλ is strictly increasing and

lim
λ→∞

aλ = 1.

As before, define

ηλ = (aλ)2λ

and

νλ = νλ(η, r) = uλ(aλr) − ǫ, r ∈ (0, 1).

Then

Γǫ = {(ηλ, νλ) : λ∗ ≤ λ < p},

where λ∗ < p ≤ ∞ (for convenience, we give a constant p specified later since f satisfies different

conditions), gives a smooth solution curve of (1.2). Since aλ is increasing with λ, it follows that

ηλ is strictly increasing with λ. Therefore, Γǫ is a monotone curve connecting (ηλ∗

, νλ∗

) and

infinity; this will be explained in detail in the next step. Furthermore, since ǫ < ξ0, we can find

a unique λǫ > λ∗ such that

uλǫ
(0) = ǫ.

By Theorems 2.1 and 2.2, we see that λǫ increases as ǫ decreases and λǫ → ∞ as ǫ→ 0.

For any λ ∈ [λ∗, λǫ), we can find a unique aλ ∈ (0, 1) such that

uλ(aλ) = ǫ.

Clearly, for any fixed λ ≥ λ∗,

lim
ǫ→0

aλ(ǫ) = 1.

Now we define

ηλ = (aλ)2λ

and

νλ = νλ(η, r) = uλ(aλr) − ǫ, r ∈ (0, 1),
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and find that

Γǫ = {(ηλ, νλ) : λ∗ ≤ λ < λǫ}

gives another piece of smooth solution curve to (1.2). Moreover, Γǫ connects the end point

(ηλ∗

, νλ∗

) of Γǫ (when λ = λ∗) and (0, 0) (when λ→ λǫ − 0). Thus

Γ(ǫ) = Γǫ ∪ Γǫ

gives a smooth curve for (1.2) connecting (0, 0) and infinity. By Lemma 2.5, we know that it

contains all the positive solutions of (1.2).

Step 2 About Γǫ.

If f(u) satisfies (F1), then

Γǫ = {(ηλ, νλ) : λ∗ ≤ λ <∞}

gives a smooth solution curve of (1.2) and connects (ηλ∗

, νλ∗

) (when λ = λ∗) and (∞, c − ǫ)

(when λ→ ∞).

If f(u) satisfies (F2), then

Γǫ = {(ηλ, νλ) : λ∗ ≤ λ < λ∞}

gives a smooth solution curve of (1.2) and connects (ηλ∗

, νλ∗

) (when λ = λ∗) and (λ∞,∞)

(when λ→ λ∞).

Step 3 About Γǫ.

By (A2), we have known that f ′′(u) > 0 for u ∈ (0, α). We fix some ξ1 ∈ (0, α) and suppose

ǫ < ǫ1 ≡ α− ξ1.

Then clearly f ′′(u+ ǫ) > 0 for u ∈ (0, ξ1).

Now we choose λξ1
> λ∗ such that

uλ(0) < ξ1, when λ ≥ λξ1
.

By shrinking ǫ1 we may assume that λξ1
< λǫ for any ǫ ∈ (0, ǫ1). We can now divide Γǫ into

two parts:

Γ1
ǫ = {(ηλ, νλ) : λξ1

≤ λ < λǫ}, Γ2
ǫ = {(ηλ, νλ) : λ∗ ≤ λ ≤ λξ1

}.

We first analyze the shape of Γ1
ǫ . Define

Λ∗
ǫ = sup

λ∈[λξ1
,λǫ)

ηλ.

One easily shows that there exists ǫ2 ∈ (0, ǫ1] such that when ǫ ∈ (0, ǫ2),

Λ∗
ǫ is achieved at some λ∗ ∈ (λξ1

, λǫ) and lim
ǫ→∞

Λ∗
ǫ = ∞.

By the Implicit Function Theorem, (ηλ∗
, νλ∗

) must be a degenerate solution of (1.2). Then by

Lemma 3.2, (3.3), and our choice of ξ1, the solution of (1.2) near (ηλ∗
, νλ∗

) turns to the left.
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Therefore, we have an upper branch and a lower branch of positive solutions starting from this

point, and both branches can be continued towards smaller values of λ. The lower branch can

be continued to reach (0, 0), because (1) we cannot meet a degenerate solution in the way of

continuation due to Lemma 3.2 and u(0) < ξ1 on Γ1
ǫ , and (2) the branch goes along Γ1

ǫ . For

the same reason, the upper branch can be continued until it reaches (ηλξ1
, νλξ1

). This implies

that Γ1
ǫ is exactly “ ⊃ ”-shaped.

Next we analyze the shape of Γ2
ǫ . It is more convenient for our discussion if we consider a

bigger piece of solution curve

Γ3
ǫ = Γ2

ǫ ∪ {(ηλ, νλ) : λ∗ ≤ λ ≤ λξ1
},

which contains part of Γǫ. We observe that any (λ, u) ∈ Γ3
ǫ satisfies

0 < λ∗ǫ ≤ λ ≤ λξ1
, uλξ1

(0) − ǫ ≤ ‖u‖∞ = u(0) ≤ uλξ1 (0) − ǫ, (3.4)

where

λ∗ǫ = inf{λ : (λ, u) ∈ Γ3
ǫ}.

It is easy to find that λ∗ǫ is achieved at some ηλ′ , λ′ ∈ [λ∗, λξ1
). Therefore (λ∗ǫ , vλ′) must be a

degenerate solution of (1.2). Clearly

λ∗ǫ ≤ ηλ∗ = (aλ∗(ǫ))2λ∗ < λ∗.

On the other hand, it is easy to see that aλ(ǫ) → 1 as ǫ→ 0 uniformly for λ ∈ [λ∗, λξ1
]. Hence

lim
ǫ→0

λ∗ǫ = lim
ǫ→0

min{(aλ(ǫ))2λ : λ∗ ≤ λξ1
} = λ∗.

We know from the discussion above that Γ3
ǫ contains at least one degenerate solution

(λ∗, νλ′). If we can show that there exists ǫ3 ∈ (0, ǫ2) such that whenever ǫ ∈ (0, ǫ3), any

degenerate solution on Γ3
ǫ must make τ ′′(0) > 0 in (3.3) of Lemma 3.2, then a continuation

argument as before shows that Γ3
ǫ contains exactly one degenerate solution at λ = λ∗ǫ and the

curve makes a turn to right at this point. Hence Γ3
ǫ must be “ ⊂ ”-shaped. This tells us that the

entire solution curve Γ(ǫ) is exactly S-shaped with two turning points at λ = λ∗ǫ and λ = Λ∗
ǫ ,

respectively. Clearly, this would finish the proof of Theorem 1.1.

It remains to show that there exists ǫ3 ∈ (0, ǫ2) such that any degenerate solution on Γ3
ǫ

must make τ ′′(0) > 0 in (3.3) of Lemma 3.2 as long as ǫ ∈ (0, ǫ3). We argue indirectly. Suppose

that for some ǫk → 0, we can find a degenerate solution (λk, λk) ∈ Γ3
ǫk

such that

τ ′′k (0) = −λk

∫
Bn f

′′(uk + ǫk)w3
kdx∫

Bn f(uk + ǫk)wkdx
≤ 0,

where wk is the positive eigenfunction given in Lemma 3.1 when (λ, u) = (λk, uk). We may

assume that ‖wk‖∞ = 1.

By (3.4), we may assume that λk → λ0 ∈ [λ∗, λξ1
]. The second part of (3.4) implies

that ‖f(uk + ǫk)‖∞ is uniformly bounded. Therefore, by the equation for uk and a standard
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regularity and compactness argument, uk has a convergent subsequence in C1. We may assume

uk → u0 in C1. Moreover, from
{

∆wk + λkf ′(uk + ǫk)wk = 0, in Bn,

wk = 0, on ∂Bn,

we can use a similar regularity and compactness argument to obtain a C1 convergent subse-

quence of wk. We may assume wk → w0. Then we easily deduce




∆u0 + λ0f(u0) = 0, in Bn,

u0 ≥ 0, u0 6= 0, in Bn,

u0 = 0, on ∂Bn,

and




∆w0 + λ0f ′(u0)w0 = 0, in Bn,

w0 ≥ 0, ‖w0‖∞ = 1, in Bn,

w0 = 0, on ∂Bn.

This implies that (λ0, u0) is a degenerate positive solution of (1.1) and w0 is the corresponding

positive eigenfunction. By Theorem 2.1 and Theorem 2.2, (1.1) has a unique degenerate positive

solution which is (λ∗, u0), and by Lemma 2.6 and (2.7),

τ ′′(0) = −λ∗
∫

Bn f
′′(u0)w

3dx∫
Bn f(u0)wdx

> 0.

Therefore, we must have λk → λ∗, uk → u0 and w0 = w (note that positive eigenfunction is

unique if it is normalized). Then we deduce, however,

0 ≥ τ ′′k (0) = −λk

∫
Bn f

′′(uk + ǫk)w3
kdx∫

Bn f(uk + ǫk)wkdx
→ τ ′′(0) = −λ∗

∫
Bn f

′′(u0)w
3dx∫

Bn f(u0)wdx
> 0.

This contradiction finishes our proof.

4 Proof of Lemma 2.7

Suppose that u is a degenerate positive solution of (1.1) and w is a nontrivial solution to

the linearized equation (2.3). By Lemma 2.4, u and w are radially symmetric on Ω and satisfy

(2.2) and (2.4). We rewrite (2.2) and (2.4) in the form
{

(rn−1u′)′ + λrn−1f(u) = 0, r ∈ (0, 1),

u′(0) = u(1) = 0;
(4.1)

{
(rn−1w′)′ + λrn−1f ′(u)w = 0, r ∈ (0, 1),

w′(0) = w(1) = 0.
(4.2)

By the Harnack inequality (or by the well-known uniqueness result for the second order differ-

ential equation), w(0) 6= 0.

Proof of Lemma 2.7 Without loss of generality, we assume that w(0) > 0. If u(0) > β,

since u(r) is strictly decreasing for r in [0, 1], there exists uniquely 0 < r1 < r2 < 1 such that
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u(r1) = β, u(r2) = ρ (remember that 0 < ρ < α < β, see Remark 1.1). If u(0) ≤ β, then we let

r1 = 0, and if u(0) ≤ ρ, then we let r1 = r2 = 0. For clearness, we divide the proof into several

steps in the following.

Step 1 Firstly, we show that w has no zeros on [0, r2].

Let φ(r) = u(r) − ρ. Then

(rn−1φ′)′ + λrn−1f ′(u)φ = λrn−1[f ′(u(r))(u(r) − ρ) − f(u(r))]. (4.3)

Let p(u) = (u− ρ)f ′(u) − f(u). Then we have

p′(u) = (u− ρ)f ′′(u),

which is negative on (0, ρ), positive on [ρ, α], and negative on (α,∞). By the definition of ρ,

p(α) = f ′(α)(α − ρ) − f(α) = 0, and p(0) = −ρf ′(0) ≤ 0, so p(u) ≤ 0 for all u ≥ 0.

It follows from (4.2) and (4.3) that

[rn−1(φ′w − φw′)]′ = λrn−1[f ′(u(r))(u(r) − ρ) − f(u(r))]w. (4.4)

If w(r) has a zero in [0, r2], then we can find r0 ∈ (0, r2], such that w(r) > 0 on [0, r2) and

w(r0) = 0. Integrating (4.4) over the interval [0, r0], we get

0 < −rn−1
0 (u(r0) − ρ)w′(r0) = λ

∫ r0

0

rn−1p(u(r))w(r)dr < 0. (4.5)

This contradiction shows that w has no zero in [0, r2].

In the following we show that w has no zeros in [r2, 1). To do this, we use the test function

v(r) = rur(r) + µu(r), (4.6)

where µ > 0 is a constant to be specified later. It is easy to verify that

(rn−1v′)′ + λrn−1f ′(u)v = λrn−1[µ(f ′(u)u − f(u)) − 2f(u)] = λrn−1g(u), (4.7)

where g(u) = µ(f ′(u)u − f(u)) − 2f(u).

Define

h(r) = −
ru′(r)

u(r)
. (4.8)

Then

h′(r) =
(n− 2)uur + ru2

r + λfru

u2

=
2H(r) − 2λrF + λfru

u2
=

2H(r)

u2
+ λr

fu − 2F

u2
,

(4.9)

where

H(r) =
1

2
[ru2

r(r) + (n− 2)ur(r)u(r)] + λF (u(r)),

F (u) =

∫ u

0

f(s)ds.
(4.10)
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Step 2 Kf (u) is strictly decreasing in (α, β).

In fact, by a simple computation, we obtain

K ′
f(u) =

f ′′(u)f(u)u− f ′(u)[f ′(u)u− f(u)]

f2(u)
< 0.

By (A2), f ′′(u) ≤ 0 in (α, β), by (A3) f ′(β) = f(β)
β

> 0, and then f ′(u) > 0 in (α, β). By (A3)

again, f ′(u)u− f(u) > 0 in (α, β). Hence K ′
f(u) < 0 in (α, β).

Step 3 H(r) > 0 for all r ∈ (r2, 1].

We will show that J(r) = rn−1H(r) > 0 in (r2, 1]. When n = 1 or 2, it is true from (4.10),

so we may assume that n ≥ 3. Note that J(0) = 0, J(1) = H(1) = 1
2 [u′(1)]2 > 0. It is easy to

verify that

J ′(r) = λrn−1G(u(r)), (4.11)

where G(u) = nF (u)− n−2
2 ·uf(u). We study the property of G(u). The function G(u) satisfies

G′(u) =
n+ 2

2
f −

n− 2

2
f ′u, (4.12)

G′′(u) = 2f ′ −
n− 2

2
f ′′u. (4.13)

To prove J(r) ≥ 0 on [r2, 1], we consider three cases.

Case 1 Kf (ρ) ≥ n+2
n−2 .

By (A4), Kf(u) ≥ Kf (ρ) ≥ n+2
n−2 for all u ∈ (0, ρ). Thus

G′(u) =
n+ 2

2
f −

n− 2

2
f ′u =

n− 2

2
f
[n+ 2

n− 2
−Kf (u)

]
≤ 0

for all u ∈ (0, ρ). Since G(0) = 0, we have G(u) ≤ 0 in (0, ρ), which implies that J ′(r) < 0 on

[r2, 1], and since J(1) > 0, we have J(r) > 0 on [r2, 1].

Case 2 Kf (ρ) < n+2
n−2 and lim

u→+0
Kf (u) ≤ n+2

n−2 .

By (A4) and Step 2, Kf(u) ≤ n+2
n−2 in (0, β], which implies that G′(u) > 0 in (0, β]. We

claim that G′(u) > 0 for u > β. In fact, if f(u) satisfies (F1), then there exists η > β such that

f ′(η) = 0. Then for u ∈ (β, η), f ′ > 0 and f ′′ < 0 by (A2), so we have

G′′(u) = 2f ′ −
n− 2

2
f ′′u > 0,

and by (A3)

G′(β) =
n+ 2

2
f(β) −

n− 2

2
f ′(β)β

=
n− 2

2
[f(β) − f ′(β)β] + 2f(β)

= 2f(β) > 0,

so G′(u) > 0. And for u ∈ (η, c), f ′(u) < 0, f(u) > 0, so

G′(u) =
n+ 2

2
f −

n− 2

2
f ′u > 0.
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On the other hand, if f(u) satisfies (F2), then f ′(u) > 0 for u > β, then G′′(u) > 0 for u > β.

Since G′(β) > 0, we have G′(u) > 0 for any u > β. Then it follows from (4.11) that J ′(r) > 0

for r ∈ (0, 1). Since J(0) = 0, we have J(r) > 0 in (0, 1] and hence H(r) > 0 in (0, 1]. In

particular, H(r) ≥ 0 in [r2, 1].

Case 3 Kf (ρ) < n+2
n−2 and lim

u→+0
Kf (u) > n+2

n−2 .

By (A4), Kf (u) is non-increasing in (0, ρ), so there exists d ∈ (0, ρ) such that Kf (d) = n+2
n−2 ,

Kf(u) > n+2
n−2 for u ∈ (0, d) and Kf (u) ≤ n+2

n−2 for u ∈ (d, ρ), and then G′(u) < 0 in (0, d],

G′(u) > 0 in (d, ρ]. Since G(0) = 0, we have G(u) < 0 in (0, d].

By (A4) again, Kf (u) ≤ Kf(ρ) < n+2
n−2 for u ∈ (ρ, α). So

G′(u) =
n+ 2

2
f −

n− 2

2
f ′u =

n− 2

2
f
[n+ 2

n− 2
−Kf (u)

]
> 0

in (ρ, α). By Step 2, Kf (u) < Kf (α) < n+2
n−2 for u ∈ (α, β). So G′(u) > 0 in (α, β]. The same

argument as in the proof of Case 2 ensures that G′(u) > 0 for u > β. Furthermore, by the

definition of G, G(c) > 0 if f satisfies (F1), and by the proof in Case 2, G(u) > 0 for sufficiently

large u.

Then there exists a point p > d such that G(p) = 0. We claim that u(0) > p for any solution

of (2.2). If not, then for r ∈ [0, 1], 0 ≤ u(r) ≤ p, so J ′(r) = λrn−1G(u(r)) < 0 for r ∈ (0, 1). We

have known that J(1) = H(1) = (1
2 )u2

r(1) ≥ 0, but J(1) =
∫ 1

0
J ′(r)dr = λ

∫ 1

0
rn−1G(u(r))dr <

0, that is a contradiction, so u(0) > p.

Now since u(0) > p, u(1) = 0 and ur < 0, there exists r0 ∈ (0, 1) such that u(r0) = p. For

r ∈ [0, r0], G(u(r)) ≤ 0, so J ′(r) > 0 and J(u) ≥ 0 since J(0) = 0. For r ∈ [r0, 1], G(u(r)) ≤ 0,

so J ′(u) ≤ 0; since J(1) ≥ 0, we have J(r) ≥ 0, and hence H(r) > 0 in [0, 1]. In particular,

H(r) ≥ 0 in [r2, 1].

Step 4 h′(r) > 0 in (r2, 1) and lim
r→1−

h(r) = +∞.

Let Q(u) = uf(u) − 2F (u). Then by (A3), Q′(u) = uf ′(u) − f(u) > 0 in (0, β). Since

Q(0) = 0, we have Q(u(r)) > 0 in (r1, 1). Then by Step 2, we have h′(r) > 0 in (r2, 1). By the

definition of h(r), we have

lim
r→1−

h(r) = lim
r→1−

−
ru′(r)

u(r)
= +∞.

Step 5 We conclude the proof by proving that w has no zeros in [r2, 1).

Define

µ(r) =
2f(u(r))

f ′(u(r))u(r) − f(u(r))
=

2

Kf(u(r)) − 1
. (4.14)

Then µ(r) is decreasing in (r2, 1) by (A4). By Step 4, h(r) is strictly increasing for r in (r2, 1)

and lim
r→1−

h(r) = +∞. So there are only two possibilities.

(1) There exists a unique r∗ ∈ (r2, 1) such that h(r∗) = µ(r∗) = µ∗.

In this case, we take the test function

v(r) = rur + µ∗u = [µ∗ − h(r)]u(r).
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It is easy to see that v(r) > 0 in (r2, r
∗) and v(r) < 0 in (r∗, 1).

By the definition of g,

g(u(r)) = (µ∗ − µ(r))(f ′(u(r))u − f(u(r))),

it follows that g(u(r)) < 0 in (0, r∗) and g(u(r)) > 0 in (r∗, 1). From (4.2) and (4.7), we obtain

[rn−1(v′w − vw′)]′ = λrn−1g(u)w. (4.15)

By Step 1, w has no zeros in [0, r2]. If w has a zero in (r2, r
∗], then there exists r0 ∈ (r2, r

∗),

such that w(r0) = 0, and w(r) > 0 in [0, r0). Integrating (4.15) over the interval [0, r0] yields a

contradiction

0 < −rn−1
0 w′(r0)v(r0) =

∫ r0

0

λrn−1gwdr < 0.

If w has zeros in [r∗, 1), we may assume that r0 is the biggest zero of w(r) in [r∗, 1) and

w > 0 in [r0, 1). Integrating (4.15) over the interval [r0, 1] yields another contradiction

0 > −w′(1)v(1) + rn−1
0 w′(r0)v(r0) =

∫ 1

r0

λrn−1gwdr > 0.

So w has no zero in [r∗, 1).

(2) For all r ∈ (r2, 1), µ(r) < h(r).

In this case, we choose µ∗ = h(r2) and v = rur + µ∗u. Then on [r2, 1], g(u(r)) > 0, and

v(r) < 0. The same technique in prior (1) implies that w has no zero in [r2, 1).

5 Proof of Lemma 3.1

First, we should introduce the Morse index. We define the Morse index M(u) of a solution

(λ, u) to be the number of negative eigenvalues of the following eigenvalue problem

{
(rn−1φ′)′ + λrn−1f ′(u)φ = −µφ, r ∈ (0, 1),

φ′(0) = φ(1) = 0.
(5.1)

It is well-known that the eigenvalues µ1, µ2, · · · of (5.1) are all simple, and the eigenfunction φi

corresponding to µi has exactly i− 1 simple zeros in (0, 1) for i ∈ N .

To consider the Morse indices of the solution, we introduce an auxiliary equation

{
(rn−1w′)′ + λrn−1f ′(u)w = 0, r ∈ (0, 1),

w′(0) = 0, w(0) = 1,
(5.2)

where u is a solution to (1.1). Let w(λ, · ) be the solution of (5.2). Then w(λ, · ) has the

following relation with the Morse index of u (see Lemma 5.2 in [19]):

Lemma 5.1 Suppose that u is a solution of (1.1), and w(λ, · ) is the solution of (5.2).

Then M(u) = k if and only if w(λ, · ) has exactly k zeros in (0, 1).
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Next we will give the proof of Lemma 3.1.

Proof of Lemma 3.1 From (3.1), we know that ν = ν(η, r) = u(λ, ar) − ǫ with cor-

responding η = a2λ, where u(λ, · ) is a degenerate solution of (1.1). First, we claim that

M(ν(η, · )) ≤M(u(λ, · )). By Lemma 5.1, the Morse index of a radial solution u to (2.4) is the

number of zeros of the solution to (5.2). Let φ(λ, r) be the solution of (5.2) associated with

u = u(λ, · ) and corresponding λ. Define

ψ(η, r) = φ(λ, ar).

Then ψ is the solution of (5.2) associated with u = u(λ, · ) + ǫ and λ = η. In particular, the

number of zeros of ψ(η, · ) in (0, 1) is the number of zeros of φ(λ, · ) in (0, a) ⊂ (0, 1). Thus

from Lemma 5.1, M(ν(η, · )) ≤M(u(λ, · )), so the claim is true.

From Lemma 2.7, the Morse index of u(λ, · ) is either 0 or 1. ThusM(ν(η, · ))≤ M(u(λ, ·)) ≤

1. If M(ν(η, · )) = 1, then ψ(η, · ) has at least one zero in (0, 1) and another zero at r = 1, where

ψ(λ, · ) is the solution of (5.2) associated with ν(η, · ). But a < 1, so the solution φ(λ, · ) of

(5.2) associated with u(λ, · ) has at least two zeros in (0, 1), which implies that M(u(λ, · )) ≥ 2,

that is a contradiction. Hence M(ν(η, · )) = 0 and w(r) does not change sign in (0, 1), i.e., w

does not change sign in Bn.
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