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'We know that there exist some direct search methods (e.g. the complex. method)
developed for constrained optimization problems, but:the theoretical aspect of these
methods is very weak™?, In this paper, we consider the following linearly constrained
optimization problem . . - ;

‘ (LNP): min{f (=) ImEX}, X= {w|m€R’” (a)'o=a, 1€ LY,

where I,,={1, 2, -+, m}, The local feasible.cone and local positive basis are defined
‘with any step size at any feasible poinf in X . Then we give a direct seérch method by
the local positive basis, and prove its convergence. Some ideas here are motivated by
the descent methods with fixed step size for unconstrained ‘optimiza’sionm and [4]
which treats constrained optimization, For the above purpose,first we give a discussion

on the structure of a polyhedral convex cone,

§L The Canonical Positive Basis of a |
Polyhedral Convex Cone

Assumiﬁg A to be a nXr matrix, we consider the foliowing polyhedral convex
cone: | o oo ‘ )

. 0= {z]zER" ATz=0} o @
which is the positive normal cone with respect to the set of column Vectors of A, Tts
general properties have been discussed by many authors, see, for example™.

“We shall illustrate its structure only.in' the case when rank A=r,

Definition 1. Lt o

| V ={z| 47:=0},

, Vi={e|e=A), AER}, W=CNV*

and they are callled the inner subspa?e of C, the normal subépace of C, and, the normal cut

cone respeciively.
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Lemma 1. The polyhedral convex cone C is the direct sum of ts normal cut cone
W and its inner subspace V.

(Proof omitted).

Definition 2. Suppose that C is a polyhedml convex cone, then a vector set B= {b1
b2, -, 7], B'EC, i=1, -+, g} s called a positive basis of C if the following two
condztwns are satisfied: ,

(i) Any Z inCisa positive combmatwn of B, 4.e., for any 2EC, we may have

2= Mb* with A=0;
=1

(i) Any b is not a positive combination of the other vectors in B, i.e. B is positive
independent.

Lemma 2. 7Suppose that A is an nXr matriz with rank A=r, and A= (41, 45)",
where Ay is an rXr matric with det Ay#0, then the vector set B=={b*, b% ---, b7}
(g=n+1 or n) built in the following way is a positive basis. of the: polyhedral convex
cone C = {z| ATz=>0} and is called a canonical positive basis of C.

Case (i) 0<r<n, In this case, take B={b*, -, b"*'} (¢=n+1). For 1<p<r,
b® is the corresponding column vector of A(A474):. For r+1<p<n, b® is the
corresponding column vector ((— Ai'4,)”, E)”, where B is the unit matrix of order

n—r, and b"i=— 3 B2 -

p=i+1 . :
Case (ii) . r=n. In this case, take B= {b1 ., "} (¢=n), where every b’ is the
corresponding column vector of A(A"A4) “1,, o :
Case (iii) r=0, In this case, we have C=R", and take B={b', ---, 0"}

(¢=n-+1), where b?, --:, b ate coordinate vectors of R", and "= —}_‘,lb”,

Proof Here we give a proof for case (i), It is clear that A6*>0 for p=1, ---,
“n+1,ie. BcC, By lemma 1, for any 2€C, we have 2 EWCV!: and 2, €V such that
2=2-12,., From the definition of W, we may write z3=A\=A(AT4) *w, where
w=ATAN= A"z >0, 50 z; is a positive combination of b*, ---, b". Also because b'**, .-,
b" constitute a basic solution seb of V, we may get ' '

2= 2 '}’pbp'" 2 (’}’p+')’n+1)b +Var10™t1,

where Ypr1= —min (Y1, ***, ¥a, 0) and hence the right side is a positive combmatlon.
of 3™+, ..., b1, Therefore, z is a positive combination of B,

Now we prove that B is positive independent. If not, some b” would be a positive
combination of the other vectors in B except b?, First if 1<p<(r, then applying the
_ orthogonal projection operator from C onto the normal subspace V'*, we may get a
representation of ? as a positive combination of the other vectors in {b*, ---, '},
which contradicts the linear independence of {b?, ---, 8"}, Next if r+1<p<n and b*
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were a positive combination of all other vectors in B, then applying the orthogonal
projection operator from C onto the inner subspace, we may get a representation of
b? as a positive combination of the other vectorsin {67, ---, p*+1}. Substituting

-3 . b’ for b™** in the above representation, and transfering all the items to the left
j=r+

side, we may see that the coefficient of b” is not zero, which contradigts the linear
independence of {b"*, «--; b"}, Finr;tlly if 5" were a positive combination of all the
other vectors in B, we may similarly arrive at a contradiction. |

- The proof for case (ii) is similar and is omitted. As for case (iii), the conclusmn
is known®’, Q.E.D. . .

Remark. In the above lemma, A4, is called a basic submatrlx of A” (Ai, Ag),
where A; is composed of the first r columns of 47, In general cases, A; may be composed
of any r columns of 4% and it is only required to satisfy detAd;+0. The above proof
has also shown that {b%, ---, b} is a positive basis of the normal cut cone W of C, and
{br+, ..., p™*} ig a positive basis of the inner subspace VofC.

Lemma 8. Suppose that f(z) is continuously differentiable at moER A is an
n X r matriz and {b%, -, b} isa positive basis of the cone C = {z|zE€R", A"2=>0}, then
the following three conditions are equivalent to each other;

(i) v ER", v=0 such that Vf(x,) = Av,

(i1) Vp (1<p<q), -5 (a0) >0,
(iii) Vz€C, %<wo)>o,

Proof Here ﬂ— (wo) is defined to be lim( f (@wo+02) — f (0) )6‘1. 1no matter whether
z is a unit vector or not. So we always. have (a;o) VT'f(wo)‘z. Thus, if we have (i), '
_.then from the fact that z:>0 and A767>0, we 1mmediate1y get (ii) by tﬁé formula“ of
—‘(xo) If we have (ii), then by the property of the positive basis we can prove (iii).

And if we have (iii), i.e., VzEO’ we have VTf (mo)z>0 then by Farkas lemma we may
get (). Q.E. D. '

§2. The Local Active Constraint and the
Local Canonical Positive Basis

Now we study the constraint »se"c X ={=| (a")To=>a;, i € I} of the problém (LN?).

For any IcI,={1, 2, -+, m} we introduce the following notations
A ={a'|2€T}, . _ (2
C(I) ={z[(a)"2>0, i€ 1}, )
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Sometimes we also use A(I) to represent the nx |I| matrix composed of the vectors
in. A(I) in their natural order. So # may be rewritten as {w|A” (Im)@=>a}, where
a=(au, *, om)T. ' |
Deﬁmtmn 8. Suppose o€ X, =0 and put™ .
I(%, 8) ={pla< <“p)Tﬂ70<“p+5}, (4)
CI(zo, ) = {2 A7 (I(ao, 8))2=>0}, ' ®)
‘then I (@ , 0) is called the index set of the local active constraints with the pace size & at
the point @o, and C(I(xo, 8)) is called the local feasible cone with the pace size & at the
point . Fud“theqﬂbie suppose B={b%, -, b7} (¢g=n+1 or n) is a canonical positive
basis of C(I (wo, 8)), then B is called a locwl canonical positive baszs with the pace size O
at the point o, or simply a local positive basts at the point o T
Lemma 4. Supposé 2;€ X, o>, 8,>0 and 8,0, then there exists an infinite
set JC{1, 2, 8, -} and an indew set Iy such that
‘ V’b €J, I(x;, 3:) EIOCI<W0; 0). (6)
(Proof omitted). . ' v ‘ - ‘ "
'Lemma 5. Suppose that X = {z| A*(I)z=>a} is‘nbnempty and bounded, and that
X is 'non- d"genefmte. é.e., rank A(I(a,, O)) |1 (@4, 0) | =mn at any extreme po'mt x, of
X, then there exists a positive number 80>0 such that V8€ [o, 80] and Yo E X, we
have rank A(I(w, 8))=|I(=, 8)].
Proof 'We may first deal with the case of =0 by showing that its contrary is
wrong, and then proceed to prove for the case of 8>>0. The details are omitted here™

§3. An Algorithm Model

 Definition 4. (the Algorithm Model of a Direct Search Method by the Local
Positive Basi;) For the linearly constrained o@tiﬁimtz’on problem
- (LNP): ' min{ f (z) lo€ X}, X ={a[(a)v=>a;, i €1},

we design the following steps to produce an iterative point sequence {wy}:

Step 1  Choose 8,>0 and &>0 such that 8;——>O and &;/8—>0. Take wleX and set
kEr=d:=l:=1.

Step 2 Derive the index set of the local active constmfmts i.e. I(@, 8;)={ p| <<
(o) o, <ap+8;}, and get the cowespondmg matriz '

A=A (a, ) ={a?|p€I(m, )}

If fmn]o A <r=|I(x, &) |, then set b: =1+1 and go back to this step.

Step 8 If rank A,=r=|I (mk, 8,) |, then determine the local camonical positive
basis B¥={b', b2, ---, b", b, ..., b9} (¢=n-+1 or n) with the pace size 8, at the
point xy,. '

Step 4 For j=1, +--, q, evamine the following inequality which is terméd as the
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condition for making a move

o+ A7) <f(a) — &, A=08,(]|b

cmx @D @
If it is satisﬁed then set D41 =+ A’ and k: =k+-1, and go back to step 2. )

Step b If the condiitions for making a move are satisfied for none of ‘the §'s
(=1, 2, -+, @), then set wys1: =, k(3): =k, Yst = Bucoy Z(’b) =1, k: =k+1, i =i+1
and 1: =1+1, and go back to step 2.

In the above algorlthm model, 81 is called the step size for a move, and g the
descent threshold with their meanmgs shown in step 4. Besides, k&, 4 and [ are refferred
to as the indices of -the iterative point mk, the leading point y; and the step. size 0

respectively. '
' Lemma 6. Suppose that the linearly constmmt set X is monempty, bounded and
non- degenemte and that the objective JSunction is continuous on X , then the direct search
method by the local 'pos'l,twe basis possesses the following properties: '

(i) There can only be a finite number of cases which call for an increase in 'l or a
decrease in the step size O, in step 2. ' '

V(i) All o€ X o . ‘

- (iii) For a certain 1 in step 4, there can only be a ﬁmte number. of cases, in which
the conditions for making a move are sat'bsﬁed '

(iv) The leadmg point sequence {y;} produced in step b is mﬁmte ,

Proof The property (i) may be proved by means of. lemma 5. Now we verlfy
that in step 4, #3+1 € X when @, EX. For any pEI (@, 01), smce bf is a vector in the
local positive basis, we have (a?)"0'=0 and since. (a")"w =0y and yiy=a;+Ab’ with
7»>0,l:w‘e get (a?)"wy.1>a,. As for any péI(a_;,,.\ 8:). we have (a?)"w>a,-+3;. Noticing
that |(a®)™t’| <] | and @g41=a-+Ab with A=28,(||d’
obtain the following inequality

| (@) 211> 0y + 8= | (a)0| -8 |7

- max [@®)7*, we may
1<p<m ’ : :

- max @) >a,. (8)

Therefore, we are sure to have :mk+1€ X. In addition we have taken @, € X in step 1,
so we get the property (ii) by induction. As to the property (iii), because there is a
fixed descent threshold &, in the condition for making a move for fixed I,"and because
min{f(z) |#€ X} is attainable, this property may be proved - by showing that its
contrary i§ wrong. Finally the property (1v) may be obtained from the properties (i)
and (iii) . Q.E.D. " :

§ 4. The Convergence of thé“Algorithm Model

. Theorem. Suppose that the constraint set X —{z| A”(I)w=>a} is nonemply,
bounded and nondegenerate, the objective function f(w) is continuosly differentiable, and

’
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that {y:} is a leading point sequence produced with the direct search method by the local
positive basis, then, any accumulation point x, of {y} is a Kuhn-Tucker point of the
- problem (LNP). , .

Proof 'We have seen from lemma 6 that the leadmg point sequence {y,} is
infinite. According to step 4 and step b in the algomthm model, the i-th leading point
4= satisfies the following system of inequalities - ) ' o

_ f (@t 207) >f (@) — &1 (= 1 2, *, @), -
where §=7§+1- or n, A=209;(||&’ " Iax, la?|)72, k= _lc_('&) is tﬁe iterative point index,

and I=10(4) is step size index. Hence we may rewrite (9) as follows

f(y‘+h”bj) —f@=—as (=12, -, 9), ' - (10)
M =8| b’“ max Ha"ll)‘l . : (11)

v Now let us assume fhat J C{l_, 2, 3 } and hm y,—x* We congider the mdex

set I (4, 8isy). of the local active constraints w11;h pace size 8y, at Yi=uci- By lemma
4, there exists an infinite set K <J such that ’

Vie K, I(y;, dup)=I,<=I(a,, 0). SRR AE (12)
Becausé the way for taking local canonical positive basis in relation to the same I o is
determined by the corresponding basic submatrix, so we only ‘have a finite number
of choices. Hence we may also plck out a subsequence from {B"“’[':,EK } such that
all the local canonical positive basis in this subsequence are one and ‘the same.
‘With no loss of generahty, ‘we may assume that for any ¢€ K, the correspondmg
local canomical positive basis is B¥P=B%={b*, b2, ;, 0%} (¢=n-+1 or n), which is
independent of 4. Dividing (10) by (11), applying the mean value theorem takmg
the limit for ¢ € K, and noticing that s,;,/8;:—>0, we may get

_’a'b",'(ﬁ*) >O (j=1: 2, "':» Q) . . (13>
By lemma 3, we have o |
| RO ACAE - 14

for any .oEG(I (Yi; Bizy) ) = G’(Io) which is a local- feasible cone. Also from.(12), we
know C(I(w,, 0))cC(l,), where C(I(x,, 0)) is the feasible cone at x,. Thus we still
have (14) for any‘ 2€C0(I(,; 0))={z| (a")"2=0, pE€I1(z,, 0)}. Again by lemma’3,
Vf(w,) is a positive combination of A(I(=,, 0)), hence the Kuhn-Tucker conditions
at @, are satisfied. Q.E.D. ‘

Remark. On the ground of the above convergence theorem, we may further
prove that if f(2) is both continuouély differentiable and strictly convex, then the
whole iterative point sequence {,} produced by the algorithm model converges to the
unique optimum point of the problem (LNP). In considering the steps in the
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algorithm model, if we also: take some pattern moves like those in the Hooke-Jeeves

technique, then the convergence properties may be retained, and these pattern moves
Vi ¢ B
may be helpful to practical calculations. In addiftion, when the constraint set have

degenerate extreme points, the basic idea in the algorithm model may still be useful,

although the structure of the local feasible cone in the general case turns out to be

[11
[23

£3l
[4]

[s]
[6]

rather complicated.
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