THE UNIFORM INTEGRABILITY OF A CLASS OF EXPONENTIAL MARTINGALES

WANG JIAGANG

(Fudan University)

Let (Ω, \mathscr{F}, P) be a complete probability space and $F = (\mathscr{F}_t)_{t \in [0, b]}$ $(b \leq \infty)$ be a family of increasing sub- σ -fields of \mathscr{F} , satisfying the usual conditions. Suppose that $W = \{W_t, \ 0 \leq t \leq b\}$ is the Wiener process with respect to F, $X = \{X_t, \ 0 \leq t \leq b\}$ is progressively measurable and

$$P\left\{\int_0^b X_t^2 dt < \infty\right\} = 1$$
,

then we can define the Ito-integral

 $(X \cdot W)_t = \int_0^t X_s dW_{s.}$

If we denote

$$Z_{t} = \exp\left\{ \int_{0}^{t} X_{s} dW_{s} - \frac{1}{2} \int_{0}^{t} X_{s}^{2} ds \right\}, \tag{1}$$

then it is an exponential (local) martingale. In order to apply Girsanov theorem to the problems of equivalence and transformation of measures^[1,3,6], it is important to examine the condition for $E[Z_b]=1$, i. e., the uniform integrability of exponential martingale Z. In [5], Kazamaki has proved that, if $X \cdot W$ is a BMO martingale, then $E[Z_b]=1$. In [9], Yen extended the Novikov's results and proved that if

$$\lim_{a\uparrow} \left\{ E \left[\exp\left(\frac{a}{2} \int_0^b X_t^2 dt \right) \right] \right\}^{1-a} = 1, \tag{2}$$

then $E[Z_b]=1$. While we discuss the equivalence of Gaussian measures, $X \cdot W$ may not be a BMO martingale even if X is Gaussian. In this case it is also difficult to verify condition (2). The purpose of this paper is to prove that if X is a progressively measurable Gaussian process and the integral of X with respect to W exists, then the Z given by (1) is always uniformly integrable.

In this paper, the definitions and notations accord with those in [8].

In the discussion of equivalence of Gaussian measures, the stochastic integrals with respect to infinite Gaussian processes with independent increments are necessary^[3]. So we shall discuss the uniform integrability of exponential martingale, which is more general than (1).

Lemma 1. Let $X = \{X_t, \ 0 \le t < b\}$ be a real measurable Gaussian process and m_t be Manuscript received Dec. 25, 1979.

an increasing right-continuous function. If

$$\int_0^b \|X_t\| dm_t < \infty,$$

where $||X_t|| = (E|X_t|^2)^{1/2}$, then almost every sample function of X is integrable with respect to m_t and the integral of sample function

$$\tilde{I} = \int_0^b X_t dm_t$$

is a Gaussian random variable.

Proof If we denote the integral in quadratic mean with respect to m by I (cf. [4] § 4), then I is a Gaussian random variable and for every random variable Y, for which EY^2 exists, we have

$$E\{IY\} = \int_0^b E(X_t Y) dm_t,$$

and in particular, for every bounded random variable Y this relation is true

$$E\{IY\} = \int_{0}^{b} E(X_{t}Y) dm_{t} = E\left\{\int_{0}^{b} X_{t}Y dm_{t}\right\} = E\{\tilde{I}Y\},$$

so $\tilde{I} = I$ a.s. and \tilde{I} is a Gaussian random variable.

Lemma 2. Let $X = \{X_t, \ 0 \le t < b\}$ be a measurable Gaussian process, of which almost every sample function is integrable with respect to increasing right-continuous function m, then the integral in trajectory

$$\tilde{I} = \int_0^b X_t dm_t$$

is a Gaussian random variable.

Proof First, we may assume that b is finite. Set $||X|| = (E|X_t|^2)^{1/2}$ and define

$$Y_t^{\varepsilon} = \frac{X_t}{1 + \varepsilon \|X_t\|},$$

then Y_t^{ϵ} is also a measurable Gaussian process and $\|Y_t^{\epsilon}\| < \frac{1}{\epsilon}$, therefore

$$\int_{\mathbf{0}}^{b}\|Y_{t}^{\varepsilon}\|dm_{t}<\infty.$$

By lemma 1, the integral of sample function of Y_t^s with respect to $m \int_0^b Y_t^s dm_t$ is a Gaussian random variable. Suppose $s \downarrow 0$. Since

$$|Y_t^e| = \frac{|X_t|}{1 + \varepsilon \|X_t\|} < |X_t|,$$

$$\lim_{\varepsilon \downarrow 0} Y_t^e = X_t, \quad \text{a. s.}$$

by Lebesgue's convergence theorem, we have

$$\lim_{\varepsilon \downarrow 0} \int_0^b Y_t^\varepsilon dm_t = \int_0^b X_t dm_t, \quad \text{a. s.}$$

hence from lemma 16.10[7], $\int_0^b X_t dm_t$ is a Gaussian random variable.

If
$$b = +\infty$$
, we have
$$\lim_{t \uparrow +\infty} \int_0^t X_t dm_t = \int_0^\infty X_t dm_t,$$

so $\int_0^{+\infty} X_t dm_t$ is also a Gaussian random variable.

Remark. In the same way, we can also prove that if $X = (X_t^{(1)}, X_t^{(2)}, \cdots)$ is a Gaussian process with infinite components, $\{\varphi_j(t), j \ge 1\}$ is a system of measurable functions and the integrals in trajectory

$$\xi_{ij} = \int_0^b X_i^{(i)} \varphi_j(t) \, dm_i$$

exist, then $\{\xi_{ij}, i\geqslant 1, j\geqslant 1\}$ is a system of Gaussian random variables.

Lemma 3. If $\{\xi_n, n \ge 1\}$ is a sequence of Gaussian random variables, then

$$\sum_{i=1}^{\infty} E\xi_i^2 \leqslant \left[E \exp\left(-\frac{1}{2} \sum_{i=1}^{\infty} \xi_i^2\right) \right]^{-2}. \tag{3}$$

Furthermore, if $\sum_{i=1}^{\infty} E\xi_i^2 < 1$, then

$$E\left[\exp\left(\frac{1}{2}\sum_{i=1}^{\infty}\xi_{i}^{2}\right)\right] \leqslant \left(1 - \sum_{i=1}^{\infty}E\xi_{i}^{2}\right)^{-\frac{1}{2}}.$$
(4)

Proof First, we suppose that $\xi = (\xi_1, \dots, \xi_n)^{\tau}$ is an *n*-dimensional Gaussian random vector, where ()^{τ} denotes the transition of vector or matrix. In this case, there exists an *n*-dimensional random vector η with Gaussian distribution N(m, I) and an $n \times n$ matrix C such that $\xi = C\eta$, so

$$\sum_{i=1}^{n} \xi_{i}^{2} = \xi^{\tau} \xi = \eta^{\tau} C^{\tau} C \eta_{\bullet}$$

If necessary, we can transform η by an orthogonal transformation, so we may assume that $C^{\tau}C = D$ is a diagonal matrix, let $D = \text{diag}(\lambda_1, \dots, \lambda_n)$, then

$$\sum_{i=1}^n \xi_i^2 = \eta^{\tau} D \eta = \sum_{j=1}^n \lambda_j \eta_j^2,$$

so η_1 , ..., η_n are mutually independent and every η_j is a Gaussian random variable with distribution $N(m_j, 1)$. Therefore

$$\left\{ E \left[\exp\left(-\frac{1}{2} \sum_{j=1}^{n} \xi_{j}^{2} \right) \right] \right\}^{-2} = \left[\prod_{j=1}^{n} E \exp\left(-\frac{1}{2} \eta_{j}^{2} \right) \right]^{-2} \\
= \prod_{j=1}^{n} (1 + \lambda_{j}) \exp\left(\frac{\lambda_{j} m_{j}^{2}}{1 + \lambda_{j}} \right) \geqslant \prod_{j=1}^{n} (1 + \lambda_{j}) \left(1 + \frac{\lambda_{j} m_{j}^{2}}{1 + \lambda_{j}} \right) \\
= \prod_{j=1}^{n} (1 + \lambda_{j} + \lambda_{j} m_{j}^{2}) \geqslant 1 + \sum_{j=1}^{n} \lambda_{j} (1 + m_{j}^{2}) \\
= 1 + E\left(\sum_{j=1}^{n} \lambda_{j} \eta_{j}^{2} \right) = 1 + \sum_{j=1}^{n} E \xi_{j}^{2}. \tag{5}$$

Furthermore, suppose $\sum_{i=1}^{n} E\xi_{i}^{2} < 1$, we have also that

$$E\left[\exp\left(\frac{1}{2}\sum_{j=1}^{n}\xi_{j}^{2}\right)\right] = \prod_{j=1}^{n}E\left[\exp\left(\frac{1}{2}\lambda_{j}\eta_{j}^{2}\right)\right] = \prod_{j=1}^{n}\left[\frac{1}{1-\lambda_{j}}\exp\frac{\lambda_{j}m_{j}^{2}}{1-\lambda_{j}}\right]^{\frac{1}{2}}$$

$$\leqslant \prod_{j=1}^{n}\left[\frac{1}{1-\lambda_{j}}\left(1-\frac{\lambda_{j}m_{j}^{2}}{1-\lambda_{j}}\right)^{-1}\right]^{\frac{1}{2}}$$

$$\leqslant \left[1-\sum_{j=1}^{n}\lambda_{j}(1+m_{j}^{2})\right]^{-\frac{1}{2}} = \left(1-\sum_{j=1}^{n}E\xi_{j}^{2}\right)^{-\frac{1}{2}}.$$
(6)

By monotone convergence theorem let $N \to \infty$ in (5), (6), we can obtain (3), (4) respectively.

Lemma 4. Suppose that m_s is a right-continuous increasing function on [0, b) and $X = (X_i^{(i)}, 0 \le t < b, 1 \le i < \infty)$ is a Gaussian process, if X satisfies

$$P\left[\sum_{i=1}^{\infty}\int_{0}^{b}\left(X_{s}^{(i)}\right)dm_{s}<\infty\right]=1,\tag{7}$$

then

$$\sum_{i=1}^{\infty} E \int_{0}^{b} (X_{s}^{(i)})^{2} dm_{s} < \infty.$$
 (8)

Furthermore, if $\sum_{i=1}^{\infty} E \int_{0}^{b} (X_{i}^{(i)})^{2} dm_{t} < 1$, then

$$E\left\{\exp\left(\frac{1}{2}\sum_{i=1}^{\infty}\int_{0}^{b}(X_{t}^{(i)})^{2}dm_{t}\right)\right\} \leqslant \left(1-\sum_{i=1}^{\infty}E\int_{0}^{b}(X_{t}^{(i)})^{2}dm_{t}\right)^{\frac{1}{2}}.$$

Proof Let $\{\varphi_j(t), j \ge 1\}$ be an arbitrary completely orthogonal system in $L^2([0, b), dm)$ and define

$$\xi_{ij} = \int_0^b X_t^{(i)} \varphi_j(t) dm_t, \quad i \geqslant 1, \ j \geqslant 1,$$

where integrals are taken in trajectory of X. According to the remark of lemma 2, $\{\xi_{ij}, i \ge 1, j \ge 1\}$ is a system of Gaussian random variables and by Paserval's equality we have

$$\int_0^b (X_t^{(i)})^2 dm_t = \sum_{j=1}^\infty \xi_{ij}^2, \qquad \sum_{i=1}^\infty \int_0^b (X_t^{(i)})^2 dm_t = \sum_{i,j=1}^\infty \xi_{ij}^2.$$

Also, by using the monotone convergence theorem we have

$$E\int_{0}^{b} (X_{t}^{(i)})^{2} dm_{t} = \sum_{j=1}^{\infty} E\xi_{ij}^{2}, \quad \sum_{i=1}^{\infty} E\int_{0}^{b} (X_{t}^{(i)})^{2} dm_{t} = \sum_{i,j=1}^{\infty} E\xi_{ij}^{2}.$$

So from (3) we hav

$$\begin{split} \sum_{i=1}^{\infty} E \int_{0}^{b} (X_{t}^{(i)})^{2} dm_{t} &= \sum_{i,j=1}^{\infty} E \xi_{ij}^{2} \leqslant \left[E \exp\left(-\frac{1}{2} \sum_{i,j=1}^{\infty} \xi_{ij}^{2}\right) \right]^{-2} \\ &= \left[E \exp\left(-\frac{1}{2} \sum_{i=1}^{\infty} \int_{0}^{b} (X_{t}^{(i)})^{2} dm_{t}\right) \right]^{-2} < \infty. \end{split}$$

Furthermore, if $\sum_{i=1}^{\infty} E \int_{0}^{b} (X_{t}^{(i)})^{2} dm_{t} < 1$, from (4) we can deduce that

$$\begin{split} E \exp \left(\frac{1}{2} \sum_{i=1}^{\infty} \int_{0}^{b} (X_{t}^{(i)})^{2} dm_{t}\right) &= E \exp \left(\frac{1}{2} \sum_{i,j=1}^{\infty} \xi_{ij}^{2}\right) \leq \left(1 - \sum_{i,j=1}^{\infty} E \xi_{ij}^{2}\right)^{-\frac{1}{2}} \\ &= \left(1 - \sum_{i=1}^{\infty} E \int_{0}^{b} (X_{t}^{(i)})^{2} dm_{t}\right)^{-\frac{1}{2}}. \end{split}$$

This completes the proof of the lemma.

Remarks. 1. These lemmas are the extensions and improvements of lemma 7.2 in [6].

2. Lemma 4 means that (7) and (8) are equivalent mutually.

3. From lemma 3 it is easy to see that although $\{\xi_j, j \geqslant 1\}$ may not be mutually independent, the zero-one law is still valid for the determination of whether the series $\sum_{j=1}^{\infty} \xi_j^2$ is convergent or divergent, because if $\sum_{j=1}^{\infty} \xi_j^2$ is convergent with positive probability, then the right side of (3) is finite, hence $\sum_{j=1}^{\infty} E\xi_j^2 < \infty$ and so $\sum_{j=1}^{\infty} \xi_j^2 < \infty$ a.s. The $\sum_{j=1}^{\infty} \int_{0}^{T} (X_j^{(i)})^2 dm_t$ is the same as the series $\sum_{j=1}^{\infty} \xi_j^2$.

According to [2], let $W_t = (W_t^{(1)}, \dots, W_t^{(n)}, \dots)$ be a process with infinite components, which are continuous Gaussian processes with independent increments. We also suppose that W_t satisfies the following conditions

$$E(W_t^{(i)} - W_s^{(i)}) = 0,$$

$$E(W_t^{(i)} - W_s^{(i)}) (W_t^{(j)} - W_s^{(j)}) = \delta_{ij} (m_t^{(i)} - m_s^{(i)}),$$
(9)

where every $m_t^{(i)}$ is an increasing continuous function (usually it is also assumed that $dm^{(1)} \gg dm^{(2)} \gg \cdots \gg dm^{(n)} \gg \cdots$, but here we do not make this assumption). Let $f_t = (f_t^{(1)}, \dots, f_t^{(n)}, \dots)$, where $f_t^{(i)}$ $(i=1, 2, \dots, n, \dots)$ is progressively measurable with respect to $F = (\mathcal{F}_t)$, then under

$$P\left\{\sum_{i=1}^{\infty}\int_{0}^{b}(f_{t}^{(i)})^{2}dm_{t}^{(i)}<\infty\right\}=1$$
,

we can define the following stochastic integral $f \cdot W$ as in [2].

$$(f \cdot W)_t = \sum_{i=1}^{\infty} \int_0^t f_s^{(i)} dW_s^{(i)},$$

which is a F-local square-integrable martingale and

$$\langle f \cdot W, f \cdot W \rangle_t = \sum_{i=1}^{\infty} \int_0^t (f_s^{(i)})^2 dm_s$$

Theorem. Let $W = (W_t^{(1)}, \dots, W_t^{(n)}, \dots)$ be a process with infinite components which are continuous Gaussian processes with independent increments and satisfy (9). Also suppose that $\{f_t = (f_t^{(1)}, \dots, f_t^{(n)}, \dots)\}$ is a Gaussian process and for every $i, f_t^{(i)}$ is progressively measurable. If

$$P\left[\sum_{t=1}^{\infty} \int_{0}^{b} (f_{t}^{(t)})^{2} dm_{t}^{(t)} < \infty\right] = 1,$$

$$Z_{t} = \exp\left\{\sum_{s=1}^{\infty} \int_{0}^{t} f_{s}^{(t)} dW_{s}^{(t)} - \frac{1}{2} \sum_{s=1}^{\infty} \int_{0}^{t} (f_{s}^{(t)})^{2} dm_{s}^{(t)}\right\}$$

$$(10)$$

then

is a uniformly integrable martingale, in particular, we have

$$E\{Z_b\} = 1$$
.

Proof On [0, b) every $m^{(i)}$ corresponds to a σ -finite measure which is equivalent to a finite measure $n^{(i)}$. We set

$$m = \sum_{i=1}^{\infty} \frac{1}{n^{(i)}([0, b))2^{i}} n^{(i)}$$
.

Therefore $m^{(i)} \ll m$ and we write $\rho^{(i)} = \frac{dm^{(i)}}{dm}$, which is a nonnegative function on [0, b). Now we define

where
$$X_t^{(i)} = \sqrt{p_t^{(i)}} f_t^{(i)}$$
 , then it is exact.

then we have

$$\sum_{i=1}^{\infty} \int_{0}^{b} (X_{t}^{(i)})^{2} dm_{t} = \sum_{i=1}^{\infty} \int_{0}^{b} (f_{t}^{(i)})^{2} dm_{t}^{(i)} < \infty. \quad \text{a. s.}$$

Lemma 4 implies that

$$\int_{0}^{b} \sum_{i=1}^{\infty} E(X_{t}^{(i)})^{2} dm_{t} = \sum_{i=1}^{\infty} E\left[\int_{0}^{b} (X_{t}^{(i)})^{2} dm_{t} < \infty,\right]$$

hence there exists a finite partition of $[0, b]: 0 = t_0 < t_1 < \cdots < t_n = b$ such that, for every k

$$\int_{t_{k-1}}^{t_k} \sum_{i=1}^{\infty} E(X_t^{(i)})^2 dm_t < 1,$$

also by lemma 4, we obtain

$$\begin{split} E\left\{\exp\left(\frac{1}{2}\sum_{i=1}^{\infty}\int_{t_{k-1}}^{t_k}(f_t^{(i)})^2dm_t^{(i)}\right)\right\} &= E\left\{\exp\left(\frac{1}{2}\sum_{i=1}^{\infty}\int_{t_{k-1}}^{t_k}(X_t^{(i)})^2dm_t\right)\right\} \\ &\leqslant \left(1-\sum_{i=1}^{\infty}E\int_{t_{k-1}}^{t_k}(X_i^{(i)})^2dm_t\right)^{-2}<\infty. \end{split}$$

Write

$$\begin{split} \widetilde{Z}_{u}^{v} &= \exp\left(\sum_{i=1}^{\infty} \int_{u}^{v} f_{s}^{(i)} dW_{s}^{(i)} - \frac{1}{2} \int_{u}^{v} (f_{s}^{(i)})^{2} dm_{s}^{(i)}\right) \\ &= \exp\left\{ (f \cdot W)_{v} - (f \cdot W)_{u} - \frac{1}{2} (\langle f \cdot W, f \cdot W \rangle_{v} - \langle f \cdot W, f \cdot W \rangle_{u}) \right\}. \end{split}$$

For fixed $u=t_{k-1}$, $\{\widetilde{Z}_{t_{k-1}}^t, t_{k-1} \leq t \leq t_k\}$ is an exponential martingale, so by the results of [9], we conclude that $\{\widetilde{Z}_{t_{k-1}}^t, t_{k-1} \leq t \leq t_k\}$ is a uniformly integrable martingale, in particular

$$egin{align} E\left(\widetilde{Z}_{t_{k-1}}^{t}
ight)=&1,\quad t_{k-1}\leqslant t\leqslant t_{k},\ E\left(\widetilde{Z}_{t_{k-1}}^{t}\middle|\mathscr{F}_{t_{k-1}}
ight)=&1,\quad 1\leqslant k\leqslant n. \end{gathered}$$

Thus $E(Z_b) = E(\widetilde{Z}_0^b) = E(E(\widetilde{Z}_{t_{n-1}}^{t_n} | \mathscr{F}_{t_{n-1}}) \widetilde{Z}_0^{t_{n-1}}) = E(\widetilde{Z}_0^{t_{n-1}}) = \cdots = E(\widetilde{Z}_0^{t_1}) = 1$.

Therefore $\{Z_t, 0 \le t < b\}$ is a uniformly integrable martingale, which completes the proof of the theorem.

Corollary. If
$$K^{(i)}(u, v) = (K_{ij}(u, v), j \ge 1), i \ge 1$$
 are such that $K_{ij}(u, v) = 0, u < v,$
$$\sum_{i} \sum_{j} \int_{0}^{b} \int_{0}^{u} K_{ij}^{2}(u, v) dm_{v1}^{(i)} dm_{u}^{(j)} < \infty.$$

Let

$$f_t^{(i)} = \sum_{j=1}^{\infty} \int_0^t K_{ij}(t, v) dW^{(j)}(v),$$

then

$$Z_t = \exp\left\{\sum_{i=1}^{\infty} \int_0^t f_s^{(i)} dW_s^{(i)} - \frac{1}{2} \sum_{i=1}^{\infty} \int_0^t (f_s^{(i)})^2 dm_s^{(i)}\right\}, \quad 0 \leqslant t < b,$$

is a uniformly integrable martingale.

Proof Since

$$\sum_{i=1}^{\infty} E \int_{0}^{b} (f_{t}^{(i)})^{2} dm_{t}^{(i)} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \int_{0}^{b} \int_{0}^{b} K_{ij}^{2}(u, v) dm_{v}^{(i)} dm_{u}^{(j)} < \infty,$$

so (10) is satisfied and from the theorem we deduce that $\{Z_t, 0 \le t < b\}$ is uniformly integrable.

By using former results and the Hida-Cramer decomposition of Gaussian process, as in [1] we may discuss the equivalence of Gaussian measures and obtain their Radon-Nikodym derivatives.

References

- [1] Hitsuda, M., Representation of Gaussian processes equivalent to Wiener process, Osaka J. Math., 5 (1968), 299—312.
- [2] Hitsuda, M., On stochastic integrals with respect to an infinite number of Brownian motions and its applications, *Proc. of Intern. Symp. SDE Kyoto*, (1976), 57—74.
- [3] Hitsuda, M., On a causal and causally invertible representation of equivalent Gaussian processes, Multivariate Analysis IV, P. R. Krishnaiah ed., (1977), 247—265.
- [4] Karhunen, K., Über lineare Methoden in der Wahrscheinlichkeit-srechnung, Ann. Acad. Sci. Fennicae, Ser. A, 37 (1947), 1—79.
- [5] Kazamaki, N., A remark on problem of Girsanov, Sem. Prob. XII, Lect. Notes in Math, 649 (1978).
- [6] Liptzer, R. S. & Shiryaev, A. N., Statistics of random processes, Vol. 1 General theory, N. Y. Springer,
- [7] Yeh, J., Stochastic processes and the Wiener integral, Marcel Dekker, Inc., N. Y., (1973).
- [8] Yen Jia-an, An introduction to modern martingale theory, (to appear).
- [9] Yen Jia-an, On the uniform integrability of exponential martingale, Acta Math. Sinica, 23 (1980),

一类指数鞅的一致可积性

汪 嘉 区 (复旦大学)

摘 要

若 (Ω, \mathcal{F}, P) 为完备概率空间, $F = (\mathcal{F}_t)_{t \in [0, b]}$ 为 \mathcal{F} 的递增子 σ 域族,且满足通常条件, $b < \infty$. 又 $W = \{W_t, 0 < t < b\}$ 为关于 F 的 Wiener 过程, $X = \{X_t, 0 < t < b\}$ 为循序可测过程,且

$$P\left\{\int_{0}^{b}X_{t}^{2}dt\!<\!\infty\right\}\!=\!1$$
,

则可定义 X 关于 W 的 Ito 随机积分

$$(X \cdot W)_t = \int_0^t X_s dW_s, \quad 0 \leqslant t \leqslant b.$$

这时若记

$$Z_{t} = \exp \left\{ \int_{0}^{t} X_{s} dW_{s} - \frac{1}{2} \int_{0}^{t} X_{s}^{2} ds \right\},$$

它便是一个指数(局部) 鞅. 本文的目的在于证明当 X 为循序可测正态过程时,只要 X 关于 W 的积分存在, $\{Z_t, 0 \le t < b\}$ 总是一致可积的.

引理 1 若 $X = \{X_t, 0 \le t < b\}$ 为实可测正态过程,且

$$\int_0^b \|X_t\| dm_t < \infty,$$

其中 $\|X_t\| = (E|X_t|^2)^{1/2}$, m_t 为 [0, b) 上右连续递增函数,则 X 的几乎所有样本函数关于 m_t 可积,且其轨道积分

$$\tilde{I} = \int_0^b X_t dm_t$$

为正态分布随机变量.

引理 $\mathbf{2}$ 若 $X = \{X_t, 0 \le t < b\}$ 为可测正态过程, 其几乎所有样本函数关于右连续增函数 m_t 可积, 即

$$P\left(\int_0^b |X_t|dm_t < \infty\right) = 1$$
,

则按轨道积分

$$\tilde{I} = \int_0^b X_t dm_t$$

是正态分布随机变量.

引理 $\mathbf{3}$ 若 $\{\xi_n, n \geq 1\}$ 为正态分布随机变量序列,则

$$\sum_{j=1}^{\infty} E\xi_j^2 \leqslant \left[E \exp\left(-\frac{1}{2} \sum_{j=1}^{\infty} \xi_j^2\right) \right]^{-2},$$

进而若 $\sum_{j=1}^{\infty} E\xi_j^2 < 1$,则

$$E\left[\exp\left(\frac{1}{2}\sum_{j=1}^{\infty}\xi_{j}^{2}\right)\right] \leqslant \left(1-\sum_{j=1}^{\infty}E\xi_{j}^{2}\right)^{-\frac{1}{2}}$$

引理 4 若 m_s 为 [0, b) 上右连续增函数,又 $X = \{X_t^{(0)}, 0 \le t < b, 1 \le i < \infty\}$ 为正态过程,则当 $P\left\{\sum_{i=1}^{\infty}\int_0^b (X_t^{(i)})^2dm_t < \infty\right\} = 1$ 时必有

$$\sum_{i=1}^{\infty} E \int_0^b (X_t^{(i)})^2 dm_t < \infty,$$

进而若 $\sum_{i=1}^{\infty} E \int_{\mathbf{0}}^{b} (X_{i}^{(i)})^{2} dm_{i} < 1$, 必有

$$E \exp\left(\frac{1}{2}\sum_{i=1}^{\infty}\int_{0}^{b}(X_{s}^{(i)})^{2}dm_{s}\right) \leqslant \left(1-\sum_{i=1}^{\infty}E\int_{0}^{b}(X_{s}^{(i)})^{2}dm_{s}\right)^{-\frac{1}{2}}.$$

定理 若 $W=(W_i^{(1)}, \cdots, W_i^{(n)}, \cdots)$ 为一个具有无限个分量的过程,其分量都是连续正态独立增量过程且满足

$$E\{W_t^{(i)}-W_s^{(i)}\}=0,$$

$$E\{(W_t^{(i)} - W_s^{(i)}) (W_t^{(j)} - W_s^{(j)})\} = \delta_{ij}(m_t^{(i)} - m_s^{(i)}).$$

又 $\{f_t = (f_t^{(1)}, \dots, f_t^{(n)}, \dots)\}$ 为循序可测正态过程, 若

$$P\left\{\sum_{i=1}^{\infty}\int_{0}^{b}(f_{t}^{(i)})^{2}dm_{t}^{(i)}<\infty\right\}=1,$$

是一致可积鞅,特别有 $EZ_b=1$

$$Z_t = \exp\left\{ \sum_{i=1}^{\infty} \int_0^t f_s^{(i)} dW_s^{(i)} - \frac{1}{2} \int_0^t (f_s^{(i)})^2 dm_s^{(i)} \right\}, \quad 0 \leqslant t < b,$$

利用上述结果及正态过程的 Hida-Cramer 分解,可以象 [1] 一样方便地讨论正态测度的等价性问题并求出其 Radon-Nikodym 导数