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1 Introduction

It is well-known that a classical model for the process of the spinodal decomposition can
be described by a Cahn-Hilliard equation on the domain [0,7] x [0,7]¢ (see [7, 16] and their

references therein) as follows:

%-{—A%—Af(u) =0, (1.1)

which describes the complicated phase separation and coarsening phenomena in a melted alloy.
Here the mapping f is the derivative of the homogeneous free energy F , which contains a
logarithmic term. In some cases, F can be approximated by an even-degree polynomial with
positive dominant coefficient. A standard choice for f is a cubic polynomial such as f(u) =
u— ud.

This paper deals with the following jump type Cahn-Hilliard equations with fractional noise

potentials:

Ou(t, ©) = Ab(u(t, x)) + B (z,t) + a(u(t, z))F(x,t), in [0,T] x D,

u(0) = 1, (1.2)
ou  0Au
o= o = 0, on [0,T] x 9D,

where the operator [ := % + A? with the Laplace operator A, and the domain D = [0, 7]%. In

addition, B denotes a fractional noise on D x [0, 00) with Hurst parameter H > %, and F' is
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a (pure jump) Lévy space-time white noise on D x [0,00). The nonlinear drift b : R — R is a
polynomial of degree 3 with positive dominant coefficients and a : R — R is a measurable map
satisfying additional assumptions (see Section 4 below).

Second order heat equations with fractional noises have been investigated in the literature
(see [9, 11, 14, 17, 21]). Among them, Duncan et al. [9] and Tindel et al. [21] investigated
a class of parabolic equations with linear fractional noise terms, where the Hurst parameter
H in [9] was restricted to H > 3, and the later treats both cases H > % and H < 3. The
heat equations with a multiplicative fractional noise of Hurst parameter H = (hg,-- ,hq) on
[0,00) x R? were proposed by Hu [11] and the author established the existence and uniqueness
of mild solutions to the equation under some assumptions on H, through chaos expansion.
For a nonlinear evolution equation in some Hilbert space, Maslowski and Nualart [14] proved
the existence and uniqueness of mild solutions for the equation with a cylindrical fractional
Brownian motion (FBM) under H > % This leads one to define stochastic integrals with
respect to FBM in a pathwise way (see also [18]). In [17], Nualart and Ouknine discussed a
quasi-linear parabolic equation driven by an additive fractional noise on [0, c0) x [0, 1].

Recently, a class of stochastic Cahn-Hilliard equations with Gaussian noise perturbations
were introduced in [8, 5, 6], respectively. Furthermore, Bo and Wang [4] established a unique
local solution to a stochastic Cahn-Hilliard equation driven by a Lévy space-time white noise,
in which a new version of Burkholder-Davis-Gundy inequality (B-D-G inequality) played a key
role (see also Proposition 3.2 below). In [2], Bo et al formulated a fourth-order Anderson model
with double-parameter fractional noises on one-dimensional space by employing the Skorohod
integral. In the present paper, we are going to develop several different versions of B-D-G
inequalities for treating the jump component of (1.2). For the fractional noise term, we will
limit our consideration on the linear additive fractional noises with Hurst parameter H > % as
proposed by Nualart and Ouknine [17]. Our aim is to establish the existence of a unique local
mild solution to (1.2).

The outline of this paper is as follows. In the coming section, we will give the definitions of
the fractional B¥ and the pure jump Lévy noise F, respectively. In Section 3, several different
B-D-G inequalities are presented. The statement of main result and its proof will be given in

Section 4.

2 Fractional and Lévy Noises

In this section, we will present the definitions of the fractional noises, Lévy space-time white

noises and stochastic integrals with respect to them in the respective subsections.

2.1 Fractional noises

Let (Q, F, (Fi)i>0, P) be a complete probability space with the filtration (F;);>¢ satisfying
the usual conditions, on which (B (A x [0, t])) (¢, 4)e[0,1)xB(D) 18 a centered Gaussian family of

random variables with the covariance, for H € (0, 1),

E[B7(A x [0,t]))B¥(B x [0,s])] = |AN B|Ry(t,s), s,t€[0,T], A, B e B(D),
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with the covariance kernel
1oonm 2H 2H
RH(t,s)zi[t + s =t =77

Here |A| denotes Lebesgue measure of the set A € B(D).
We denote by e the set of step functions on D x [0,T]. Let H be the Hilbert space defined

as the closure of € with respect to the scalar product

(Lio,9x 4, Ljo,s)xB)H = |[AN B|Ry(t, s).
Thus the mapping 1jg x4 — BH (A x [0,t]) is an isometry between £ and the linear space
span{Bf (A x [0,t]), A € B(D),t € [0,T]}, a subspace of L?({2). Moreover, the mapping can be
extended to an isometry from H to Gaussian space associated with B. This isometry will be

denoted by ¢ — B () for ¢ € H. Therefore, we can regard B () as the stochastic integral

with respect to B¥. In general, we use the notation
| ewsBay.ds
[0,T]xD

to represent B (). On the other hand, it is known that the covariance kernel Ry (t, s) satisfies
tAs
Ry(t,s) = / Ky(t,u)Kg(s,u)du,
0
where the kernel

ot =t s () 10 () e

for some constant cy. In particular, if H > %, then

t ps
Ry(t,s) = H(2H — 1) // lu — v 2dudw. (2.1)
0/0
Define a linear operator Kj; : £ — L*([0,T]) by

T
(i) (5,) = Kn(T.)0(s.) + [ (o) = o) L wspdu. (22)

Then the operator Kj; gives an isometry from H to L2([0,7] x D) (see [17, 21]). Consequently,
W(t,A) == BT (Kj) " (Lpgxa)), (8, A) € [0,T] x B(D)

defines a space-time white noise. Moreover we can regard B as

BY (A x [O,t]):/O/DKH(t,s)W(dy,ds).
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2.2 Lévy space-time white noises
Let (E;, &, 1i), © = 1,2 be two o-finite measurable spaces. We call N : (E1,&1, p1) X

(Ea, &2, p2) X (Q,F,P) — N U{0} U {oo} a Poisson noise on (Ey,&, p1), if for all A € &,
Be & and n e NU{0} U {0},

PweQ: N(A,B,w) =n) = eful(A)M(B)Eijl(A)“Q(B)]n. (2.3)

In particular, when (Ey,&1, 1) = ([0,00) x D,B([0,00) x D),dt x dz), we can define the

compensated random martingale measure
M(B, A,1) = N([0,] x 4, B) — iy ([0,4] x A)pa(B) (2.4)

by assuming that p1([0,¢] x A)uz(B) < oo for all (¢, A, B) € [0,00) x B(D) x £. Moreover, let
f:E1 x Ey x Q — R be an (F;)>o-predictable random process satisfying

B [[[ [ 1560 atnyiads] <o 25)

for all t > 0 and (A, B) € & x &. Then the stochastic integral process

(Rt = /074/3 f(s,x,y)M(dy,dx,ds))tZO (2.6)

is a square integrable (F});>o-martingale. It is well-known that a (pure jump) Lévy space-time

white noise admits the following structure:
F(x,t) = / hi(t,x,y)M(dy,z,t) +/ ho(t, z,y)N(dy, =, t) (2.7)
Uo E2\Up
for some Uy € &; such that po(E2\Uy) < co. Here hy, hg : [0,00) x D x E5 — R are measurable

maps; M and N denote the Radon-Nikodym derivatives

. M(dy,dx,dt) . N(dt x dz, dy)

M(dy,z,t) = T xde N(dy,x,t) := 1 % da (2.8)

with (¢,z,y) € [0,00) X D x Ey (see [22]).

3 Burkholder-Davis-Gundy Inequalities

In order to estimate the higher order moments of mild solutions to (1.2), we need several
different versions of Burkholder-Davis-Gundy inequalities. Those are quoted from [13, Theorem
4.1] and [10, Corollary 3.1], respectively. Let us first recall the usual Burkholder’s inequality
(see [19]).

Proposition 3.1 Let f : [0,00) x D x Ey x & — R be an (Fi)i>o-predictable process
satisfying (2.5). Denote by X the integral process

(Xt — /OtJyD 5 f(s,y,z)M(dz,dy,ds))tZO.
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Then for T > 0 and q > 1, there exists a constant C1(q) > 0 such that

E[ sup |Xt|q} < Ci(qE[X, X]7,
t€[0,T]

(3.1)
where [ X, X, = fOfoE2 |f(s,y,2)|*?N(ds x dy,d z) is the quadratic variation process of X
Remark 3.1 Note that, in Proposition 3.1

wpex= [ [ 1o =)

Then Jensen’s inequality yields, for ¢ € [1, 2]

aq
E[ sup |Xt < Ci(q /// E|f(s,y, 2)]2u2(dz)dyds| . (3.2)
te[0,7] E,

Proposition 3.2 Let (X;)i>0 be defined as in Proposition 3.1. Then for T > 0 and q > 2
there exists a constant Ca(q) > 0 such that

T q
s BT < @) [ [ @150 a)duds] (33)

On the other hand, let L™ (Ey, E2) denote the total of all symmetric Lévy measure on (Ea,Es)

(see [10, Definition 2.2]). If the measure po € LY™(Ey, &) for the separable Banach space Es
and if q € (2,4], then there exists C3(q) > 0 such that

sup E[|X;]9] < C5(q /// E|f(s,y,2)|%u2(dz)dyds. (3.4)
t€[0,T] E>

In particular, if ¢ = p™ for some n € N and 1 < p < 2, then there exists C4(q) > 0 such that

q
n & pnfk
ELES[%pT] | X | } < Culq ; [//D[E E|f(s,y,2)" uz(dZ)dyds} :

In what follows, we turn to the definition of the solutions to (1.2)

(3.5)

2). An (F,)i>0-adapted
random field u = (u(t, 7)) (t,2)e0,7)x » 18 called a weak solution of (1.2), if for all p € C§([0, T
Rd) Wlth [0 T|xdD = 6(@:0 |[0,T]><('9D = O, it holds that

(u(t). (1)) = (. 0(0)) + /f<(%_A2) (5), u(s) )ds

/tw() ds+// (s, 2)BY (d,ds)
// (s,z)a(u(s,z))F(dx,ds),

) denotes the usual inner product of L?(D)
Let G(t,z,y) :

where (-,

(3.6)

[0,4] x D> — R be the Green kernel of the operator 2 + A? with the
homogeneous Neumann boundary condition as in (1.2) (see Appendix). Then by virtue of the
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proof of [20, Theorem 2.1] (or see [5, (1.9)—(1.10)]), (3.6) is equivalent to the following mild
form in the sense of Walsh [23]. For (t,z) € [0,T] x D,

ult,z) = /G(t 2, y) dy+// LGt — s,2,y)dyds
+ [ / (t = 5.z p)au(s, gl y)dyds + [ /D G(t — 5,2,5)B" (dy, ds)

t+
+/0 /D/E2 G(t —s,z,y)a(u(s—,y))h(s,y, z)M(dz,dy,ds), (3.7)

where the maps g, h are given respectively by

ot = [ halty2)a(do)
E2\U()
h(t7 Y, Z) = hl (t7 Y, Z)on (Z) + h?(t7 Y, Z)1E2\Uo (2)7

with indicator 14(-) of the set A € &. On the other hand, as in Section 2, the fractional

integral term in (3.7) can be represented as

// G(t—s,x,y)BH(dy,ds):// [K;G(t— -z, -)](s,y)W(dy, ds), (3.8)
0/D 0JD

with the space-time white noise (W (¢, 7)) (¢,2)e[0,7]x p mentioned in Section 2. We mainly study
the existence of a local mild solution of (3.7). To achieve it, let || - ||, denote the usual norm of
L(D) with g € [1,00). Given n € N, define a C*-function ¥, : [0,00) — [0, 00) by

() =4 o=, (3.9)
0, ifz>n+1,

and ||V, || = sup [¥],(7)|] < 2. Let the random field (uy(t, 7)) (t,2)e[0,77x p be a unique solution
x>0

of the following: -

t
un(t,x):/ G(t,x,y)w(y)dy—i—// G(t — s,z,y)BY (dy,ds)
D 0/D
t
[ [ M)A G = W s, ) )y
0
t
+ [ G = s atun (5,055 (fun(s. )y
0/D
t+
w [ [ s il )bl M@z dyds). (310)
0 jo8
Define 7, = inf{t > 0; ||u, (¢, - )|l > n} with n € N. Then, on the event {t < 7,,}, ui(t,z) =
ug(t,x) = -+ = uy(t, ) is a solution of (3.10). Let 7 = hm Tn, and define u(t, - ) = un(t, - ),
on the event {t < 7, < 7}. Therefore u(t, -) is a solution of (3.10) on {t < 7}. We call it a

local mild solution of (1.2). In the following section, we will prove that such a local solution as

in (3.10) exists and it is unique.
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4 Main Results and Proofs

At the beginning, we state the main result of the paper as follows. Let the interval (a, 5] =
(o, B] if @ < B, and ) otherwise.

Theorem 4.1 Let H € (%,1) and d < % with d € N. Suppose that the following
conditions are satisfied:

(i) b is a polynomial of degree 3 with positive dominant coefficients.

(ii) a is Lipschitzian and has linear growth on R, i.e. there exists a constant C > 0 such
that |a(z)| < C(1+ |x]), for all x € R.

(iii) For g,h and uo,

sup |lg(t, -)|lg < oo with ¢ > d+ 2. (4.1)
t€[0,T]
(1) For g € (d+2,4],
a) V= sup h(s,y, - s 1. < 005
@ Vo= s s s,
(b) p2 € LY™(Ey, &) with separable Banach space Es.
(2) For g > (d+2) V4,
(@) G(t — s,z,y)h(s,y,z) is LI([0,t] x D? x Ey,ds x do x dy x uz(dz)) integrable, for
0<t<T;

(b)) pa(E2) < oo.
Then for every Fo-adapted initial process ¢ : D x Q — R satisfying E|[(-)[|§ < oo, there
exists a unique local solution (u(t,x)) z)ejo,r)xp for (3.7) and there exists a stopping time T
such that

sup Elu(t A7, )|8 <oo for all ¢ >d+2.
t€[0,T

Let A, be the space of all LY(D)-valued F;-adapted RCLL processes u(t, - ). For fixed A > 0
and ¢ € [2,00), define a norm || - ||z, (depending on (A, ¢q)) on A, by

1
lula, = | swp e MBllut, )[12]* <, (4.2)
t€[0,T

with [ - || the usual norm of L9(D). Then (Ag,| - [|a,) forms a Banach space. Let ¢ € A,.
Recall (1.2) or (3.10). For (t,z) € [0,T] x D,

un(t, ) :/ G(t,z,y)Y dy—l—// —s,z,y)BH (dy, ds)
// (ttn(5, ) Dy Gt — 5,2, 1)U (n(s, - )llg)dyds
/ / — 5,2, 9)a(un (5, 9)g(5 D) Tn(lun(s, - )llg)dyds
+ [ +/ | e Gt = 5ol = 9o, 9, )M,y )

= Ay(¢)(t, ) + ZAZ-( un)(t, ). (4.3)
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According to (4.3), we have

Proposition 4.1 Under the assumptions of Theroem 4.1, for each ¢ > d +2 and u € Ay,
it holds that A;(u) € Ag, i =0,--- ,4.

Proof From (A.2), Minkovski’s inequality and Young’s inequality for % =1+ % —1, it
follows that

@)t )l < K4 [ exw (= Lo Yuay

q
4
_a RE
< — . .
<kt H||(exp (- C 3 )+ () () q
4
_a |- |3
< — .
< Kt~ exp (= 5 )| IRl
= Cllo () llg- (4.4)
Therefore Ag(¢) € Aq if El[Y(-)[|¢ < oo. Next we turn to Aj(u). Let % = % - % +1¢€[0,1]
Applying (A.6), we conclude that
¢ ,eri
AL (u)(, )llq < C/O (t—s) T ab(u(s, - ))Wn([[uls, -)lq)llpds. (4.5)
In particular, let p = %. Then by the assumption (i) in Theorem 4.1,
1bCu(s, )y < Cllluls, g+ lluls, )7 + lluls, )
Consequently,
¢ _dt2, d_
st Dl < Co [ (097 s, (1.6)
0
which is finite if % — 442 > 1. Since % = %, we have Ay (u) € A, for ¢ > d. As for Az (u),
by virtue of (A.5), we have for % = % - % +1= —% +1€]0,1],

H&WWwMSCA@—ﬁﬁﬁm&wMM&W%ﬂw&NMMm
gcA@—ﬁﬁrﬁMa»u+m@fmwaw@fmmgm
so/@—ﬁﬁ'%m&wg+maJMa»mwaw@JMMS

0
< 0(t—SF%*%Wg@,JHq+H9@70HMu@70HAWnWUG,Jdes

LY

< Oq/o (t= )%= 4 [llg(s, )llg + (n + Dllg(s, )l

t
< Cug sup lglt, )l [ (6= )% Has
te[0,7] 0

< o0, (4.7)
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provided ¢ > £. Therefore As(u) € Ay as ¢ > %. In what follows, let us consider As(u).

Applying the B-D-G inequality (3.1), we conclude that,

Bl g = [ 8| [[ 66— sanpayas)
= [ ] [ ozt D Wian.as)|da
<c [ E // (Gt = -, ) (s.9)dyds) *da

= O /D<(KH » Ly ))( ) ')a(K?{G(t_ T, ))(7 ')>[%,2([07T]><D)dx
~q, /(G(t— w6t — -, )i da

<q, / 1G(t T dz, (4.8)

L# ([0,T)xD)

dzx

where we have used the fact that L# ([0, 7] x D) C H when H > % (see [15, Theorem 1], but
we need to modify their proof which is given in Appendix below). Note that

T qH
t— - a t— Tdyds|
G = 2. Mg oy = L] [, 16— sy
¢ 3 o
= // |G(t—s,x,y)|ﬁdyds}
-JOJD
[ s o~y
< t—s) 27 [ exp| —C — Jdyds
__/O( ) /D p( H(t_s)é)y ]

qH
2

¢ da d %
§C’H[/ (t—s)*~ ﬁds}
0
< CpT +4—3%)
< 00, (4.9)

under the assumption d < % of Theorem 4.1. So we have As(u) € A, for ¢ > 2. Now we
estimate A4 (u). In the case of ¢ € (d + 2,4], the inequality (3.4) of Proposition 3.2 yields

[As()[[3, = sup e ME[lAs(u)(t, -2
t€[0,T]
t+
= s e [u(| [ [ c-smmnio.
t€[0,T] D 0 JDJE>

x a(u(s—,y))M(dz,dy,ds) q)dx

<y sup e t/ /// G(t—s,z,y)h(s,y,2)|?
te[0,T] Es

x Ella(u(s, y))|"]u2(dz)dyds ) da

R // //E2 (t = s,z,9)h(s,y, 2 )|quz(dz)dx)
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x Ella(u(s, y))|"]dyds

t
<CV, swp e [ = s8] [ Jau(s.g)ag]ds
0 D

te[0,T]

t
<OV, sup e / 1t — s A Blla(u(s, -))||7]ds
0

te[0,T]

t
< CyVy sup / 1t — 5| e 2= (1 4 e MR Ju(s, -)[4)ds
tel0, 7] J0

T
<O+ luly) [ steas

L(§+1)
Ai+L
< 00, (4.10)

< CoVy(1+lull},)

where V; is defined by Theorem 4.1(iii)(1)(a) and I'(-) denotes the Gamma function.
As for ¢ > (d + 2) V 4, by the hypotheses Theorem 4.1(ii), (iii) and the inequality (3.3), it
follows that

[ As(@)[}, = sup e E[As(u)(t, )]

t€[0,T]
t+
an o [o(| [ oo
t€[0,T7] D 0 JDJE,
x a(u(s—,y))M(dz,dy,ds) q)dx

<Cy s e o[ ///E (BIG(t — 5,2, 5)h(5, y, 2)a(u(s, )T’

X ,ug(dz)dyds) ! dz

<Cy sup e ’\t/ /// Jy)h(s,y, 2)Pe™s
te[0,T] E>

x (e E(1 + |u(s, y)|)‘1)5,u2(dz)dyds) fau

< Cy sup / /// e ME( + |u(s,y))? ug(dz)dyds)
t€[0,T E>
2X(t—s) %
/// G(t— s,z,y)h(s,y,2z)|"= e u ug(dz)dyds) dz
E>

< Cypia(B>) (TID] + / e Blu(s, -)4ds)

2q 2X(t— qu
X sup / / / 16 = s.nphis g 2) e a(dadpds) 7 da
tGOT Es

< Copa(E2)(T|D| + T - |Jull},)

////E (t = s,2,9)h(s,y, 2)|%e A" po(d2)dyd sda

(4.11)



Jump Type Cahn-Hilliard Equations 673
This shows that A4(u) € A,;. Thus we complete the proof of the proposition.
We can now define an operator K on A, by

K(u)(t,z) = Ao(¢)(t,z) + > Ai(u)(t,x), (t,z) €[0,T] x D. (4.12)

i=1
In what follows, we will prove that the operator K : A, — A, is a contract mapping.

Theorem 4.2 For g > d—+ 2, the operator K defined by (4.12) is a contraction on A, under
the conditions of Theorem 4.1. In other words, there exists a constant o € (0,1) such that
1K(u) = K()||a, < ollu—2la, foru,ve A,

Proof Suppose that ¢, 9 are initials of (F;);>o-adapted random fields u,v € Ay such
that 1, = 1)5. Let us begin by considering A;. Note that for p = 2,

IWn(lluls, Hgbuls, -)) = Un(lols, )llg)b(v(s, Dl < Cnlluls, -) —vls, ), (4.13)
By virtue of (A.6), we have for 1 = % -

A (w) = A1 ()13, = sup e ME(|Ai(u)(t, -) = Ai(v)(t, )]3)

te[0,T]

t
< sup ef)‘tE(/ (t—s)%f%
te[0,T] 0

X AN (fJu(s; -)llg)b(uls, -)) = Walllo(s, -)llq)b(v(s, ~))||pd8)q

t
<y swp e VB( [ (0= 9F Fuls, )~ v(s, ) ads)”
te[0,7T] 0

t

—A(t—s) —Xs q

<y swp B( [T - 9 f e uls, )~ ol ) uds)
te[0,T) 0

t
<oy sup B( [ M uts, )~ (s, ) gds
te[0,7] 0

t _
X {/ (eﬂ(;s) (t—s)%_%)%lds}q 1)
0

t
<oy s ([ e Bluls, )~ ols. lgds
0

t€[0,T]
t —A(t—s) L(i_ﬁ) q—1
X |:/ (e q—1 (t—s)q—l 4r P )d8:| )
0
< CngTllu—0l},¥(d,q,T), (4.14)
where
T oo q (d _ d+2 q—1
\I/(dv%T) - |:/ e a-1 (t—s)ﬁ(ﬁ_T)ds} .
0
Let

. q (i_d+2)
g —1\4r 4 )
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Then

V(d,q,T) < [M /000 e_sskds} L {(q — DT+ 1)}(171 < 00, (4.15)

M\E+1 M\k+1

when g > d + 2. Therefore,

A1) = i (), < O, )7 [L=1) ;k_ff’““)"}ﬂu—vw\q
< allu= s, (4.16)

where o1 € (0, 1) by choosing A large enough.
Next we consider A4(u). In the case of ¢ € (d + 2, 4], from a similar argument as in (4.10),
it follows that

lMa(w) = As()[IF, = sup e ME[lAu(u)(t, -) — Aa(0)(t, )l

te[0,T]

t+
= sup e~ / ‘///G —s,x,9)h(s,y, z)
t€[0,T] E2

x a((u(s—,y)) —a(v(s—,y)))M(dzdy, ds)‘ ]dx

qteS%pTe // //152 S’I’y)h(S,yvzﬂquz(dz)dx)

X E|U(S7y) - v(s,y)|qdyds
L(§+1)
AT+1
< 0. (4.17)

< CyVyllu—vll3,

For ¢ > (d + 2) V 4, thanks to Proposition 3.1, we derive from the assumptions (ii) and (iii) of
Theorem 4.1 that

[ As(u) — As(v)[I3,
= sup e ME[As(u)(t, -) — Aa(v)(t, )]

te[0,T]

t+
= sup e t/ E‘/ // s,x,y)h(s,y,z)
t€[0,T E,

x (alu(s—,y) = alv(s—,y)M(dz,dy,ds)| 'da

<Cqsupe’\t/ /// (E|G(t — s,z,y)h(s,y, 2)
tel0,7 B

x (a(uls, ) — alv(s, )| <dz>dyds)2dx

<C, sup e ’\t/ /// Saxay)h(s7yuz)|2
t€[0,T E,

X (Elu(s,y) - v(&y)l")auz(dZ)dde)%dw
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t
vsw e [ ([ [ 16t sapnts P
t€[0,T] D 0/ DJEs
x (e Elu(s, y) = v(s,y)|") T pa(dz)dyds) " da
t
< Cq sup / (/// e_ASEIU(S,y)—v(&y)lquz(dZ)dde)
t€[0,T] E>

2X(t—s) a2
/// Gt —s,x,y)h(s,y, 2z )|q TeT a3 ,ug(dz)dyds) dz
Es
< CqTpa(Es)|lu— ||},

X sup //// — s,z y)h(s,y, 2)|%e "N py(d2)dyd sd . (4.18)
E;

t€[0,T]

Take into account
re+1
q(zldi) —0, asA— o0
Aatl

and

t
Sup / // / |G(t - S7$,y)h(87y, Z)lqe_k(t_S)NQ(dZ)dded{I] — O7 as \ — oo.
E,

tefo,7)/DJoJ D

Then by (4.17) and (4.18), together with the assumption (iii) of Theorem 4.1, A4 is a contraction
on Ay, for A > 0 large enough.

For ¢ > d+ 2, a similar procedure as (4.14)—(4.16) yields that As is a contraction on A4, by
letting A > 0 large enough. Therefore, it follows from (4.12) that IC(-) is a contraction on A,
if A > 0 large enough. Thus the proof of Theorem 4.2 is completed.

We note that h — 522 is an increasing function with the range (3,4) on h € (3,1). Hence
for ¢ > d + 2, applying the fixed point principal on the set {u € A4 : u(0) = ¢}, we conclude

that (3.10) admits a unique solution u € A,. Thus the conclusion of Theorem 4.1 follows.

Appendix

Firstly, we will give a short proof for the assertion that L# ([0,7] x D) ¢ H if H > z.
Let

feLw([0,T] x D) and dy = H(2H —1).

Then Theorem 1 in [15] implies that there exists a positive constant C'(H,T,d) depending on

H,T,d such that
T pT
1712, = dn / / / £, 2) (0, 2)|u — 0P 2dzdudv
0J0 JD

:dH/D [/OT/OTf(u,x)f(v,xﬂu—U|2H_2dudv}dx
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ch/D [/()T|f(u,x)|%du]wdx
SCH,T/ [/T|f(u,x)|édu]de

D 0
T R H
SCH,T,d[// If(uvx)lﬁdudx}
DJO

r 2 $x2
~Cuzra| [ [ 1#(u,2))F duda]
DJO

=CurallfI? 5 (A.1)

([0,T]1xD)’
where we have used Holder inequality twice. This shows the continuity of the embedding.

In the following, we will give some estimates on the Green kernel G(t, x,y) corresponding to
the operator & + A? on the domain [0, 00) x D. As in [8], the Green function G(t, z,y) admits
the following expansion. Let A = —A be defined on D(A) = {u € H?(D) : %|sp = 0} and let
(Ok)rene be the basis of eigenfunctions of A in L?(D), which can be written as

d
Or(w) = [ ] O (22),
i=1

where k = (ky,--+ ,kq) € N4, 2 = (21,--- ,24) € D. Moreover,
2
Gki (xz) = \/jcos(kixi), kl }é O,
7T
Oo(as) = — k=0
o\Z;) = \/Ea T
d
with¢=1,---,d, and ()\k =3 kf)k N are the eigenvalues corresponding to the eigenfunc-
i=1 €

tions. Therefore the Green function G(t,z,y) on [0,00) x D? can be expressed as

G(t,z,y) = Z e_’\it@k(ﬂﬁ)e)k(y)

keNd
with (t,z,y) € [0,00) x D?.

Lemma A.1 There exist K >0 and C > 0 such that for all t € (0,T], x,y € D,

K e~y

< — — .

Gt .)] < g exp (O ), (A2)
K z—y|3

18,6(t2.9)| < 7 exp (- 0%) (A.3)
0G(t,x,y K x—y%

25 < e (- ), =

Lemma A.2 Forv e LY([0,T],L°(D)), 0 <to<t<T and x € D, define

J(v)(to,t,x):/t/DH(t—s,:E,y)v(s,y)dyds.
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Then for any p € [1,00), £ =1 — % +1€[0,1]. J is a bounded operator from L'([0,T], L*(D))

) r q

to L°>°([0,T), LY(D)). Furthermore,

(1) If H(t —s,z,y) = G(t — s,x,y), there exists a constant C > 0 such that

1T (0)(to,t, )lg < C | (t—5)T T (s, - )l|,ds. (A.5)

to
(2) IfH(t —s,z,y) = AyG(t — s,x,y), there exists a constant C > 0 such that
t

17@)(to,t, llg < C | (= 9)F = |Ju(s, ) ,ds, (A.6)

to

where we assume that r # oo if d =2, and r < 3, if d = 3.

(3) IfH(t—s,z,y) = G*(t — s,x,y), there exists a constant C > 0 such that

t

W@WmLNMSC/Q—Q%%W@wWM& (A7)

to

where we assume that v # oo if d =2, and r < %, if d = 3.
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