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~ Let (@, &, P) be a complete probability épace and F = (F ) tcro,m (b<oo) be'a
. family of increasing sub—a—ﬁelds_of &, satisfying the usual conditions. Suppose that
W ={W;, 0<t<b} is the Wieher prdcess with_ respect to F, X ={X,, 0<I<<b} is
progressively meastrable and . ' " B
P U:X?dt<o¢5}=i,'
then we can define the Ito-integral ‘ '
(X W)=, XoaW,. |
If we denote s I ) )
Zy—exp {j XW,— & X&ds}, @
0 2Jo J
then it is an exponential (local) martingale. In order to apply Girsanov theorem to
the problems of equivalence and transformation of measures™ %, i is important . to:
examine ‘the ‘condition, for E[Z;]=1,1. e., the uniform integrabilify of exponential
martingale Z. In [5], Kazamaki has proved that, in X W is a BMO martingale, then
E[Z,]=1. In [9], Yen extended the Novikov’s resuls and proved that if

in{gfon (& ma)f "2, @

then H[Z,] =1. While we discuss the equivalence. of Gaussian measures, X +W may
not be a BMO martingale even if X is GauSS1an In this case it is also dlfﬁcult to verify
condition (2). ‘The purpose of this paper is to prove that if X is a progressively
measurable Gaussian process and the integral of X with respect to. V. exists, then the
Z given by (1) is always uniformly integrable.

In this paper, the definitions and notations _acé()rd with those in. [8].

In the discussion of equivalence of Gaussian measures, the stochastic integrals
with respect to infinite G‘raussmn processes with mdependent increments are necessary™!
So we shall discuss the uniform mtegrablllty of exponentlal martmgale, which is
more general than (1). '

Lemma 1. Let X {X b O<t<b} be @ aﬂeal measwmble G’cmsswn process cmd my be
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an inereasing Mght-continubus SJumetion, If
' b
[ 1xam <o, |

where | X+ = (B| X[, then aljm,oét_ {;q)é_fry sample function of X is integrable with
respect to my and the integral of sample function

b

I-[ X.dm,
is a Gaussian random variable. . »
Proof If we denote the integral in quadratic mean with respect to m by I (cf.

[4] §4), then I ig a Gaussian random variable and for every random variable Y, for
which EY? exists, we have

§ o |
B{IY}~| B(X¥)dm,
and in particular, for every bounded random variable ¥ thig relatibn is true .
BV} = J E(XY)dm,~ 1 { XtYdm,} B{ITY,

so I=1I a.s. and T is a Gaussian random variable. .

Lemma 2. Let X={X, 0<it<b} be a measurable Gaussian process, of which
almost every sample. function is integrable with respect to inereasing right-continuous
Junction m, then the integral in trajectory

b
.T =J X tdmt .
0
is a Qaussian random variable.

Pfroof First, we may assume that b is finite. Set ”X | = (E | X:]|2)¥2 and deﬁne

s‘ ] Xt
£ 146X,

then Y is also a measurable Gaussian process and | Y I <%, therefore
vb
o priam<co,
By lemma 1, the integral of qample functlon of Y: with respect to m j Yidm; is a

Gaussmn random variable. Suppose ¢ |, 0. Since
s l X t! |
g mdxt"
hm Y? = .Xt, a. Se

8l0

b Lebesgue’s conver ence theorem we have '
Y )

hm 0 Yt dmt—j Xtdmt, a. s.

el0

hence from lemma 16.10[7], L X :dm is a Gaussian random variable.
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Tfb=+oo, we have  lim X,dm,_ j X odims,

Cttoo JO
400
S0 J X dm,; is also a Gaussw,n random vamable
(1]

Remark. In the same way, we can also’ prove that if X =(X{®, X, ) is a Gaussian - process with
infinite components, {g;(f), j=1} is a system of measurable functions and the integrals in trajectory
Eia=J X("‘Pg (tydmy
exist, then {5”, i=1, j=>1} is a system of Gaussian random variables.

Lemma 3. If {£,, n>1} isa sequence of Gaussian random variables, then

Sme< [Eexp(——Zfz)] e
V \Furthermoo’e, 'z,f EE{E‘ <1, then : "
Boxp(+ 2@)] ( -ZE)”. . @

Proof TFirst, we suppose that &= (&, +-+, £,)7 is an n-dimensional Gaussian
random vector, where ()~ denotes the transition of vector or matrix. In this case,
there exists an n-dimensional random vector n with Gaussian distribution N (m, I)
and an nXn matrix C such that £ =0n, so '

2 Ei=ErE =00, -

If necessary, we can transform 7 by an orthogonal transformation, so we may assume
that 0°C'=D is a diagonal matrix, let D=diag(As, +**, As), then

252 7" Dn= Z?»,m,_

SO M1, ***5 T are mutually independent and every 7; is a Gaussmn random Varla.ble
with distribution N (m;, 1). Therefore :

(plon(-3 2N} [l ol -

o exp( 22 ) ] e (127

=H (1+x,+xjm§)>1+;1x!(1+m§)

~1+8 (3 xmg)=1'+’élﬂgz, : ®)
Furthermore, suppose iE§§<1, we have also that ‘

sfons 38l - Bl e 224
<l ]

<[1 2x,(1+m§)] (1_ 21;52) . ®

(S
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By monotone convergence theorem lot N —>oo in (5) (6), we. can obtaln (3) (4)
respectively. . -

Lemma 4. Suppose that m, 4s. a right-continuous increasing funotion on [O b)
and X = (X, 0st<d, ASi<00) is a Gaussian process, if X satisfies.

Pl (XD dim. < L e
.[J=1 _[o ( s )dms<oo ] =1, (7)
E:E Z (X gé))2dms<°b;,: LT ©

. oo b o - i s
Furthermore, if ZIE L (XP)?dm; <1, then .
e _ _ - S
Bloxp(5 3! xram)}<(1~Fim ; Cryram)”
Proof Let {p;(), j=>1} be an- arbﬂ:rary completely orthogonal gystem in
I2([0, b), dm) and define : :

L= [ XOp @ am,, i1, j>1,

where integrals are taken in trajectory of X . According to the remark of lemma 2,
{64, 4=1, j=1} is a system of Gaussian random variables and by Paserval’s equality
we have

g=

. , .‘ . . , . .
[jammam-3a, 3 @eram=3 .
0 J=1 1J0 b=l
Also, by using the monotone convergence theorem we have ’
B[, xeytam =3 B, EZEj (xi0) dmy = 3 3,
| A

So from (3) we hav

g}E J: (X2 dmt 2 E&< [E exp ( *% $%1 k 31)] -

_ EBXP_.(—E“ Z; L (ng-))zdmt)]_z <oo,

o (b ,
Furthermore, if EE J’ (X)2 dmt<1, from (4) we can deduce that

0 L

N[H

_E_eé;p(é ijb (X“’)*’dmt) Ee‘xp<_1_§- &)< ( -3 ng) |

i=1Jo
‘ o1
2

(1 ZE (X“”)”dmt) .
This completes the proof of the lemma. - e i

Remarks. 1. These lemmas are the extensmn.s and 1mprovements of lemma 7.2 in [6].
2. Lemma 4 means that (7) and (8) are equivalent mutually. -
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" 3. From lemma 8 it is eagy to see. that although {¢5, j=1} ma.y not be mutually independent, the zero-one
law is still valid for the debermmatxon of Whether the series 2 ¢2is convergent or dwergent because if 2 & is
convergent with positive probablhty, then the right s1de of (3) is finite, hence 2 EBt2<oo and 50 2 €°<oo a.8.
The 2 J’ (X ) 2%dm; is the same as the series 5‘ E,,

According to [2], let Wi= (W, -, W, ») be a process with infinite
components, which are continuous Gaussian processes with independent increments.
'We also suppose that W, satisfies-the following conditions

E(W('il)_W(t)) =0, ®

EWP W) (WP —=WP) =8;(m®—mP), '
whete every mf” is an increasing continuous function (usually it is also assumed
that dm‘1’>>dm(2)>>--->>dm""’>$--- , but here ‘we do not make this assumption). Let
Fo=(fD, woe, f ), where f{ (}1} =1, 2, -+, m, ---) is progressively measurable with
respect to F = (F;), then under ’

P{%j ( f@)ﬁdm<i><oo} 1,
Wwe can deﬁne the following stochastlo 1ntegra1 feW as-in [2].
o FW=3 [, foawe,
which.is a F-local sqdareeintegrable martingale and. .
W, f =3[ O ame,
Theorem. Let W= W, «-, W, «-:) be a process with infinite componenis
which are continuous Gausswn praceoses with mdependent increments and.satisfy (9) -

Also suppose that { fi— ( f‘l’ TR i S )} isa Gaussmn pqﬂocess and for every i, f5 4
proga"esswely measurable. If

. b . i B R
P[S[ (oyamp<ool=1, . e
den  Zi—exp [ peawe-3 5 [ g0ame}
isa umformly integrable mafrtmgale, in pa/rtwulaa", we have
B{Zy}=1,

Proof On [0, b) every m“) corresponds to a cr—ﬁmte measure Whmh is equivalent
1o a finite measure'n®. We set B b ‘

. o o
gl n‘”([O Dy
Therefore 'm(')<<m and we: erte p(”*-%, ‘which is a nonnegative function on

[0 b) Now we deﬁne ' g A R :
X®= ,\/;.F)‘fg%)’ RREaS

. then we have,
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> (X“’)zdm, zj ()2dmi® <o, a.'s.
Lemma 4 1mphes that o
j 3 B(XP)2dm,= EEJ (X<->)2dm,<oo
hence there exists a finite partltlon of [0, bl:0=t,<t <+ -<t,=b such that, for
avery &

'ty oo ..
| EE(X?’)zdmt<1,'

k-1 $=

also by lemma 4, we obtain

B {exp (% g Lk_ f“’)’dm“’ } {exp 2, (X D)2 dm, )}

| <(1-58[" @Pydm)” <oo,
‘Write
Bi=onn(S [ roawe-1L [ royane)
=oxp{ (W)= ()= 5 (F, F =<, 750,

For fixed u=1t3—y, {Z_,, tk_1<t<tk} is an exponential martingale, so by the results of
[9], we conclude that {Zf,‘_,, 1 <<t} is a uniformly integrable martingale, in
particular P -

B(Z,) =1, t.k—1<\t<tk;
_ : B 73 F) =1, 1<i<n, )
Thus  B(Z,) =B(Z%) = BB (.| F,.) ) =B (Ts) == BEs) =1,
Therefore {Z;, 0<t<b} is a umformly integrable martmgale, which completes the .
proof of the theorem.

Corollary. If K®(u, )= (K (w, v), j=1), =1 are suoh that
Ki(u, v) =0, u<w, .

23 [ Kiw odnganp<co,

s, 1
Lt - fP=3 j Ky(t, o)A (v),
then  Zi=exp {zj f<‘)dW“> zj ( f“’)“’dm“’} 0<t<b,

18 @ uniformly integrable fmwrtmgale.
Proof Since : -
o ) o S
ZE’J (f“’)‘“’dm“’~2 ZJ I K3 (u, v)dm’ dmiP <oo, .
=1 j= o :
80 (10) is satisfied and from the theorem .we deduce that {Z,, O<t<b} is umformly
integrable. 4
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By using former results and the Hida-Cramer decomposition of (aussian process, '
as in [1] we may discuss the equivalence of Gaussian measures and obfain their

Radon-Nikodym derivatives.
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OBIES {6, n>1) WERS ISR, M
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SIE4 om0, b) kA ESHE XX ={X P 0<4<b, 1<i<o0} HEA
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S (" (x)dmy<en,
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xm BW=WPD, v, W, . )j@——/\,@ﬁﬂﬁ/\ﬁgmﬂﬁ, ﬁﬁa‘s%ﬁ%ﬁ%@.

BT HBEIBARE . ‘ R
- E{W‘”’ W@y=0,

, E{ (W(i) W(z)) (W(j) W(J))} 3 (m(i)_mgi)). -’
X{ﬂ—ﬁm°ufm )} KB IERS R, #
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