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In [2], triangle models have been constructed for self-adjoint operators in IT; space,
and from these models spectral families have been given in exl;licit form. Thus the
structure of these operators is completely clear. Based ‘on the models, as we shall see
below, it is possible to discuss some basic properties of the self-adjoint operators. In this
paper we use the results of [2] and further discuss the m-th powers, n-th roots and
more general operational calculus of the self-adjoint operators in II; space. We also
consider the properties of the spectral families and .obtain‘ a speétral representation of '
the resolvent. o '

‘With the triangle models, the main results of [2] can be descrlbed ag follows: If
A is a self-adjoint operator in II; space, then - »

II,,—N@{Z+Z*}@P , e @
A={S, Ay, 4p, F, G, Q}, e (2)
where N (P, Z) is a negative (positive, neutral) subspace, Z* is the dual subspace of
Z, Ay (4p) is a self-adjoint operator in Hilbert space N(P), S(F, G, Q) is an
operator from Z(N, P, Z*) to Z. It can be seen readily that under the standard
decomposition (1), for A€p(4), (A—A4)™* may be expressed in terms of a ktriangle
model
A—A)t= {(7» )7 A—4pn)7, (M- Ap)_l, (A— S)‘IF(A AN) -
o A=8)TEA— AR, A=8) T Q- F(A—Ay) T F"
. +G(}» Ap) TG (A—8*) 7}, ®
Suppose that for AE€op(4), the radical subspace correspondmg to A is mnot posmve '
then we say A is a critical point of 4 and denote the set of these points by C(4). If
O(4) ={hy =+, M}CR, C(A) N [, »)={}, then |
| | Bu={Py, P, P, P(F, 4v), P(G, 4),
—Pé(F, Ay) +Po(G, 4p)+Q1}, : » (C)
where E; is the spectral family of 4, P, is some parallel pi'o jections defined in Z whose
Tange is the radical subspace of § correspondilig to A, P3* and Pj*® are the spectral
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families of Ay and Ap. And with the notations ,
T—1 _ i
Ba(hiy Dy )= Oon=B) ] (= By~ 3, Otusea (2220 | P2,

A ()\fl_hm)iw
, H(w, B, B) =S P0u— ) BP (= B)7,
g‘g ={I P.‘JZI! l=1)
" Pllfw ) z#ly )
we write P(E, B)=>\(1—28y4)H (N, E, B),
. 0T _
Po(B, B) = 1%1(1_261£)H<7‘4l’ E, B)[H (An, B, B)]*
2mel ' ‘

+1*21’§k] {(?vi—S)jP:lERB(}\'b 7}1, k, §)E*(M—8*)*P;
+(M—8)YPERBy (N, M, j, B)E*(M—8*)*P},

Q=33 (h—"%%ﬁto1)50»1—S>5—1P1Qol~8*>k-11>z*

+ (= )(M 8)7= 1PzQ(7»1—S*)"‘1P1]

1 The n-th powers of self—ad301nt
' operators in II; space

First of all, we shall use the triangle models to study the n-th powers of the
-unbounded self-adjoint operators in IT; space.

It should be noted that for an unbounded operator in Hilbert space, 2(A42?)= {O}
is possible even if 4 is densely defined. If 4 is an operator which is defined in Hilbert
space H and can be regarded as a self—ad301nt operator in a Iy space, i.e.

=JA*J, - o ()

where J satisfies J?=1, J*=J and the dlmensmn of the eigenspace corresponding to

—1 is finite, then 4?2 is self-adjoint in I, iff. (42)*=(4*)%. But in general cases, we
only know (4*)2c(42)*.

Tt should also be observed that if 4 is an unbounded self-adJomt operator in I,
space which can be expressed by (2) under the stanidard decomposition (1), A2 may
" not be defined for some vectors in Z*. For example, let IT;— {Z+Z*}@P, dim Z=1,
P=1I? [0 1], z and 2* be dual basis. We define an operator A= {S’ Ap, G, Q}= -

{0, 45, G, 0} where 4p is a multlphcatlve operator in L2[0, 11: (4p f) t)==— f ( t)

FED(4p) = {f(t) ]JI f(t)l dt<00} and Gis an operator such that for any f€
D(4p), Gf=(f, fo)z where f, € L?*[0, 1] satisfying H—- fo(t)t dt=o0. From (1), it
is clear that 4 is a self~ad301nt operator in IT; space™. So we have (f, fo)= (G’f, D=

(1) From the fact that 4 P ig self-adjoint in P, we can directly prove 4 to be self—ad;omt Wlthout using the
results of [2]. )
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(f, G*2*), which implies G*2*=f,, where {«, +) is an inner préduct defined in Z (ci.

[11). This fact shows that A4z*=@Q*2*=fo. Since J —:; fo (t)

dt=co, 50 Fol D(Ap). Tt
follows that 2*€ 2(4?).
- Theorem 1. If A isa self adgomt opemto'r n II;, space, then for each natwral
number n, A" s a self-adjoint opemtoa“
' Pfraof Tt follows from [2], that under the standard decomposxtlon (1) A has the
form (2). We divide the proof into two steps: - : |
(i) We first prove that for any natural number n, 9 (4™) is dense in IIy. Since
dim (N@®Z) —k<oo and A(N®Z)CN®Z, thus NOZCD(A?). Moreover, since
D(@)>D(Ap), theroforo D(43) =D(4?). By [2], for 2" €Z* and 2€ Y (AP) we have
: A(w—i—z) Apx+G*z* +S*z*+Gw Py +Qz B (6)

The last four terms of the rlght side of (6) belong to 2 (A) Suppose that AP j‘)» olE',L

is the spectral representation of Ap, write Po= (H.— Ey)+(E_y—E_.).Since G*2* € P
(cf. [2]), ib is clear that (I—Po)G*z* € D(43). If we seb z.= — PoA7F'G**, then it is
readily seen that @,.€ 2 (A4p), and hence Apwa+G*2"=(I — Po)@*%*, i.0. mu+2* € D(A?).
For each vector z; of the basis {z, -, 2} of Z*, we choose a vector @, as before. Let
Z'"=span {7 —I—xz,}CJ(A“) Obviously, N@({Z—i—Z’*}-{-.@(A%)) is dense in IIy,
NO®{Z+2" 3 9(43))cD(A?). Hence A? is densely défined. .

'We repeat the preceding process for A*, A*, el T may be proved that for any
natural number n, A" isdensely defined. :

(ii) Next we shall show that A? is self-adjoint in IT. Since A=At for any
natural number n we have A*C (4")1, i.e. A%s a symmetric operator. Since A is a
symmetric operator, 4 is self-adjoint, it follows that the number of their eigenvalues
in upper (lower) half plane is finite. Thus there exists a _point pe“’, p>0, 60, w,

such that +~/pe” T are not eigenvalues of 4 and pe*® are not eigenvalues of A2, For
xE D (A?) we have .
(47— po)a= (A+N B F) (A= Ve D

. e . 'w - 0 : Sl .

and hence % (A2 — pe*®) = (A+~/p e 2)(A—-~p ¢ 2)9(4%). To prove that 4% is

self-adjoint it will suffice to show that U = (A4*— pe®) (A2 —pe~®)~* is unitary. First we

prove £ (A*— pe“”") Iy, : L - T

‘Since =~/ p ¢ 3 are mnot eigenvalues’ of S and AN, Z and N@®Z are invariant

subspaces of A, it follows at once that (4*—pe?)Z =7, (42—pe?) (NDZ)=NDZ,
ie. N®ZC R (A~ pe®). For any v € D(A%), 2€Z, we have

(42— pe®) (w+2) = (A3~ pe®) 2+ G dro+8Ga-+ (8 = pe)z. ™

For a fixed #, put 2= — (S2— pe'®) (G Apz+8G=). We note R (A3—pe®) =P. By (1),
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we have % (A?— p¢®) D P, Using conclusions of (i), for any 2* € Z* we have
: (42— pe®) (2" + @) = (8% — pe®) 2" +p+n+z, |
where ; pEP, nEN, 2€Z. Since R (A2 — pe®) DPONDZ, it follows that we can choose
sequences of vectors {pn}, {nm}, {2n} such that
(42— pe®) (mz‘+z +pm+nm-l—zm)—>(15’*2—pe“’)z

as m—>o0. By assumptions ipe H €a(8*), we have (8*—pe®)Z*cZ*, this means
Z*C A (A2~ pe?), and therefore m =1IT,.
Replacing § by —8@, we have m -1 %
Using the preceding method we can prove that A" is self-adjoint by mductlon.
Q.E.D. . v _
. Theorem 1 can also be proved using the spectra,l representa,tlon of self—ad_]omt
cperators in II;.-But the proof given above is more stmlghtforward
Theorem 2. If A is a sdf-adjoint operaior in I, space, then for dll naturd
- numbers {n}, there exists a common standard decomposition of {A*}, II,=N®{Z+Z*}
@P such that A® (n=2) can be obtained by operational - caleulus f'rom form (2) -of A,
moreovey

e - n—1 - n—-1
An={-Su’ .gr’ 7;,’ ES’FA’;V_I_‘, Z}S“GA?J_L—‘,

=0

SgQEin S SHFALF -+ GAS G*)s*"}‘ ®)

=0 l+J+k—’1«"‘

Proof Put U,= (Ai\/p ot )(A + \/p o )‘1 U= (A”—pe") (Az—oe"")‘1 Tt

is evldent that U, and U are unitary operators in IT;. Slnce ‘ , »
UU-=(4+ N 5e3) A+~ pe ) HU-NTe¥) (4-Vpe )

A+ NPT A—Npe D) A+ Te T) (A pe F) =T
and simﬂarly' U_U,=U, it follows that U,, U- and U are commutative, hence the
Cayley transformations of 4 and A? are commutative,

Similarly, by induction we can prove that Cayley transformations of all A™ are
commutative. So there exists a common standard decomposition of all 4* (n=1, 2, ---.)
(to do this, it will suffice to combine the results of [4] with [2]')‘, I, =N®{Z+2*}
@P. Suppose that under this decomposition, A={8, Ay, 4p, F, G, Q}. In particular,
. 'we note Z*C9(4"), n=1, 2, Thus, by induction we obtain (8). Q,E.D.

Corollary 1. If A isa self-adjoint operator in Iy, then for any n, -

' o(4m) ={rr€a(4)}. « )

Proof ' According to the conclusions of ‘[2], we have ’

o(4)=0(8) Uo(8*) Uo(4x) Uo(4p),
o (4%) = (87) Uo(8™) Ua(4}) Ua(4).
So (9) holds. . : , - Q.E.D.

*
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Corolla.ry 2. ' If A is an unbounded self-adjoint operator in IIy, then fm‘ any
natural number n, A® must be unbounded. :

Proof As A is unbounded, a(Ap) is- an unbounded .set: and hence o-(A") is
unbounded. From [2], 4" must be an unbounded operator. Q.E.D.

Corollary 8. If Aisa quas'b-mlpotent self-adjoint operator in Iy, then A must be
nelpotent. :

By (8), the proof is immediate.

In [7], corollary 8 was also proved by a different methdd.

2 The n-th roots of self-ad,]omt
operators in II, space

Suppose that 4 and 4, are operators in II,, A, is said to be a n-th root of 4 if
At= A holds. Evidently, for any fixed self—adjomt operator 4, it is possible that its
n-th root does not exist. If it exists, it need not be unique.

Theorem 8. If A is a self-adjoint operator in Iy, o (A) [0, +o0), 0E0p(4),
then there-emists a unique self-adjoint operator Ay such that

| Ar=4, o(A) [0, +o00).

Pfroof Denote the spectral family of 4 by E;. Choose M >0 such that [0, M)>
C(4). Decompose IT,, into II=E[0, M)I,®FE [M oo)H,c We first note that E[O '
M)II is a IIy space, the restriction of 4 to it is a bounded self-ad]mnt opera.to
H[M, oo)II; is an ordinary Hllbert space and t_he restnctlon of A to it is self-adjoint.
So we can discuss the n-th roots of 4 in these two subspaces respectively. Since, for:
‘ any positive operator in Hilbert space, there exists the unique n-th positive root, hence
it will suffice to discuss the reduced part of A on E[0, M )II % This observation enables
us to assume that 4 is a bounded self-adjoint operator in ITy: ' =

 Suppose we have the standard decomposmon @y, A={8, Ay, 4p, F, G, QF. Woe
shall prove, under the same decomposmon that there exists an operator 4;={S, Ay,
- Asp, F1, Gy, Q1) satisfying A}=A and 0(4;) [0, o). By (8), Ai=A is equivalent
- 1o the system of equations
Si=8, Ai’N=AN, Ai’P_AP;

PETVESSS S siG -6 (11)

SISQSTII= Qe S S (A TG A G ST,
i= © dtjtl=n— o .

Since § is a linear operator from finite-dimensional space Z to Z, o(8) cop(4)
(0,00), it follows that we can choose one of its n-th roots which only has positive
eigenvalues. Denote this root by 8;. For positive operators Ay and Ap in Hilbert spaces :
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N and P, there exist the n-th positive roots respectively. Denote them by A, Asp.
Now, applying Sy, Aiy, Asp given before, we shall prove that there exist Fi, G, €1
satlsfylng the last three equations of (11). ,

First, we choose vectors {z:}1_1, one of the bases of Z, such that Sy has the J ordan

canonical form. For F: N—Z, we can find yi, -+, yx €N such thai F, Z(n y,)z,,

VnE€N. Assume Fin= Z(n %;)2;. From the fourth equation of (11), we have

‘_2“2 (4137 'n, :v.-)S{z,:E(n, AL
For convenience, we introduce an operator Sj{:b Six;=_a5:c,-+a,-+1, @is1, Where (a;;) is the
~ adjoint matrix of the Jordan canohica,l form of §;. From direct calculation we have

2< E A8, wi) z,-=2(n, Yi)%,
. =1
This means

ZA"‘“‘"S}%, " (7, 1, -, k),
According to its Jordan canonical form, this system of equations can be d1v1ded into
several sub-systems which contain less equations and are independent of each other.

Take one system of them, assume that it corresponds to the elgenvalue 7 of Sy, denote
the élement of the hlghest order by z;. From the existence of < Z Apgt-a )— we have

o (S} i) "

The other & in thls system of equatlons can be solved by induction
n—1
@y ——( 2 .A”—'l—] > ( 2 An—l—v’ 2 Cj'f] x,l+,_[>

o ' 4j—i-1l
here we put. S =0 when @'+§—4i— 1<0 ThlS verifies that there exists a qolutlon
=0

F, satisfying the fourth equation of (11). Slmllarly there ex1sts G1 satisfying the ﬁfth
equation of (11). Now the right s1de of the last-equation of (11) is given. Represent
Sy in the left side by its Jordan canonical form. Denote the I-th element of the main
diagonal of 81 by =, write Q1= (¢m). We have /

2 8iQS 1= ((ini + (n—1— )% ) g+ [4] m)s

where [¢lim= Eakmq;m—l— Zamqm If we regard (qn, o*y Q1n, 21, **, Qnn) S Variables,
then the correspondmg coefﬁclen’o matrix is an upper triangular one and the elements
of the main diagonal are equal to it + (n—1—4)ny*%0. This shows @ can be
determined uniquely. '

Tt is easy to see that Ay ={Ss, Ay, Aip, F1, G4, Ql} ‘satisfies A7=A and cr(Ai) c
[0, o). :

Using the same. argument as n=2%" we can prove that A4, satisfying the assertlon
of the present theorem is unique, We omit this process. Q.E.D.



NO. 2 UNBOUNDED SELF-ADJOINT OPERATOR IN II, SPACE 163

3. Critical points of self—adjoint B
operators in IT, space

The essentla.l dlfference between self-adjoint operators in I7;, and those in Hilbert
spa,ce is the presence of critical poinfs. So in the study of spgctral families in indefinite
inner product space, one of the most important task is to discuss the structures of the

spectral families in the neighborhood of the critical points. Only when théese are clear,
is it possible to establish the operational calculus which possesses some good properties.

Choose a basis of Z, {2z, +--, 2}, under which § has the J ord;m canonical

. form. Thén_ we can take a sysfém of vecﬁors {y1, ***, Yo} P uniquely such that

Qp =;_2:( P, ¥i)z, Vp&P. Suppose that the jordan blocks of § corresponding tlo,‘ Ao are
the first ko blocks. The ranks-of them are ny, -+, ny, respectively. Put

;= 2, (Ao— A)"' ygzx ; (1<'13<ko).

Define set functions ,u,‘ by ;: ‘ ‘

- P g
IuI(A) J’A\(l,} (7\10—75)2" a< ’b\ko),

where 4 is some Borel set in Teal line. In general, they are o-finite measures. ‘Under
~these notations, we have. : ’ : R
. Theorem 4. If Ais a self-adjoint operator in Iy, CCA)YN (uy, v1)={\}, them
the following four assertfwns are equivalence: '

(i) s‘1P B 12 € (u, ) S (s, 1)} <00, wkerre E,,=E([u, »));

(ii) ,uf” vey 1 gre finite measures; .

(iii) s- 13’13; E,, exists;

-~ (iv) the ;.ad'&'ﬂcal subspace @,, which corresponds to Ao is non-dégefr‘b'emte.' Whén thess

assertions hold, we have @,,= EII, where K =s-lim E,. 4

Proof We first note that H,,=E,,H,,, holds when [u, v) <[, v1). E,M,,‘II T
a IT;-space. As we only consider propertles of By, in the neighborhood of Ao, without
loss of generality, we may assume there exists only one critical point Ao of 4, and A4 is
bounded. Thus when A€ (w, v), Par=1Iy, i.e. P;‘;‘g 0. Suppose that the highest
order of the Jordan blocks of S corresponding to. Ao is n. By (4), weé have

Bu={Po, Iy, Pit, 0, —3}(ha—8)G (o= 4r) P},
J= .

— i (xo_S)i—ig(;ho__Ap)—(iw)PAsg*@";S*)k—l}‘ ' (12)

gk=1

Prove (i)&(ii). erte P,‘,,(G Ap) = Z(ho S)’ 1G(Mo—Ap)*Pgt. For conve-

nience, we assume ko=1,
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Fun(@, Ae)p= _]_2:1(?, (ho—Ae) ’P,“,yz) (M—8) %
- vzjl (B, (ho—Ap) Py zi—jia '

n n—i+1 .
Z:S;J:(p) E ()\0 -AP) ]-Puvy1.+.1—-1>zu VPEP. (13) )

 Itis easy to see that the last term on the right side of (12) is —P,, (@, 4Ap) X
1P, (G, Ap)]*. Therefore the uniform boundedness of H,, is equivalent to the uniform,
boundedness of P,, (G, 4p), from (13), this is also equivalent to the boundedness.of

n_E (Mo— Ap) Py, s for any p, v, where i=1, ---, n. Now we are to prove that
this is equivalent' to the boundedness of SV(Ag— Ap) I Piky, for any ‘u, ». In fact,
o : B =1 . < _
since jE(Ao—AP) ~iPaty; is bounded, then using the identity
=1 . P . .

n—1 n .
ng (ho—4p) 7 Pityisa= (Mo— AP)E(KO— Ap) T Pity;— Pitys,

‘ o n—1 ' '
it follows that ,2 (Ao—Ap)~iPAty;.1 is bounded. By induction we have that
n—i+1 5 y “n
> (ho— Ap) Py 5 4(i=1, ---, n) are bounded. But jz(xo Ap)~1PA%y; is bounded
=1 _ ' =

: " . - d(Ptex, o) < n—j . .
iff ) du is bounded where d'wt_w, z=">(ho— Ap)*Yy;. Hence (i)& (ii).
[k, »)° 0 U, =1

Next we prove (ii)=>(iii). In order to prove the existence of s-lim ,,, from the
representation (12) of E,,, it suffices to prove for all pE€ P, 2*€ Z*, lim P, (@, 4p)p
and lim P, (G, 4p)[P,. (G, AP)]z* exist.Let {2} be the dual basis of {2} in Z*, then
@*z; =v;. By calculation, we have

P, (@, 40)p=3(p,
ltﬂ(G AP) [Pma(g -AP)]

12 Z((M—Ap) (’”")P‘“G*(k —8%)F ‘%)(?»o 8)i~y

1

2—q

¥

M

(Mo—A4p)7 P ﬁﬁ%ﬂﬁ)z ’

<,
[

1

2( ﬁ n;gl (Mo~ S) F1GQ (Mo — Ap) TUtPOPIy 5y )Zi,

=1 k=1

n—i+

n 1
k§=] 2 ()\'0 S) k——lG (}\40 - AP) _(J+k)-Pu,71yt+J —1

=1

&y.

n

m=1

n—i+ n—m+1
-32(3 - )P "3 (o= Ar) Pl i

n—i+1 o .
Write o= 2 (Mo—4p) ’P,L,,y,ﬂ_l, 1<é<n, It is enough 1o prove the existence

of‘ limeg, Take a regular decompos1t10n IIy;=H _®H ., such that H,DP, H_DN.
According to this decomposition we introduce a new inner product [+, +]; in II; which
'agrees with (¢, +) in P. For [uy, »1) < (w, v), we have
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. 12
lolt~ la2li=| "3 (o ) *Ptbgissaa]] - — ApyPliyinss].

= =4 (Pl — Ptbuissea,
= lag, —aB]2>0,

So |a? "1 increases as v — w decrease By (ii), we have sup [a] <oo and hence lim|a$)|

exists. Thus lim lafs—ap, |=0. It follows' that h.m a“) ex1sts, which implies that

s-lim E,L,,_ exists, This verifies (iii).

‘When (iii) holds, by Banach-Steinhaus Theorem, (i) follows.

Let us prove(iv)=>(i). Suppose that the radical subspace @, corresponding to Ao
is non-degenerate, Write H = IT,©®, . With the inner producf (s, +), Hisa Hilbert
space, Under the decomposiﬁon IIy= H®®,,, we have "

_ — ADPA®, E Eﬁ},}@ Ew)
Slnee A® ig a self-adjoint operator in 1, % SO there is a standard decomposition

N@{Z+Z*}@P1 ‘Write P=Py@H, we have Hk—N@{Z+Z*}@P As before,
let II;=H_®H ., such that H_2DN and H,>DP. Denote the inner product correspon-
ding to this decomposition by [+, «]4. Denote the projective operator from P to H by
~ Pp. Since A|H=Ap|H, therefore ER = P""PH, Suppose that [w, ») (W, »1).
‘Because H,z_| @,, when ME [a, B), we have ES)=0, For z €Iy,

B x—EByo=E, a0+ E,x={0, 0, (Pin+P)Py, 0,0, 0}z,
Tn virtue of the definition, it is easy to see (@, H]={0}, E,o=E3s+PiPya.
Hence . - : _ :
(Bu@. Biww—E,.a)1=[PizPpo. BD.o+ B)w] _
= (PitPuw, Bijo+Eie) =0,
| B2 = | Busto|3= | By — w30, (14)
Thus | E,.@|1 decreases as v—u decreases, which means | B |1 is uniformly bounded,
It follows that (i) holds.
Fma,lly, we prove (iii)=>(iv), When E=s-lim H,, exists, it is easy to see that

- Consequently

" E is a projective operator. Thus KEII; is non-degenerate, and HIly= K, II; holds.

Since @,,C H,, Iy and AE,,II,CB,,II n, therefore EIT; is a ITj-space and AEIl,C EIl,,

. Thus o(4| Ell,) Co (4| B, IL,) [, v). So o(A|EIL,) = {A} due to the arbitrariness

of w and ». Write A4, =AlEIIk By what has been shown, it is seen that 4, is a self-

adjoint operator of the II;-space EIl, and 0 (4,) ={Ac}. By [7], we have (dg—no)¥**
=0. Therefore (4—A 0) ™1 =0, which implies

| @, =EIL,
(iv) has keen shown. Q.E.D. _
Corollary. The four assertions of the theorem are equivalent to
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™ sup| (Hyuwe, y) l <o, Va, yEIl,
Remark In the proof of (1v)=>(1), accordmg to the decomposutlon II,=H®,,

we have

A= APDAD = (oI5 DA®) + (AP 2oL, ®0)

so that A is a spectral operator, thus |H,,| is uniformly bounded and §-—limE,, .

exists. But the proof given above 1s direct., By (14)," we can also see that Lim| E,,,,m[[i
exists and that lim | B4 — E,a| =0, So that the existence of s-lim H,,, is verified.

In general, K, need not be uniformly bounded, So we should discuss the orders ‘

of the smgularlty associated with the critical pomts of E,,. For Ao EO’(A), the order
of the smgulamty of Ao is the smallest integer 7 satisfying 11m [e"E ho— &, Ao+ 8)” <oo.

Suppose that Ay EC(4). Denote the highest rank of the Jordan blocks of S

corresponding to Ao by r(Ao). *

Theorem 5. Suppose that A is a self- adgont opermtor in IIy, its spectral family is _
By, M€EC(4), fr(?»o) n. Undefr the standard deCOmposztwfn, D, 4 kas the form ®)."

Then
(1) At ho, the orde/r of the smgulamty of B, does not ewceed 2n;

(11 ) s hm j (t— A0)2"dEt and s—lim
[M3, ho—s)

-0 &-0 J[M-Fl. M)

and M 2 satisfies (M, Ms]NC (4) ={ho}-

(t— 7\.0)2"0lEt emst where My

Proof With no loss of generality, it may be assumed that C(4)= {xo}, S has

only one Jordan block and 4p= jth"’

In view of (12), it is easy to see that the singularity of H,, is determmed by the
last two components of the right side of (12). The orders of their smgulanty at Ay do
not exceed 2n. This shows.(i).

For a fixed 4, When Ao € 4, we have

E(d)= {o 0, P4, 0, z(xo —8)1G (Ao — Ap) P47,

3 (o= 8)-16 (o= ) P PLG (o= 5"} (18)

When 1<i<2n, s-lim JM ) | Y (t— ho)g”(?\.o Ap)"PAP(dt) ex1s1;s, so that (11)
R [My, Ao—8)UThoF8, Ms)
ig verified. Q. E D. ‘
Based on Th 5 we can define

J (t—ko)”dEt— lim Ut;h%o_sﬁj‘w”' M.):' (t—No)*"d B, 4\ (19)

£1,69—0
However, for natural numbers k=1, we may define
Ma
JM, (t—Ao)**dE, by s lim S(t,—ho)™**E(4,)
1 ) 141-0

directly, because (1™ = Ao) 2 E (4i)—>0 (4™ € 45, | 4™ |—>0) where Ao € 457,

Fd
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‘ _ Moreover, if Ao is a zero point of continuous' function f(¢) and there exist a
neighborhood U of Ao, & constant M, for t€U, |f(¢)|<M|t—2Ao|*" holds, then we

may define J f(t)dE; in a similar fashion.

Remark. By (12), it is easy to see that 1f Ap and G are given suitably then at
Ao the order of the singularity of E,, corresponding to A={S, Ay, 4, F, G, Q}
is 2n.” S ) - '

4. The ;pectral‘representati'on of the i'esolvent
-of a self-adjoint operator in II;

L Usmg the spectral famlly (4) of the self—ad]omt operator in Hk, Wwe can express
the revolvent in an explicit form. Thisis ;

Theorem 6. Suppose that A is a self-adjoint opemtor in II, A {S AN, Ap, F,
G, Q}, its spectral family is Ey, the set of the critical points C(A) ={, o0y My M,
Mty =y Mgy Mapt, where Im A, =0(1<»<), fr(}»,,) n,. Then

(A—A) 1=j"_° K@, t)dEt+222 _B, St 2[ B, Bl ]

= S (=AY SEREL M) (M)
. (20)
_ ‘1 . L _ ‘(i 7\4,,) - ={1) ]}\‘l<8,
lfwkeqﬂe K(?u, t) —_— ES(t =G a(A) TE
0<i< mlnz [\, —h | For 1<v<l, B, aye bounded self-adjoint operators i II'; and for
1<y, v<
AuFry

14+1<w<l+p, Bu= (), S)‘ 1P,, where P;,, are some pafrallel proyectwns whose franges
are the radical subspaces corfrespondw g to Ao
’ Proof (1) Suppose that I 1<p<<I+ p, denote the radical subspaces correspon-
~ ding to A,, A, respectively by @,,, @;,. The finite-dimensional spaces H,=®,,+®;, are
non-degenerate and AH,c H,. Denote the projection from II; to H, ‘by"PH,,“We ‘have
| (A~ A4) 7Py, = (A=8) 7Py, + (A—8") 7'P;, |

oy (S Ay)z—lPM (S*_Xp)i—lPM
& oot MEI =T

Thus, in view of PM P;,, we have found the final sum of the right side of (20)
Now, neglecting the radical subspace corresponding to the complex crltlcal points,

it may be assumed that there exist only real critical points.
(2) Take A= (—M, M)>D{\y, -+-, A}. We have the decomposition I ,,~E’(A) II,
@E (A%)II,. Since A|E(A°)II; is a self-adjoint operator in Hilbert space H(A°)II,

50 we have (x—A)—lE(Av)=j ‘ fEtt , for AE€p(A)Cp(A|B(A°)VI,). Thus, it
. o Jae A— . ‘ _
will be sufficient to prove the theorem in K (A)IIy.Since o(A|E(A)II)=0(4)NA4,

by [2], 4| E(A)II is bounded. Similarly, by decomposing the space further, it may
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be assumed that there exists only .one critical point, we denote it by A,. For conve-
nience, we suppose S has only one. Jordan block whose rank is n.

(8) Write K (A, &)= 2 (12; )”")3‘; , define an operator-valued function .
§=1 — Ny .
F(A) in the complex plane‘ as follows: v
| (A—A)—l—j"_" K@, Odl, AEp(d), (21.1)
t—2 |
If/(h)f L,_21<(x ;)4 i+ (- DTB(L) o |
~[, K@, DB, r€o(d)\Do} . (21.2)

where 4,—= [, v) satisfies A€ 4,, M€ 4;, 4= (—o00, o0)\4,.

By theorem 5 and its remark, the integrals in (21.1) and (21.2) inake sehsé, The
value of F(A) is independent of the choise of 4,. Indeed, suppose that 4;>4;, from
(21.2) we have F4(A) and Fz()\.) correspondmg 0 Al and 43 respectwely By snnple
calculation we have '

F2<x>—F1<x>=<x—A>—1E<A \a2) — [,y e o0,

AV H

From the definition, it is clear that F (M) is well deﬁned in complex plane excopt
A= ho For A€ p(A4), F(A) is analytic. We note when AE 4= [, v), A|E[u, v)Ilisa
self-adjoint operator in Hilbert space, whose spectral family is %[w, »)HE,. Thus, for
A€o (A)\{ro}, We can choose a neighborhood U of A and an interval 4 which containg
A, such that for KE‘U, F(\) has the unified form (21.2) where 4,=4. It is then
evident that every term of the ngh’n side of
(21.2) is ana,lytlc Thus F(A) is. analytlc ab A,
By (21.2), we have EE | £ [ =0.

i

.. (4) Now, let us examine the ‘order of the
- singularity of F(A) at A=2Ao. Take two straight
lines passing through Ay, whose slopes are K,

= =1 respectively. They’“HiVide the whole plane
into four parts I, II III, IV (Fig. 1)
(i) AEIUIL,

‘ J’ (t—No)"d B,
L) (A—2No)* (A —1)
these integrals and (18), it suffices to estimate

In order to estimate

IJ KO“’ t)dEt =

“_,_l__ (= 2o) ™ (Ap—Do) prw

¢ /\0) ) 12040, ) A—t ’

. (t— o) (Ap—Ao)~* . - .'<

“ (7\4 )\40)2” J’(—-oo 20—0) A—t P ’ 1 k\2n,

Since we have ~/ 2 |A—t|>|A—2s| when ¢E (—oo, oo),so that

» by the definition of \ ’
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- (t— Ko)z"(Ap—ho) & |

4 “ (A*Ko)z'ﬁjmﬁe@) h—t dPirp 5
M3 ' o sow [ (F—Ao)™dPEep |2
R L L D e

(}\‘ }\l)én I}"_tlz (}\' ;\)4n+2

M3 M2 M2
s (7\:—}&()2)4“-*"2 "p"gg‘(h—}\,j)“"ﬂ ]lw”%g (;\‘,_;\"())_4?1-(;2-“un2’

2 . . 20—k 4
M2 (|t—2] d”pgpp”g<__2_ﬂ.ll_J]t 7»012"‘ "d”P ’Pﬂ,i L

where |« | is the original norm in II, |+[y is the norm introduced. accerding o the
decomposition II,=H 1@11 2 where H 1DN H QDP M, M 1, M, are positive constants,
For brevity,

Thus, jUK(A D] <

_M_
l}\ ;\‘ |2n+1

-On the other hand, from the representation (3) of (A—A4) 1, 1_1; is easy to see thad;
to estimate the norm of the resolyent of 4, it suffices to estlmate the resolvents of ;SQ,

AN and Ap. From the structure of §,.we have .
M

NA=8) T I<sm= 6
Since ~/2 |ImA | = |A— Aol' thus | hoy
e }‘)_1”\|Imm< ]x\/i]

Slmllarly, [ (Ax=2)" < —M——— ~27»| Hence, for ACTIU II, the growth order of the

components of the model (8) does not exceed .2n+1. Tt follows ‘that the growth order
of (A— A) =1 does not exceed 2n+1. ThlS venﬁes that the. growth order of F(A) does
"not exceed 2n4+1; TS e
(ii) AEIITYIV.
For ReA<Ao take - . S L
h '_v143u=4 [3Reg——?\.o’ Re 7»2+7»0),

for Reh>)»o /take‘

e -Remo 8Red—1y )
4= [T, -2 *).
We define F(A). in the unified form (21 2)

J' (t 7~o) am|,

t.
To es 1mate 2 (}“ )

by (18), it sufﬁces to estlmate the norms of

(t—2o)* 1(Ap—7ho) A,, ' }
o =R - dPf ,. 1<"”1<2-”-~ -

ForteAz, ]A m }t xo]\—lx x(,],thus' '
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JA (t ?"O)i 1(‘4P—}"0) 1‘ dPAp

1 J [t —ho|*?d[ Pfrp]?
4

(A—2Ap)* M Ao |* [E—RAo|**
2{—2 )
(3) (zﬁw . R 2
S |7~ ho | ¥ d”P Z’” <m-l'%—+2"”2’”
~ (t }\‘0)4—1 M
Hence Lﬁ%} =) dEt —————-—-l e

When t € 45, [t 7»[>—-— | A=A holds by an argument like  that given for
AEIUII, we'have - : :
) . ”

|)\' ;\. |2n+1

We only have to estimate (A—4)~E(4;). For a fixed neighborhood 4 of Ao, when
AE{M ReA € 45 }, (A—A4A)E (A) is an operator-valued analytic function. When
_ A.E{A.[Re?»EAG}\AF (A—=4)~ 1E(A) can’ be given by multiplying the model (3) of
(A=A4)-1by the model (12) of E(4). Because of contmmty, (A— A)”lE(A) has a

triangle model in {A|ReA€ 4%} and which is the product of the two models given
above. From calculatlon, S .-

A—-A)TE(4) = {(7» S)‘ (?» sz)“ 4", (X—Ap)‘?Pﬁ:’,(?»*S)’lF(%—‘sz)"le",

j K, IARS

Z;(h— S) - (kof S)’,‘?G(M'; Ap)"-‘wa (h—8)"1G(A— Ap)Pir,
- 2"] (A—S)‘__l(xo. 8)ITIG (ho— Ap) ‘”"’P:;‘*G‘*(ho ke
‘—2(7» S) 1G(A—AP) 1<xo Ap) ’P‘“’G*(x s*):—l

+(A—8)[Q@— F(A— Ay)- 1F*+G(h Ay 10*] (x s*)—l}

By induction, it is easy to verify o '
Q=) Qo= Ar) =L (0 an-¥ = Tomgye e Ayt
Thus, in the last component of (A—A)~1E(4), the terms which confain ()\. Ap) -1ig

— (.= 8) G~ Ar) 3 (ho— Ar)" fPAéG*(A - L
+ (A —8) TG (h— 4p) @*(x—s*)—l
==0- S)‘lG‘(k Ap)—iP‘“'G*Z

(7\. }\‘)J (7&0 S*)j_l '

—(-5)- 1G§_;§O”° (f”)sf)ﬂ PG (10— 87)/*

+(A=8) ”IG‘()\. Ap) @ (M-8t _
‘We note in the second sum of the rlght side, —n<<— (g+1) +i<<—1. 'I‘he sum of the .
first and the third one is
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= (A—=8) G —Ap) TPPEF (A= 8T+ (A=8) TG(A—4p) @ (A-8D) T
= (A—8)'G (A — Ap) P4 (L — 81,
“Put A= 4. We should estimate each component of (A—A) *E(4;). We note first
that 7, @ and S are bounded operators By stralghtforwa,rd calculation, we have

a1 M
[(a=8) (7\0 8)’ ||<Tm;:7.

Using |A—1] 2-3— [A—Ao| Where ¢ € 4, by estimation we have

i

L‘a | <] i pll“‘=ﬁ;,;!gpu=.

e Similarly, | (A~ AN) Py !! ol

under the hypothesw a(AN) {7»0}, ag AN is self-a.d]mnt, H (). AN) e
holds.

|- )Pl

ie. |(A— AP)“1P§[[I< holds In fact,

also
=

[A— )uo] thus, by eshma.tlon

Fo?-tGAk, lho‘—-t[.;,> \/__
|Go40) P = | o= 4)*PE] - \ J. ;‘j’j’; < |i*/ o
It follows at once that , : ) .
" (A —A4) B (&) I< W

Hence, for A€IITUIV, the growth order of F (M) does not exceed 2n+1.

(5) Since F'(A) ig analytic in whole plane except A=2Ao, F(A)—>0 ag A—>co dnd Ay
is a pole of F(A), whose multiplicity does not eXceed 2n-+1, thus

2n+1 B,
, FM= 2 m—)—,.
For A€p(4), we have
-~ B,
(A—A)~'= jK(x £)d B+ 2 L o
Since F(}\.) isa self—ad;omt operator when A is a real number, we find

© 2041 (B,,Q} y) " 2n+1 (m va)
2 G W & Gt M

Hence B“—- - B, are self—ad;]omt

~ For general cases, it is now easy to see that (20) holds Q E.D.

5. The operatxonal calculus for self—ad;omt
operators in II, space

With the spectral represen’natmn of the resolvent we. can further dlSGU.SS the
operational calculus. Suppose that 4 is a bounded opera,tor in II, f(A) is analytlc in a
neighborhood @ of 6(4). I' is an admissible contour in Q surrounding o(4). According -
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%o the ordinary definition, f 1

§ f (M) (A= A)*dA. With these notation, we
have .

Theorem 7. Suppose that 4 is a self adgoznt operator in ﬂ w C(A)={A1, -+, Ay,
Aist, Man, oo, Mgy Magd, () = nw then - .. . :

F=[" [r®- Set-n) 2 L gy ]am+ 338 f"@v)B
- 8S [0 5 00 )

y=l+1 =0 %)

- (22)
Pfroof For brevity, we assume C (A) {ho} Usmg Fubini’s theorem, for z, Y

E]I;,, we have
2 (tf)“’)f_: ]d(Eta;, y)dA

(f(A)m y)~—§ f( )I n =Y

2n+1 f()\’) dA
27 & 9 g B )

=J —oo 2717'1, {(}\3 % @) o (t—2o)*™ l]dhd(E;w y)

$=1 (}\4 A

2n+1 1 f(}\‘)d)\’ ‘
T & 2w $r s x)‘(Bi“ v).

2n—1

(Gencto B by Bea) = [ [7)~ 3 Lo e=noy ]d(Etw )

, E f ()0“") ~——22(Bw, v),.
It follows that :

Fa)= j @_”"21 L20e) “’<’“°> X' ]dE +§ 1200 £ W B @)
QED. , v T
Corollary 1. Under the same conditions of theorem 7, in addition, C(4) = {Ao},
we have - : . e
= A) e J[t ) ;3 o= A)M] Et+¢2o o= x)=+1’ (29

F)=[[10-8 L2090 e ry |amr F L2004 ry, 29
Pfroof Take £ () = (t—Mo)¥, substltute it mto (23), we have
(A=A, N o<k<2n—1,
B,=4 o
{(A'— Ao) " — J’__a° (t—No)*dE,;, k=2n,

Substitute them into the representations of (k—A4)™* and f(4), it follows that (24)
and (25) hold. Q.E.D.

Remark. Using the triangle model, ‘We can find Bs, concretely Indeed take
A= [u, v) such that ho€ (u, »), then ‘

Bay= (Ao}~ j (t— ;w,)%dE,_(A Ao)™E(4) — j (t—Ao) ™ d T,
@ .
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From (8) and (12), we have . |
(U=20PE@-{0, 0, (4s—rmPH:, 0, 3810 G A2y iPH,
- (8- )\,o)"‘lFF*(S* Ao)™ 1
- 2 (S— Ao)’—la( Ap— )\‘o)zn—(wa) PAPG*<S*~x yi- 1}

Let |4]|—0, by the definition, we have lim J (t—2o)*dE;=0. So.

1410

Bau= lim (4—20)*B(4)

14]—
={0, O, 0,0,0, — (8 —No) P L[FF*
+G (Prr— Pir )G (S*— o)™ 1}, .
As above, under the bas1s {2} of Z, § has the Jordan canonical form. For
convenience, we assume it has only one J ordan block. Suppose that # and @ are _
Fa=3(n, @) Gp=S(p, y)i, VnEN,p€P, -
where 2; € N, y; € P. Then, for s=n-+2+2* +p € I, we have
B2n“3— i Che 7\0)"—1 [FF*+G(Pir— Piro)G] (8% — o) 12"
= — [(@n, @)+ ((Pir— Pf,,_o)yn, Yn)1(Z, 2)2,
Corollary 2 Under the same condztions of theorem 7, in addztwn, if O’ (A) is
real, k,>1, 1<v<l, then '

(A x)%ﬂo»— [I(t x)2"v+kvozE . (26)

Proof Taking f(t)= [[ (¢—A,)*** and substituting it into (23), the pfesent\

corollary follows at once. Q.E.D. . .

The operational calculus mentioned above was restrlcted to analytic functions.
Next, we shall extend this notion o a still more genera.l case. For convenience, we
assume there exists only one critical point, 0. ‘

First, we introduce two specml algebras Q, and Wn. Their definitions are:

Q.={(f, {a}P0)|f is any Borel measurable functlon, {@} is any system of
constants}. For F=(f, {a;}) €0, G= (g, {6:}) EQ,., the operations of # and G are
defined by

o aF +BA= (af +Bg, {ea;+B0b:}),

=<f'g) {Z% a:iéi—i}}).
Moreover, we define the conJugate of F by ‘ '

- F=(J, {a&)
It is obvious that @, is a commutative algebra with identical element (1, {1, 0, ---, 0})
and null element (0, {0, ---, 0}). We also define w, as a subalgebra of Q,:
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{F (f, {a,}) €Q,| fora nelghborhood of 0 correspondlng to F, soch

tha‘u f (t) 2 at? <M P* t2”+1 holds, where M 7 depends on F}

If f is Borel measurable and in a nelghborhood of 0 it has continuous derivative of the
(
2n+1-th order, then (f, {@}#o) € w,, where a; = -jc—q;T(()—)-(O<?,<2n+1) ]

Definition. Suppose thdt disa "igel-gf-,ddjoint operator, C(A) ={0}, r(0)=n, the
spectral family of A is By. For F=(f, {a:}) € wa, we define

F(A) = j [(t)—Ea,t”]dEt+EaA‘

The domain of this operator is
[[r®-Fas( a1malz<eo}.

DEU) = DA e €Ty
By theorem b and 1ts rema,rk thls deﬁmmon makes sense. Moreover, if f is
0
analytic, set F = ( s {f (O)D then we have F(A) =f (A) the rlght s1de is defined

in the ordinary sense. <

Take M >0, put A=[—M, M) ‘We have A= A|E(A)II;&(-BAIE(A")II,c It is
easy to see that we may dlscuss the operatlonal calculus in K (/1)11’;5 and E(A°)II,
respectively. However, for A|E (A“)Hk, it has been done by the self—adjomt operator
theory in Hilbert space. So, we assume A is bounded.

" Theorem 8. Suppose that ‘A'is a bounded self-adjoint operator in IIy, O(4) ={0},
r(0)=mn, F, GEw,, then L '
| “ F4)- [,

(@F +BE) (4) =a[F ()] +BEA], (28)
- (FQ) (A =F(4HE(4). B '
Proof The ﬁrst two formulas of (28) are obvious. We shall only prove (FG) (4)
=F(A4)G(4), which is equlvalent to (£?) (A) [F(4)]12. Suppose that F=(f, {a}).
Using the same argument glven above, Wlth no loss of generallty, we may agssume for
all tER

-3 aw‘ <My . @
holds. For any fixed >0, write 4= [—pu," w). By the definition, it is easy to see that
F(4) and (F?)(4) are reduced by E(4). We have ‘ '

[F(4)1°= [F(H)IE(4) + [F(APE(L),
(F2) (4) = (F?) (4) B(4) + (F ) (A)E(L),
Write AE (4) = AA, AE(AC) .AAc We have

F(A) B (L)~ j [f(t) Zat‘]dEri-Za,AAa—J‘c f(t).d_‘Et,‘
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Similarly (#2)(4)E (L), ~J f“‘(t)olEt But {#,E(4°)} is a spectral family in ordmary
Hilbert space, so we haveU f (t)dEt J O] dEt, i.e. o
[F (4)1°8 (4)= (F2) (A)E (AG)

‘Write

E)=f() — Z dit", EFORICRION 20 bit',
where N b= Za,wz - (0<i<2m). |
We have LR - j §1(t)dEt+Za,A“]

j §1(t)dEt j §1(t)dEt+2 2@,A‘]+ 2 M,A‘,V

(FQ)(A)E(A) J fz(t)dEt+Z‘,bkA4,

By (29), it is easy; for. us to show that there exists a constant M, such tha,t for tEA
[€1(8) | <My#*"+* and lfg(t) <M 1t2"+1h01d Thus, for 1<4<<2n, we have

o a@ararep| = ||  aear|' <[ o, sl Bl
[e, u) Les 1) L& 1)

s W s 7T €0

: . e, )
Similarly, we have

(31)

o o] oo,

[ paare

Now, we can estimate ” Lfl (t)dE;

-0

Using an argument similar o the proof for theorem 5, we note it will suffice:to estimate

.., 6@apape|amd|[  awarape
Le5 ) L=y —

and ,
J §1 (t)dEt

,V‘By. (80) and (381), we-hawve

<M4:U'

Sumlarly, we ha,ve lU §2 (t)dE, <M i Smce AA is bounded hence

) ,“L gi(t)dE’ Lgl <t>dEt+2 go a,;Aﬁ,] §M6/«b. |

On the other hand R o :
2 (Z(Z].A. H = Z azaJAH‘j"*‘ 2 azijiA 2 bkAA‘*" 2 Gdj.A.’H"; R

0<i,j<2n 0<i,j<2n
w+]>zn+1 i i+j>2n+1

By the corollary of theorem 7 for £=>1, A2”+k—J t”’*"dEt holds The same argument
can:be applied to show . ' .

"A2n+k” — “ {2tk dEt

I <M7I‘bo

Thus from what have been proved it follows that
NF 1= (F2) (4)] <C/w,
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- where O is a constant independent of p, Hence [F(A)]2 (F% (A) due to the
arbitrariness of w. Q.E.D.

Theoremx 8. Suppose that A is a self- adgomt opemtoa" in I, C (A) {0},
7(0)=n, F1=(f1, {a}) Ewn, Fa=(fa, {a:}) Ews, f1 (t) and fa(t) are continuous in '
(—oco, o), in addition, f1(t)=fa(t) where t€a(4), then F1(A)=F2(4). ’

Proof By the hypothesis and the definition of F1(4) and F1(4), we have

F-Fy W =" (Fr=p@aB = ([ +] ) po) DaB,

For any fixed >0, o (A|E(—oc0, —&))=0(4) N (—oo, —e], d(A}E[s, o0)) =
o(4)N [e, o). However, in o(4|H(—co, o))UO'(A]E[s o)), fi(t)=Ffa(t)

holds, so that q"s +I )( fi—7F2) (t)dEt—O and hence (F1 Fg) (A) 0. By theorem

8, F1(A4)=Fy(4) holds. Q.E.D.
“We now try to establish the spectral ma.ppmg theorem: To do this; we first’ prove
Lemma. - Suppose that A is a bonuded ‘self-adjoint operator in II, O(4)= {03},
r(0)=n, F=(f, {a:}) Ewn, where f is a continuous function. Then F(A) is bounded.

2n s ' N
Proof Write £(8) =Ff(2) —g} ait'. With no loss of generality, we may assume (29)
holas in [—ra—1, ra+t 1] Where r, is the spectral radius of A. To prove
F(4)= j (t)d,Et+2 g i

is bounded it suffices to show I € (t)dEt and J‘ “ £(t)dB, are uniformly bounded

—rg—

for ¢>0. By (18), it is easy to see that this is equivalent to the uniform boundedness
—& ratl | )
ofj ) £(t) Az'dPfs and j - £(t) A7'dP#», where 1<¢<\n. Now, the present lemma

follows by the estimation like that given in. theorem 8. Q.E.D.

Theorem 10. Suppose that A is a bounded self-adgomt operator in Iy, O(A) {0},
r(0)=n, F=(f, {a:}) Ew, where f is a continuous functwn Then

c(F(A)={fD)]t€a(4)}.

Proof First, we prove {f(t) ]tEa(A)}C:a(F(A)) For ?\EO‘(A)\{O}, take >0
such that 0€ [A—9, A+38]. Since Hilbert space E [?n 3, A+8)II reduces A and
F(A), hence

FO\) E{f@)|t€Ec(A|E[N-9, 2\.+8)Hk)ca(F(A)|E [A—39, ?u+6)IIk)C<r(F(A))
On the other hand, the critical pomt 0E€op(A), thus there exists o€ Il such-that
Awo—0. Since o4(wo) = {0},it follows that for any 8>0, @€ E[Ae—9, Ao+8) I, holds,
0, t€(—oo, —&),
xé, tE€ (e, +oo) )

pya ([ [N 10 S o Bt B aktas 1 Oz

hence for any >0, Etwo={ We have
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This means f(0) €op(F (4)). So we have {f(¢) |t €o(4)} o (F(4)). :

Conversely, suppose that r& {f(¢) |t €6(4)} and hence £(0)#r. In view of the
continuity of f(#), there exists a closed interval 4 which contains 0 as an interior
point and satisfies f£(¢) #r for t€ 4. Suppose that

(=ra=1, ra+ D\ UD = (@, B.),
where 7, is the spectral radius of 4. We define

g(t) = f(t), tea(4)U 4,

1 b=t 1  i—q St .
@) ba T {8 by €W B vl 2
It is easy to see that g(t) is contmuous in (—rs—1, u—l—l) Develop ———ln— in a
r— Zat"

nelghbourhood of 0, denote the first 2n+1 coeﬁicmnts by {bi} We observe that
G=(g, {b;})Ew,. 00n81der F.@= (fe9, {a}). We have g(t)(fr f(#))=1 for
tEcr(A) U4 and {e;}= {1 0, ---, 0}. By theorem 8 and 9, we have Q(4) (r— F(A))
=(r—F(4))G(4)=1. So G(A) (r—F(4)). By Lemma, G‘(A) is bounded This
verifies r € p(F (4)). ‘ :
Summarizing what have beed proved, we have cr(F (A)) {f®)|t€c(4)}. Q.E. D
Theorem 11.  Under the hypotheses of Theorem 10, F(A) has a triangle model
F(A)={F(8), acl, F(4p), [F(A)]s, [F(A)]s, [F(I} -~ (32)

where F(8)= gqﬂ‘, : [F(4A)]s= 2 a SR,
[F(4)]4= "2184‘-1@[“ 7@~ S avlsaps,
[F(A)]g_ 2‘ a; ESJ—IQSH—, 2" a% 2 SjFF*S*.t—z'_ji.

2 - 1GJ O 2 at']t“‘“"‘)dPA"G‘*S*"

Proof By the deﬁmtlon of F(4), (27), the model (18) of E(4) for 0E 4, and
the formula (8) of (A—Ao)", it is easy to verify (82). Q.E.D.

Coi‘olla.ry. Suppose that F=(f, {a})€E€w,, f is a real fémction, Im a,=0
(0<i<<2n) then L . |

B | OFW)={f®|t€0(4)}. |

Proof . Since f is a real function, Ima;=0 (0<<é<<2n), by Theorem 8, it follows
that F(4) is a self-adjoint operator in II,. In view of the triangle model of F(A), ,
we have

C(F(4))= G(F(S)) {ao}.

Smce F € w,, thus ay=f(0). This verifies our assertion. Q.E.D.

In particular, suppose that 4 is a self-adjoint operator whose radical subspace
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corresponding to critical ‘points-are non—degenera.te, O(4)= {0}, rr(O) Zn. For F=(f;
{a;}) €Q,, we define
OB j CF@aB+ R ad BHOD).

—c0, N0}
It is easy to show that (a) for F €w,, this deﬁmtlon agrees with the precedmg one; (b)
Theorem 8 and 9 still hold. '

Theorem 13. Suppose that A is a self-adjoint operator in a separable IIy space,
C(4) = {O}, r(0) =n, the radical subspace corresponding to O s non-degenerate, T' s a
closed operator which is densely defined. Then T €{A}" if and‘bhly ’bf there exists a
F E€Q, such that T= F(A), where {A}"={T| BT cTB, where B is any bounded operator
satisfying BACAB}

Proof The sufﬁcwncy is dbvious. We shall prove the necessﬂ;y

‘Write 4= {0}, &= (=00, ) \{0}. BE(L)} is a Hllbert space Wlth inner product
(-, +), and A[E (L)1 is a self-adpmt operator in thls space Smce T E {A}" we ha.ve
TE(4) € {AE (4°)}", hence there ex1sts a Borel measumble functlon f such that

‘ TH) - j F(8)d:, |
On the other hand, A|E(4°) I is a quasi-nilpotent operator in E(4)IT;. From r(0) =

n, we have, in fact (A|E(d)II;)*"**=0. However, T|E()II € {A[E(A)Hk}” By
[6] it follows- that there exists a system of constants {a}22 such that -

TE (4= Z a;A'E (A)
Thus, for F= (f, {a}) E.Q,,, we have

T— j f(t)dEt+<ZaA’>E(A) 7). - Q.E.D.

At the end of this paper, by the way, we.point out that the integral representa-
tions of the conditional positive-définite functions can be given immediately by the
results proved above. But we omit these complicated sﬂatej;ix_ents.
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=
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H Ap 71 G 5 M I BE,

EE5 WAL EEEEAT, Ao €C(A), (ko) =m, %K%

(1) By 75 ho MBS HER BRI 20,

(ii) s-lim LM RCGIOLL A ‘s—hmJ’ (t— Ao)ﬁ”dEt FE. ﬁg M, M,

|23 +C M

WR [MI: M1N0O(4)= {7\0} : ‘ o .
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1, |Al<8

=)t -
-t =3 (h A=) 6(}‘)"{0, [A] =6

XE K@, t)=



180 .~° . CHIN. ANN. OF MATH. e VOL. 2

0<3< min [x A ¥ 1<w<l, By B II, LIERBEMWET, T4 l+1<v<z+p

1<; v

B, Bvi‘— (7\: —8)Py,, Po, RUS A kﬂﬂié@*ﬁ?ﬁljﬁﬁﬁiﬂﬁﬁw%zﬁ&%
REBT AEE6WERT,H

s=[ [ro- Fae-m L) (1) am,
v 300 5, ”jl[f“’(iw) B 20 1]

v=1 =0 v=1+1 =0

XEfQ) FEo(4) B‘J~A@Biﬁ)‘ilf\]ﬁ¥7ﬁ?

FT BN E— BT B, RNFIATHARHRER B ,

Q= {(f, {adito) | f H BOrel AWE L, {a} H—EEBY. X F= (f, {a}) EQ,.,
G=(g, {b:}) €Qn, BX

;aF+ﬁé% (af +B@, {aa:+Bb}),
- ra—(fo {Feta]) T=C, @h.
BIR Oy B— BB, TR TAREL 00 X
wn={F= (f, {a}) €Q.| 720 B —A-5 F A %48,

| mz‘m%gw <Mp|t]™, MFs,Fﬁ;e}
oy B AR EEREET,C4) = {0}, r(0)=n, X F=(f, {a}) Con, EX

F(4)= j [f(t) }_a;t‘]dEt+2alA‘
iR f W, F =(r, {552)), mxmm £(4)=F).
=E8 ¥ ARGRAREET, O(4)={0}, r(0)=n, F, G€w, HK
| F(4)=[F)]', (aF+B@)(4)=aF(4)+BG(4),
(FG)(4) = F(HGA), .

@9 & AR I, EEREHT, C(4)—{0}, r(0)=n, Fi=(f, {a,}>ewﬂ,
Fam (fa, {0}) Coon, Fur fa 76 (o0, 00) Hillh, 2 0 (4) LARSS, Hok Fu(A) = Fa(4),
R0 % AR L EARERERT, 04 =0}, 1O =n, F=(f, {a) €2
FRESRE, WK o(F(A)={f(D)]1€a(4)}.

AR 1L, RARILT F(A) W= B, SRS 7 = F i, O(F() =
{F Bt EC(A}. -

12 AR I LK AT, O(4) = {0}, r(0)=n, 50 FEE
REsEiERL, TRBEMET, Tk TE{A) MABRREE FEQ, T-
F(4), KB {4}"= {TIXTEHI%EBAcABmﬁﬁ%%B ¥4 BT CTBY},

9<F<A>> 204N {m e |

d||1’7_t$[|2<°°}.' :



