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Abstract The authors obtain a holomorphic Lefschetz fixed point formula for certain
non-compact “hyperbolic” Kähler manifolds (e.g. Kähler hyperbolic manifolds, bounded
domains of holomorphy) by using the Bergman kernel. This result generalizes the early
work of Donnelly and Fefferman.
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1 Introduction

In 1926, Lefschetz [8] published his celebrated fixed point formula, namely, if f is a holo-

morphic automorphism on a compact complex manifold of dimension n such that there are only

a finite number of fixed points p1, · · · , pk, then

L(f) =
∑

f(pj)=pj

1

det(I − Jf (pj))
,

where L(f) is the so-called Lefschetz number of f defined by

L(f) =
∑

(−1)qTrace f∗(H0,q(M))

with Hp,q(M) being Dolbeault cohomology groups.

In general,for non-compact complete Kähler manifolds,the Lefschetz number of L2-Dolbeault

cohomology groups with respect to some complete Kähler metric might depend on the choice of

the Kähler metric. However, Donnelly and Fefferman discovered the following interesting fixed

point formula:

Theorem 1.1 (cf. [2]) Let Ω be a bounded strongly pseudoconvex domain in Cn and let f

be a holomorphic automorphism without fixed points on the boundary. Then

(−1)n

∫

Ω

KΩ(z, f(z)) =
∑

f(pj)=pj

1

det(I − Jf )(pj)
, (1.1)

where KΩ(z, w) is the Bergman kernel form.
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Let us make a few remarks on Theorem 1.1. According to Fefferman [4], every holomorphic

automorphism of Ω extends smoothly to ∂Ω, which implies, if an automorphism f has not fixed

points on ∂Ω, then it has only finite isolated fixed points in Ω for otherwise the set of fixed

points is an analytic subvariety with dimension at least one thus must intersects ∂Ω. In fact,

the above result is still a Lefschetz theorem since the left side of (1.1) equals to the Lefschetz

number with respect to the Bergman metric. The argument used in [2] is the heat kernel

approach, relying heavily on the bounded geometry of the Bergman metric, which seems not

valid for general bounded domains. It seems worthwhile to generalize Theorem 1.1 through

different methods.

Theorem 1.2 Let Ω ⊂⊂ Cn be a domain of holomorphy and let f be a holomorphic auto-

morphism such that the closure of the graph Γf of f does not meet the diagonal at the boundary

of Ω × Ω. Then (1.1) holds.

Similarly as the above remarks, we conclude that f has also only finite fixed points in Ω.

The main ingredients are Hörmander’s L2 theory and Kerzman’s representation of the Bergman

kernel. This approach has the advantage to generalize to certain complete Kähler manifolds

with slightly modifications.

Definition 1.1 We call two subsets A,B of a metric space (M,d) do not meet at the ideal

boundary of M if outside some compact subset K there is a positive constant C such that

dH(A \K,B \K) = inf
x∈A

inf
x∈B

d(x, y) > C.

Definition 1.2 (cf. [5]) A complete Kähler manifold (M,ω) is said to be Kähler hyperbolic

if ω is d-bounded, i.e., there is a 1-form θ such that ω = dθ and sup
M

|θ|ω <∞.

This is a large class of non-compact Kähler manifolds which includes all hyperconvex man-

ifolds (i.e., there is a negative C∞ strictly plurisubharmonic exhaustion function).

Theorem 1.3 Let (M,ω) be an n-dimensional Kähler hyperbolic manifold and f is a holo-

morphic automorphism such that Γf does not meet the diagonal at the ideal boundary of M×M .

Then (1.1) also holds.

2 Proof of Theorem 1.3

2.1 L2-Hodge theory

Let (M,ω) be a complete Kähler manifold of dimension n and let Lp,q
2 (M) denote the space

of L2-forms of degree (p, q). The L2-harmonic space is defined by

Hp,q
2 (M) = {ψ ∈ L

p,q
2 (M) : ∂ψ = 0, ∂

∗
ψ = 0}.

The Hn,0
2 (M) is just the space of square-integrable holomorphic n-forms. In the case when ω

is d-bounded, it is known from [5] that there is a constant λn > 0 such that every ψ ∈ L
p,q
2 (M)

with p+ q 6= n satisfies the inequality

(ψ,∆ψ) ≥ λn(ψ, ψ),

where ∆ = 2(∂ ∂
∗

+ ∂
∗
∂). Therefore, there exists a unique operator, the Green operator,

G : Lp,q
2 (M) → (Hp,q

2 (M))⊥
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such that ∂G = G∂, ∂
∗
G = G∂

∗
and the following decomposition holds:

I = P + ∆G,

where I is the identity endomorphism and P is the orthogonal projection from L
p,q
2 (M) to

Hp,q
2 (M). In particular, for any g ∈ L

n,0
2 (M) we have

Pg = g − ∂
∗
∂Gg = g − ∂

∗
G∂g.

2.2 Bergman kernel form

Let (M,ω) be a complete Kähler manifold and let {ψi} be a complete orthonormal system

of Hn,0
2 (M). The Bergman kernel form is given by

KM (z, w) =
∑

i

ψi(z) ∧ ψi(w).

KM does not depend on the choice of basis and it enjoys the following reproducing property

ψ(w) =

∫

M

ψ(z) ∧KM (z, w), w ∈M, ψ ∈ Hn,0
2 (M).

By [1], KM (z, w) is not identically equal to zero if ω is d-bounded.

2.3 Lefschetz number

Let (M,ω) be a complete Kähler manifold and let f : M →M be a holomorphic map. The

Lefschetz number is defined by

Lω(f) =
∑

(−1)qTrace f∗(H0,q
2 (M)),

where the trace is given by ∑

j

ψ
0,q
j ∧ f∗ψ0,q

j

for a complete orthonormal system {ψ0,q
j } of H0,q

2 (M). Note that the space H0,n
2 (M) is conju-

gate to Hn,0
2 (M). Thus by Subsection 2.1, if ω is d-bounded, we have

Lω(f) = (−1)n

∫

M

KM (z, f(z)).

2.4 Bochner-Martinelli kernel

The Bochner-Martinelli kernel on Cn × Cn is given by

k(z, w) = Cn

∑
j

Φj(z − w) ∧ Φ(w)

|z − w|2n
,

where

Φj(ζ) = (−1)j−1ζjdζ1 ∧ · · · ∧ d̂ζj ∧ · · · ∧ dζn,

Φ(ζ) = dζ1 ∧ · · · ∧ dζn

and Cn is a constant depending only on n such that for any ψ ∈ C
n,0
0 (Cn),

ψ(w) =

∫
ψ(z) ∧ ∂k(z, w) (2.1)

holds, i.e., the distributional derivative ∂k is supported on the diagonal.
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2.5 Representation of KM(z, w)

Let (M,ω) be a complete Kähler manifold. Let w ∈M be fixed and take a coordinate ball

B2r = {|ζ| < 2r} around w. Let ρw ∈ C∞
0 (Br), ̺w ∈ C∞

0 (B2r) such that ρw|B r
2

= 1, ̺w|B r
3

= 0

and ̺w = 1 on Br −B r
2

(if w is changed, r might be changed). Applying Stock’s theorem, we

obtain the following formula for any ψ ∈ Hn,0
2 (M):

ψ(w) = ρw(w)ψ(w) =

∫
ρw(ζ)ψ(ζ) ∧ ∂k(ζ, w)

= (−1)n+1

∫
∂(ρw(ζ)ψ(ζ)) ∧ k(ζ, w)

= (−1)n+1

∫
̺w(ζ)∂(ρw(ζ)ψ(ζ)) ∧ k(ζ, w)

=

∫
ψ(ζ) ∧ ρw(ζ)∂(̺w(ζ)k(ζ, w)).

It follows that

ψ(w) = (ψ, P (ρw∂(̺wk( · , w)))), ∀ψ ∈ Hn,0
2 (M),

where P is the Bergman projection. The uniqueness of reproducing kernel guarantees

KM (z, w) = P (ρw(z)∂(̺w(z)k( · , w)))

(compare [7]).

2.6 Proof of Theorem 1.3

By the hypothesis of the theorem, we may choose the r in Subsection 2.5 sufficiently small

so that the support of ̺w|Γf
is contained in

⋃
j

Bǫ(pj , pj) for some ǫ > 0, where pj are fixed

points and Bǫ(pj , pj) are geodesic balls around (pj , pj) in M ×M . Set ηw = ρw∂(̺wk( · , w)).

Note that for each fixed w, ηw(z) is a form of type (n, 0) w.r.t. z, it follows from Subsection

2.1 that

(−1)n

∫

M

KM (z, f(z)) = (−1)n

∫

M

ηf(z)(z) − 2(−1)n

∫

M

∂
∗
G∂ηf(z)(z).

Now if we set wj = zj − f(zj) in some local coordinate zj around pj, then

Φ(wj) = det(I − Jf )Φ(zj).

If ǫ is sufficiently small, then the support of ηf(z)(z) is a finite number of small balls centered

at pj . Therefore, for r ≪ ǫ we have

(−1)n

∫

M

ηf(z)(z) = (−1)n

∫

{|z−f(z)|< r
2
}
∂(̺ζk( · , ζ))|ζ=f(z)

= (−1)nCn

∑

j

∫

{|wj |= r
2
}

∑
i

Φi(wj) ∧ Φ(wj + f(zj))

|wj |2n
(by Stokes theorem)
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= (−1)nCn

∑

j

∫

{|wj|= r
2
}

∑
i

Φi(wj) ∧ Φ(zj)

|w|2n

= (−1)nCn

∑

j

∫

{|wj|= r
2
}

∑
i

Φi(wj) ∧ Φ(wj)

|wj |2n det(I − Jf )

→
∑

j

1

det(I − Jf )(pj)
, r → 0,

because

(−1)nCn

∫

{|w|= r
2
}

∑
Φi(w) ∧ Φ(w)

|w|2n
= (−1)nCn

∫

{|w|= r
2
}

Φ(w) ∧ ∑
Φi(w)

|w|2n

=

∫

{|w|= r
2
}
Φ(w) ∧ ∂

{
Cn

∑
Φi(w)

|w|2n

}

=

∫
χ{|w|< r

2
}Φ(w) ∧ ∂

{
Cn

∑
Φi(w)

|w|2n

}

= 1,

where χ{ · } denotes the characteristic function and the last equality follows from (2.1) (passing

to a C∞ regularization if necessary). On the other hand,
∫

M

∂
∗
G∂ηf(z)(z) =

∫

Mz

∫

Mw

∂
∗
G∂ηw(z) ∧ ∂k(w, f(z))

=

∫

Mw

∫

Mz

∂
∗
G∂ηw(z) ∧ ∂k(w, f(z)) (by Fubini’s theorem)

=

∫

Mw

∫

Mz

G∂ηw(z) ∧ ∂2
k(w, f(z))

= 0.

The proof is completed.

3 Proof of Theorem 1.2

Let L2
p,q(Ω) denote the space of square-integrable (p, q)-forms with respect to the Lebesgue

measure and let H2
p,q(Ω) be the corresponding L2-harmonic spaces. Set Dp,q the space of

compactly supported smooth forms. We always omit the lower subscript when p = q = 0.

It follows from Hörmander [6] that there is a bounded operator N : L2
p,q(Ω) → L2

p,q(Ω), the

Neumann operator, such that

(1) N(H2
p,q(Ω)) = 0, ∂N = N∂, ∂

∗
N = N∂

∗
;

(2) N(Dp,q) ⊂ Dp,q;

(3) Pg = g − ∂
∗
N∂g holds for any g ∈ L2(Ω) with ∂g ∈ L2

0,1(Ω).

Here P : L2(Ω) → H2(Ω) denotes the Bergman projection and ∂
∗

denotes the adjoint of ∂

with respect to the Lebesgue measure.

Set dVz = Φ(z) ∧ Φ(z) and denote by K∗
Ω(z, w) the Bergman kernel function of Ω. From

the argument in Subsection 2.5, we see

K∗
Ω(z, w) = P (λw)(z)
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with

λw(z) =
ηw(z)

Φ(z) ∧ Φ(w)
.

Thus

(−1)n

∫

Ω

KΩ(z, f(z))

= (−1)n

∫

Ω

K∗
Ω(z, f(z)) detJf (z)dVz

= (−1)n

∫

Ω

P (λf(z))(z) det Jf (z)dVz

= (−1)n

∫

Ω

λf(z)(z) detJf (z)dVz − (−1)n

∫

Ω

∂
∗
N∂ λf(z)(z) detJf (z)dVz .

We may choose r sufficiently small so that the support of λw|Γf
is contained in

⋃
j

Bǫ(pj , pj)

for some ǫ > 0, where Bǫ(pj , pj) denotes the Euclidean ball centered at (pj , pj) with radius ǫ.

Observe that

(−1)n

∫

Ω

λf(z)(z)Jf (z)dVz = (−1)n

∫

Ω

ηf(z)(z) →
∑

f(pj)=pj

1

det(I − Jf )(pj)
, r → 0

by Subsection 2.6, while
∫

Ω

∂
∗
N∂ λf(z)(z) detJf (z)dVz =

∫

Ω

∫

Ω

∂
∗
N∂ λw(z)∂

(detJf (z)k(w, f(z))

dVw

)
dVwdVz

=

∫

Ω

∫

Ω

∂
∗
N∂ λw(z)∂

(detJf (z)k(w, f(z))

dVw

)
dVzdVw

= 0

for all sufficiently small r, since N maps D0,1 to D0,1. The proof is completed.

Remark 3.1 The reason why we call Theorem 1.2 a Lefschetz fixed point formula lies in

the following: Fix a positive C∞ strictly plurisubharmonic exhaustion function ρ on Ω and set

ω = ∂∂ρ2. Then ω is a complete Kähler metric such that

|∂ρ2|2ω ≤ 2ρ2

which is Kähler convex in the sense of McNeal [9], hence L2-harmonic forms vanish outside the

middle degree, and we still have

Lω(f) = (−1)n

∫

Ω

KΩ(z, f(z)).

4 Applications and Remarks

4.1 Variations of Theorems 1.2 and 1.3

Corollary 4.1 Let Ω ⊂⊂ Cn be a domain of holomorphy and let f, g be holomorphic

automorphisms such that the closure of the graph Γf◦g−1 of f ◦ g−1 does not meet the diagonal

at the boundary of Ω × Ω. Then

(−1)n

∫

Ω

KΩ(g(z), f(z)) =
∑

g−1◦f(pj)=pj

1

det(I − Jg−1◦f )(pj)
. (4.1)
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Proof In fact, from (1.1),

(−1)n

∫

Ω

KΩ(g(z), f(z)) = (−1)n

∫

Ω

K∗
Ω(g(z), f(z)) detJg(z) detJf (z)dVz

= (−1)n

∫

Ω

K∗
Ω(z, g−1 ◦ f(z)) detJg−1◦f (z)dVz

= (−1)n

∫

Ω

KΩ(z, g−1 ◦ f(z))

=
∑

f(pj)=g(pj)

1

det(I − Jg−1◦f )(pj)
,

where the second equality follows from the well-known translation formula for the Bergman

kernel function.

Similarly, we have

Corollary 4.2 Let (M,ω) be an n-dimensional Kähler hyperbolic manifold and let f, g be

holomorphic automorphisms such that the closure of the graph Γf◦g−1 of f ◦ g−1 does not meet

the diagonal at the ideal boundary of M ×M . Then (4.1) holds.

4.2 Examples

A basic difference between the fixed point formulas of the classical and ours is that in some

cases, the left side of (1.1) is computable. This enables us calculate some seemingly complicated

integrals.

Example 4.1 Let D denote the unit disk in C. We claim
∫

D

1

(1 − 3
5z − 3

5z + |z|2)2 dVz =
25π

32
.

Indeed, we can take f(z) =
3

5
−z

1− 3

5
z
∈ Aut(D), Aut(D) being the automorphism group of D. It is

easy to see that 1
3 is the only fixed point of f in D and f has not fixed points on the boundary

of D. Thus by (1.1), we have

−
∫

Ω

KΩ(z, f(z)) = − 1

π

∫

D

1

(1 − zf(z))2
Jf (z)dVz

=
16

25π

∫

D

1

(1 − 3
5z − 3

5z + |z|2)2 dVz

=
1

1 + 16
25(1− 3

5
z)2|

z=
1

3

=
1

2
.

Example 4.2 Let B∗
2 := {z = (z1, z2) ∈ C2, |z|2 + |z · z| < 1} be the minimal ball in C2,

where z · z = z2
1 + z2

2 . We shall show
∫

B∗

2

3(1 − φ(z))2(1 + φ(z)) + (z2
1 + z2

2)(w2
1 + w2

2)(5 − 3φ(z))

((1 − φ(z))2 − (z2
1 + z2

2)(w2
1 + w2

2))
3

dVz =
π2

4 − 2
√

2
,

where φ(z) =
√

2
2 (|z1|2 − z1z2i − z2z1i + |z2|2), w1 =

√
2

2 (z1 + z2i), w2 =
√

2
2 (z2 + z1i). It is

verified as follows: clearly, the automorphism

z = (z1, z2), f(z) = (z1, z2)

√
2

2

(
1 i
i 1

)
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satisfies the hypothesis of Theorem 1.3. On the other hand, it is known from [10] that the

Bergman kernel function has the following explicit expression:

KB∗

2
(z, w) =

2

π2

3(1 − 〈z, w〉)2(1 + 〈z, w〉) + (z · z)w · w(5 − 3〈z, w〉)
((1 − 〈z, w〉)2 − (z · z)w · w)3

.

Theorem 1.3 implies

∫

B∗

2

KΩ(z, f(z)) =

∫

B∗

2

KB∗

2
(z, f(z))Jf (z)dVz

=
2

π2

∫

B∗

2

3(1 − φ(z))2(1 + φ(z)) + (z2
1 + z2

2)(w
2
1 + w2

2)(5 − 3φ(z))

((1 − φ(z))2 − (z2
1 + z2

2)(w
2
1 + w2

2))
3

dVz

=
1

2 −
√

2
,

where φ(z) =
√

2
2 (|z1|2 − z1z2i − z2z1i + |z2|2), w1 =

√
2

2 (z1 + z2i), w2 =
√

2
2 (z2 + z1i).

Remark 4.1 Our theorems exclude the case when the automorphism has fixed points on the

boundary. It is probable that the latter might be settled by using Kohn’s theory for ∂-Neumann

problem, at least for the special case of the strongly pseudoconvex domains.
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