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ONE SPECIAL INVERSE PROBLEM OF THE
SECOND ORDER DIFFERENTIAL EQUATION
ON THE WHOLE REAL AXIS .
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Intiﬂoduction

To solve an axial s‘ym'metric KDYV ' equation, we must consider the following

eigenvalue problem™ ¢

"f¢” (w; }\') _Q<w)¢(w )") =}“¢(w’ }\’)" _°°<w<°°’ - ) (O . 1)
Q(2) =a+¢(), ; (0.2

The inverse problem of the second order - dlﬂ’erentlal equatmn Wlth two smgular

where

points has been considered by Bloch™. He pomted out that the’ potentml ‘function can
be determined by certain 2X2 spectral matrix. But we shall p01nt ‘out- that when.
Q(z) =2—q (&) with q(x) _sa,t;sfymg the following conditions

q(w)EC’l(—oo oo), J’m |s‘q(s)[ds<oo 'z,=0, 1,. R )

then the coefficient function q(a:) can be determmed by one spectral functlon In 81
" we introduce the corresponding Riemann functlon, with whlch we establish a trans-
formation between the function go(z, A) and gn(:c, k), where @o(, A) = \/ w Ai(z—A)
is a solution of equation (0. 1) When Q) =u, and g(z; &) is a solutmn of equatlon
(0.1) when Q(=z) = w—l—q(m) In § 2 we prove the completeness of one spectral function
by Titchmarch-Kodaira’s theory. Finally we derive an integral equation which is
analogous to Gel’fand-Levitan equation. '

1. The existence of the transform-ation.

“In proving the theorein; fhe following lemmas will be required.
. Lemma 1.1.  Let

l
2

e[ §o>] - aw

' Manuscfipt received Jan. 21,1980.
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Vo mi & m)=Jo@ =3 (-0 ls(5)", @2
then the function V (&0, mo; f 77) satisfies the equatzon
. . W tive 1 _ N . )
87785 znV—O ) (1.3)
and ' ‘ o
V(fo, 03 §0, 7)) V(fo, 9701 f; 7]0) 1 (1 4)

In other words, V (&, mo; &, m) s the Riemann functzo'n, of the equation (1.8) and
has the symmetric property

V(o s €, )=V E, m o, w. - (1.5) -

Proof Because

S~ To(@a L),

L L n[Jz @) +LT4(@) 4 To(@)] =0,

From (1.1) and (1.2), we have (1. 4) and (1 5).
From the relation J,,+1(a;)+J (@) = ,.(a;) g (a;)~ — T () + a2 nJ, (97) and

‘_.]J (x)[<1 we have ' 1

Ja (w) ( <—-, and differentiating

| @. 2), Weiobtal_n ‘the followmg clor;ollar.y‘_.
-1 ,Corollary. We have the.finequalfities :

IVI<1 8§ (770 %), ‘_aZ-’:g—l"'??o(f—fo),v A
- a§g§{<-1-m, a;sf; —(?73;972)2," 3;;7 [ 3"72(5 Er+gE—6). (10
o o= -~ la®)1dt, 04a) = Jo-(t)dt [T6- DIFIOIL K

Where the rlght hand s1de is mtegrable ‘when ¢() satisfies condition (I).
: Le_mma_ 1 »_2 If q(@) satisfies condition (I), then the integral equatz_on

Ko ) =3[V o mi £, 0)q<§>d§ ¥
~H v o m ¢, n)q(-fg—”)zag, 1) d¢ dn (1.8)
has one and only one solution K (%, no). Wh@n"'ﬂo>0 R (&, o) satises the inequatity

sz(fo, m9) | < <§°> og(fg—;m—) . @9

Futhermore, if ¢(z) =0 when z=>a, then K (&, 970) =0 when §o>2a (1.10)
Proof By the method of successive approximation, Let

B (o )= [ 7 (G, s &, 000 (£, @



OVE SPEC‘IAL INVERSE PROBLEM OF THE SECOND ORDER DIFFERENTIAL i
NO. 2 EQUATION.ON THE WHOLE REAL AXIS .\ 149

R ) %ﬁ"j "V oy s € n>\é(§;”)f€n-1<§, mdédn,  (112)

E(f’o‘, o) = gfn<§0; ’7]0). ’ (1.13)
From the first ineguality of (1.6), it yields 7
R w I <L["|o(§)]dt=5o(5)
]K1(505'770)]<—j J lq §_2_7) i—%—a —g—)dfdn
Let _ : ;
J;%J L g f £-n 1oz§dn, ' (1.14)
|J|<j:oz§f,, Fla®la< [l Flo@a
_Lozo.<§ Mo d§ o‘( 27/‘0).»
T IR wIhe(§)n(E52).
I%' ]E,. 1(€o, m0) | < ({;) C 11).'[0'2(602 >]
then

| Kn(bo, m0) | < j L,) (52’7);_ (g)(n 11)'L02(§27]>] iy
J;od J. —“I!I(s)l[ao(s)]"—ldg

2<n 1>' "("52"—)
2(“ PICESE G<%)L, [‘7 § % dfj ——lq(s)]ds
2(n11)| o _é;_"_”:_%_ f ?70) d§a<_(§_;—77f->]d§
2(n11)| o %)r; = [0'2(5‘>]" 1OF(S)ds

Z(n 2m—-1)1 G(%)J’ fomy [O'(S)]" 1do(s)

s o ()]

It i easﬂy goen that’ when =0, series (1.13) is absolutely and uniformly
convergent, and '

R0 m <3 Lo (L) o(fgm)] - Lo (5)em 5"

We have proved thafﬁ the function K (&, no) satisfies inequality (1.9) and is a

)

solution of (1.8). (1.9) implies obviously the uniqueness of the solution for equation
(1.8) and the conclusion (1.10).-
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D1ﬁ‘erent1at1ng equatlon (1 8) dlrectly and using the inequalities of (1.6), we
have.

Lemma 1.83. 1) Function K (&, 10) EC? on the domain 1,0, 770<§o<°°

2) When &o— o—const and Eo+mo—>+ oo, we have

Lo, & 0o, -af%w@o),
&K N K .
3_§(2,= O(n3) i "0(§o+”}o) S : (115)

Theorem 1.1.  If hypothesis (I) is fulfilled, then the solution K (&0, M0) Of equation
(1.8) is a solution of the followéng differential equation

___321? 1 §o—"0
D RS oo )IZ 0, when 7o>0 .16)
and ' | S
E(, 0>=—;—ﬁ q(s)ds, o (1.17)

If we let o=2—y, no=y—=, and ewpress the function K (&, mo)=K(@@—y, y—n)
=K (%, y) as a function of @, y, then the functwn K (@, y) satzsﬁes the followmg
/equaifwrns

2) —89—5—-— a&f [q(z) +2— y]K when y=w. | ' +(1.18)
K (s, x)=_1_[°° (s)ds, \ (1.19)
|K (a, w)|<_a<“ y>m> o (1.20)

Furthermore, if q(x) =0 when z=>a, then K (%, y) =0 when z+y>a, (1.21)
8) When z is fized, and y—>co, we have -

ak’ o 0K oo BK oo K oo 1.22

| -0, Gr-ow, GE-owy, FE-ow.
Proof 1) From (1.5) and (1 8) of lemma 2.1, i} is seen that

V.1 1 93

37703§o "70V 0 . (1.28)

From (1.8), it follows

s E K3 (e (S - B )R my

+ﬂ Ln (_8_75_1;’_5_711-_ oV )9< 5?7 )K(f, f))dfdn

_.'% (50'—770)'5“

Putting 1,=0 in (1.8), we have (1.17).
2) From lemma 1.3 (1), we have K(#, y)E€C? on the domain y>x. I‘rom 1. 16),
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(1.17) and (1.9), v (1.10), it is seen that K (z, y) as a function of », v, satisfies
equations (1.18), (1.19) and (1.20), (1.21), respectively.
3) From lemma 1.3(2), it is seen that the function K (=, y) as a function of z,
y, satisfies (1.22). -
Theorem 1.2. If q(=) satisfies condition (I ) , the functwn K (z, y) is deﬁned as

theorem 1.1 and we let -

P, ) =go(z, N+ Ko, Yoy, Ny, (129
then the funétion (@, N) is a solution of (0.1) and when z—>o0 R
. @@, A)/po(w, M)—1, S (12p)
Proof |
o, D)=, 1)~ K (o, ey )+ [ Ko, Dy Dy (1.36)
9" (2, M) =p(w, k)—-——[K(w ) po(@, 7»)] K.(z, 2)po(w, \)
+, Kt pmt, Dy (1.27)

From @a. 20) and (1 22), it is seen that if & is fixed and y—>oo then

K, -0, E-o0w, ZE-o0w.

From (2. 4), it is seen that when g—>o0, @o(¥, A), @o(y, A) tend to zero exponen-
tially, so that the last terms of (1. 24) a. 26) and (1.27) are mtegréble From

— (g, A) —ypo(y, A) =Ago(y, 1) and (1.24) we have
~1p(e, 1) = =g, )= [ K (o Doy, My

J K (@, )90 (¥, ?»)dy, ' (1.28)

where

Jo K@ Do, Diy=K @ Do, x)] -[[ & e

=K (=, 9oy, 7»)‘ — Ky (@, 9oy, ?v)’ —j K (=, ) 70(9, Mdy, (1.29)

In the same way, it follows that the last terms ‘of (1.28) and (1.29) are integra)bié
and when y—>oo : : : .
| K (3, 9)¢i(y, N0, Ky, fy)%(% ?v)—>0
From (1.24) and (1. 27)—(1.29), we have
' —¢" (2, N+ [a+g@ (e, M) —Ap(s, A)

— —gh+ [o+glpo—Apo— 2_—% K (@, )po(e, 1)

_j:['_a;_i_g_._ PE (51 q(2)~9)K |po(y, M.

From —gp’é—l—wqao-——?\gu(,-' and (1.18)‘, it is seen that p(z, A) satisfies equation (0.1).

3
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When >0 and is sufficiently large, guo (w A) is a monotone decreasing posﬂuve
fanction, so that :

5@ va, x>dy]<«po<m W[ 1K @ 9) ldy=go(a, D@,
When z—>oco, 03(#)=>0, o(2)—>0, thus when z—>co,
(o 1)/pu(a 1) =1=[[ 7K (o, 0)g0(s, 1] /%(x M1,

theorem 1.2 is proved.
Remarks If ¢(#)=0 when, z>aq, then K(a; y)=0 when z>q, wy>a; From
(1. 24), we have (@, A) =g, (=, h) when s>a. : '

2. Completeness.

When ¢ () =0, equation (0,1) becomes

—¢" (2, M) +ap(z, N =Ap(e, 1), (2.1)
From Ref. [3], equation (2. 1) is in the limit point case at two s1ngular points.
There is a solution. ‘

wo(®, A)=— \/;Ai(z) = ——-[ K,,(f) \/__j cos( L —wz)da;, (2.2}

where )
S §=-§- 23, a=a—), ; - (2.3)
‘When Im A>0, -
S 1 ro_2gd
@o (@, A)N—?m t¢ 37,
| 1 -1- >2 o
po(@, M) ~5ate 3~ | x—>-4oo, . (2.4)
which is of class L2(0,. o). Let
1 2,3 ’
Q@, \)=~u B1(z)~w 137 g>too, - (2.5)
then Qo (, A) is a lmearly independent solution of g,(z, A) and o
L 4 -W[Qo(% }"); ¢0(m;' 7\')] =¢{)Q0_Q6¢0=1. ‘ (2'6>
e . )
i Yo(@, ) =Qo(e, A) —=Mi(A)go(z, A)=Qo—igo, (2.7)
en : " : B
o (@, A) ~ (— ) k- w>* o—>— oo, B (2.8)

when Im A>0, Yo(z, A) is of class L(—oo, 0),
According to the notation used in chap. 8 of Ref. [3], here

Ma() = o0, My()=—i, |
CEW=0, 1W)=0, (W=[du=r, (2.9)
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From § 4 of Ref. [4], we have
Theorem 2.1. If f(z) ELz(—oo o0), and let

() = 1.1.mj F@oo(e, e, (2.10)
then ' R , L
F@)=lim (" FWgoy, D, @)
i.e., o i
| L™ pota, Dgoly, DA=8@—9). (2.12)
Lemma 2.1. When q(z) 'satisﬁes the condition o
[[ @] gpcoo,  @13)
e 1+|a;|2 .

then equation (0.1) ds in the limit point case at two singular points.
Proof When Im A>0, m>xo>0 and , is suﬁiclently large, we deﬁne

@ (w7 7\') = QO (ﬁ, }") - J’ [¢0 (x; A‘)QO (?/, }“) - QO ({E, )\‘) ¢0 (CU; }“)] Q(y) @ <y7 }“) d%

(2.14)
it is easy to verify that @ (, A) is a solution of equatmn (O 1).

‘We put

—~z

Bu(o, V) =ote (0, 1),
From (2,.4)_and (2.5), when z,<y<wz, we ha,ve

21 2

256 2 [po(a, 1)Qo(, 2~ @@ Moy, My el <]yl
From (2.14), we have ;

(@a(o, 0| <+[ 1917E o) | 10, 1) |ay, Mo,
Applylng Bellman inequality, we get

l¢1(w 7\,) | <Me f ly” q(y)ldu
It-has been shown that the function @, (w, A).is bounded for [@, o0) under the
condition (2.18), thus @(z, A) does not belong to .L?(zo, <0),
‘We néte the asymptotic '
. ~— 2 i =
@o(w, M) (— ac) “sm[3 (—@) +71-J,

Qo(z, M) ~(—a) 4cos[2( w)%—l—ﬁ},b x—>;w,'z o (2.16)

3
and when ImA>0, o< —2,<0, we define " .
Do, 1) =Qo(a, )= | " (oo, DY, D—Qola, Do(y, WIg@) P (y, Vi,

By the same method, we can prove that ¥’ (@, A) is a solution of equation (0. 1)
and ¥ («, A) does not belong to L?*(—o0, —ap). From Ref. [8], we have proved
lemma 2.2, :
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We note that when ¢q(«) satisfies condition (I), it satisfies condition (2.13) also. -
In § 1, we have proved the relation

p(2, 1) =0o(2, h)+}':K (w,ry)%l(y, A)dy,

where p(, A) is a solution of equation (0.1) ai;d is class L2(0, <o) when TmA>0. If
Q(«, A) which satisfies the relation W [, Q]‘=1', is another solution of (0.1) and
we let

¥(z, ) =Q(, ) — M (M) p(a, 7»), (2-16)

which is of class L? (=00, 0), when ImA>0, then M, (h) oo and
EW)=0, a()=0, L(A)=1m | T M (w8 @2.17)

From § 4 of Ref. [4],we have
Theorem 2.2. Iff(a;) LE(—oo oo), we let

PN = 11mJ‘ F@o(a, h)dw (2.18)

then . R
r@-limi[” F@ee vat®, . 2.19)
i.e., J T |
L7 o, o, DAL =8@-9. 220

Theorem 2.8. If q(x) samsﬁes condition (I), then the functzon K (m, y) satwsﬁes
the following integral equation

£ K @, y>+j:K<w, DrG pat=s, (@2

where E . EETI TR R ‘ |
F@ 9)=[__oa, Mooy, ™), e

pm-tam-n, e

Proof (1.24) may be viewed as a transformation of Volltera’s type and the
inverse transformation may be expressed as

(@, V=9 M+ Ky, Do, 1.
From (2.20), we have | S ' .
L7 p@ Wau(y, DAL =3G@-9)+ [ Kaly, D3 (y=it=d(a~v), ¥>s.
(2 925)

L)

(2.24)

~ From (1 24) and (2.12), one has also

11" o, M, w«zx d(a—g)+ ] K (@, 9)d(y—0)d

—d(@—y)—K (o, 9), y>w, - (2.26)
Substract (2. 26) from (2.25), we have
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| 9@ Moy, Va®) =K @, 9). e
From (1.24), we have '

[ oz, o0tw, 1400 = g0t _A')q»o(y, Adp(h)

+ K@ [ _at, Heott, VA,
From (2.22) and (2.28), follows (2.21);
Now if we give a spectral function {(A), by sustituting it into (2.28) and (2.22)

and solving K (z, y) from equation (2.21), then we can determme the function q(a;)
from (1.19)

q(w)= —2-— K(m w)

~The author expresses deep gratltude to Chen Deng Yuan who read the first draft
and offered useful comments about the estimation of the Riemann function and special
thanks are extended to Prof. Fang Kang for his encouragement.
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24 EN— MR RS AR RE

E W W
(RERHEAR)

M T WX FRA KDV 57 % i bl F RS |
Q@ —a+g@). 0
Baox'® i % Bl b SRR I, Hudé it B 3 Qo) TRk 2% 2 BB BRI E.
A WY Qa) —a-+9(0), T a(o) WRUTFHHH S
4(@) €0Y(—o0, 00), |~ |#q() |ds<oo, §=0, 1, M
EH ¢(o) T — A EEORTE, 7 §1RNZIHRBRIGEN T & % o0(s, 1) A
p(a, 1) FAE BB, Fft go(s, M) = — /@ Ai(0—1) RFE(0.1)% Q(2) —o iy
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