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1 Introduction and Main Results

In this note we consider the existence (and nonexistence) of solutions to the Cauchy problem

ut − div(|Du|p−2Du) = |Duq|ν , in ST = R
N × (0, T ), T > 0, (1.1)

u(x, 0) = µ, x ∈ R
N , (1.2)

where p > 2, 0 < ν < p, qν ≥ p − 1, N ≥ 1, and µ is a nonnegative Radon measure in R
N .

Equation (1.1) is a class of degenerate parabolic equation with nonlinear forcing term. They

appear in the theory of non-Newtonian fluids. The main feature of this class of equation is

the interplay between the degeneracy in the principal part of the equation and the nonlinear

forcing term, where the latter depends on the space gradient of a power of the solution.

In this paper, our interest is mainly focussed on the optimal condition of initial data µ, for

the existence of solutions of (1.1)–(1.2).

It is well-known (see, e.g., [1]) that for the Cauchy problem of p-Laplacian equation

ut − div(|Du|p−2Du) = 0, in ST (1.3)

to have a solution, the optimal condition on initial data is

sup
ρ≥γ

ρ−
κ

p−2

∫

Bρ

|dµ| < ∞

for some γ > 0, κ = N(p − 2) + p. For the Cauchy problem of p-Laplacian equation with

strongly nonlinear sources

ut − div(|Du|p−2Du) = uq, in ST = R
N × (0, T ), p > 2 (1.4)
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to have a nonnegative solution, the optimal condition on measure initial data is

sup
x∈RN

∮

Bρ(x)

dµ < ∞,

where 1 < q < p−1+ p
N

is assumed (see [2]). The problem of existence of solution to (1.4) with

µ a measure and q > p − 1 + p
N

was still open. In this paper, by introducing Morrey norms as

in [4], we first investigate the existence of nonnegative solution to Cauchy problem (1.1)–(1.2).

Here we do not place any restriction on the growth condition of µ. Next using the same method,

we give a sufficient condition to ensure the existence of solution to (1.4) corresponding to data

measure in the case q > p − 1 + p
N

. Moreover, we prove also that the sufficient condition is

actually optimal for the existence of solution to (1.4) and (1.2).

For the Porous Medium equation with nonlinear forcing term, similar problems were con-

sidered by D. Andreucci and E. DiBenedetto (see [3, 4]). Here we use some ideas in [4].

Since equation (1.1) is a degenerate parabolic equation, problem (1.1)–(1.2) does not in

general have classical solutions. We now define the weak solution to (1.1)–(1.2).

Definition 1.1 A nonnegative measurable function u(x, t) defined in ST is said to be a

weak solution to problem (1.1)–(1.2), if

u ∈ L∞
loc(ST ) ∩ C((0, T ); Lp

loc(R
N )),

|Du|p ∈ L1
loc(ST ), |Duq|ν ∈ L1

loc(ST ), (1.5)
∫∫

ST

{−uφt + |Du|p−2DuDφ}dxdt =

∫∫

ST

|Duq|νφdxdt (1.6)

for all φ ∈ C1
0 (ST ). Moreover,

lim
t→0

∫

RN

u(x, t)η(x)dx =

∫

RN

η(x)dµ (1.7)

for all η ∈ C1
0 (RN ).

Weak subsolution (resp. supersolution) is defined in the same way except that the = in

(1.6) is replaced by ≤ (resp. ≥) and φ is taken to be nonnegative.

We introduce the following notation as in [4].

Let µ be a nonnegative Radon measure in R
N , and u ∈ L∞

loc(ST ), u ≥ 0 with ST =

R
N × (0, T ), T > 0. Let also 0 ≤ θ ≤ N be given. We use the following notations throughout

the paper:

[µ] = sup
x∈RN

sup
0<ρ<1

ρθ

∮

Bρ(x)

dµ,

[u]t = sup
0<τ<t

[u( · , τ)], 0 < t < T,

where we let
∮

E

dµ =
1

|E|

∫

E

dµ, |E| = lebesgue-measure of E.

First we state our existence theorem.

Theorem 1.1 Let [µ] < ∞ with θ[qν − (p − 1)] < (p − ν). Then there exists a solution u

to (1.1)–(1.2) defined in ST0 = R
N × (0, T0) ,where T0 = T0(N, p, q, ν, θ, [µ]), such that for all
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0 < t < T0,

[u]t ≤ γ[µ], (1.8)

‖u( · , t)‖∞,RN ≤ γt
− θ

p+θ(p−2) [µ] (1.9)

for some γ = γ(N, p, q, ν, θ).

Next we prove that the critical threshold for θ in Theorem 1.1 is actually optimal for the

existence of solutions in the class considered here.

Theorem 1.2 Let ν ∈ [1,∞) and u be a solution to (1.1) in R
N ×(0, T ) such that [u]t < ∞,

0 < t < T and

µ(Bρ(x0)) ≥ ερN−θ, 0 < ρ < ε,

where ε > 0, x0 ∈ R
N are given. Then θ[qν − (p − 1)] < (p − ν)+.

The problem of existence of solutions in the limiting case θ[qν − (p − 1)] = (p − ν) is still

open.

It is known (see [2]) that any initial datum µ to a nonnegative solution of (1.4) with q <

p − 1 + p
N

must fulfill the following necessary condition:

µ(Bρ) ≤ γρN .

Using the techniques introduced in the proof of Theorem 1.1, we can prove the following theo-

rem.

Theorem 1.3 Let [µ] < ∞, q < p− 1+ p
θ
. Then there exists a solution u to (1.4) and (1.2)

defined in ST0 = R
N × (0, T0), where T0 = T0(N, p, q, θ, [µ]), such that for all 0 < t < T0,

[u]t ≤ γ[µ], (1.10)

‖u( · , t)‖∞,RN ≤ γt
− θ

p+θ(p−2) [µ] (1.11)

for some γ = γ(N, p, q, θ).

The following theorem shows that the bound q < p − 1 + p
θ

in Theorem 1.3 is optimal.

Theorem 1.4 Let u be a nonnegative solution to (1.4) in ST such that [u]t < ∞, t ∈ (0, T )

and

µ(Bρ(x0)) ≥ ǫρN−θ, 0 < ρ < ε,

where ǫ > 0, x0 ∈ R
N are given. Then θ(q − p + 1) ≤ p.

Throughout the paper, we use γi(a1, a2, · · · , an) to denote positive constants that can be

determined a priori and only depend on specified quantities a1, a2, · · · , an.

This paper is organized as follows. In Section 2, we collect the a priori estimates needed

to prove Theorem 1.1, whose proof is given in Section 3. Theorem 1.2 is proven in Section 4.

Theorems 1.3 and 1.4 are proven in Sections 5 and 6.

2 Some Estimates

For technical convenience, we need to define, for u ∈ L∞
loc(ST∗), u ≥ 0, with ST∗ = R

N ×

(0, T ⋆),

〈u〉t = sup
0<τ<t

sup
x∈RN

sup
R(τ)<ρ<1

ρθ

∮

Bρ(x)

u(y, τ)dy, R(t) = Γt
1

p+θ(p−2)
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for all 0 < t < T ∗, where Γ is a positive constant which can be chosen a priori (as a function of

N , p, q, θ and [µ]). We also need to assume that

T ∗ is chosen so that R(T ∗) = 1.

Finally we define the constants

κ = N(p − 2) + p, Θ =
ν

p − ν
[pq − (p − 1)] − 1.

We can check at once that the assumption θ[qν − (p − 1)] < (p − ν) may be written as

θΘ < p + θ(p − 2), and that Θ > 0 follows from our assumptions.

First we prove sup estimate.

Lemma 2.1 Let u be a continuous nonnegative subsolution of (1.1) in ST∗ . Also assume

that a time 0 < T < T ∗ is given, so that

Γ−pt
θ(p−2)

p+θ(p−2) ‖u( · , t)‖p−2
∞,RN + t‖u( · , t)‖Θ

∞,RN ≤ 1, 0 < t < T. (2.1)

Then

‖u( · , t)‖∞,RN ≤ γt
− θ

p+θ(p−2) Γ
p
κ

(N−θ)〈u〉
p
κ

t , 0 < t < T, (2.2)

where γ = γ(N, p, q, ν).

Proof Fix a ball Bρ ⊂ R
N , and 0 < t < T with R(t) ≤ ρ. Let k > 0 be chosen and for

n = 0, 1, 2, · · · , set

ρn =
ρ

2
+

ρ

2n+1
, tn =

t

2
−

( 1

2n+1

)p

t, kn = k −
k

2n+1
,

Bn = Bρn
(x), Qn = Bn × (tn, t), 0 < tn < t ≤ T.

Let ξn(x, t) be a smooth cutoff function in Qn such that

ξn = 1 on Qn+1, 0 ≤
∂ξn

∂t
≤ γ

2np

t
, |Dξn| ≤ γ

2n

ρ
.

After a Steklov averaging process, from Definition 1.1, we obtain

1

2

∫

Bn(t)

(u − kn+1)
2
+ξp

ndx +

∫∫

Qn

|D(u − kn+1)+|
pξp

ndxdτ

=
p

2

∫∫

Qn

(u − kn+1)
2
+ξp−1

n ξntdxdτ +

∫∫

Qn

|Duq|ν(u − kn+1)+ξp
ndτ

− p

∫∫

Qn

(u − kn+1)+ξp−1
n |Du|p−2Du · Dξndxdτ. (2.3)

By Young inequality, we have

∣

∣

∣
p

∫∫

Qn

(u − kn+1)+ξp−1
n |Du|p−2Du · Dξndxdτ

∣

∣

∣

≤
1

3

∫∫

Qn

|D(u − kn+1)+|
pξp

ndxdτ + γ
2np

ρp
‖u‖p−2

∞,Qn

∫∫

Qn

(u − kn+1)
2
+dxdτ. (2.4)

Note that if u
2 > kn, then

(u − kn)2+ ≥ (u − kn)α
+

(u

2

)2−α

≥ C(u − kn+1)
α
+u2−α, α ∈ (0, 1);
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if kn+1 ≤ u ≤ 2kn, then

(u − kn)2+ ≥ (u − kn)α(kn+1 − kn)2−α ≥ 2−(n+3)(2−α)u2−α(u − kn+1)
α.

Thus we have
∫∫

Qn

|Duq|ν(u − kn+1)+ξp
ndxdτ ≤

1

3

∫∫

Qn

|D(u − kn+1)+|
pξp

ndxdτ

+ γ‖u‖Θ
∞,Qn

∫∫

Qn

max{1, 2n(2− p
p−ν

)}(u − kn)2+ξp
ndxdτ. (2.5)

Collecting (2.3)–(2.5), we have

sup
0<τ<t

∫

Bn

[(u − kn+1)
2
+ξp

n](x, τ)dx +

∫∫

Qn

|D(u − kn+1)+|
pξp

ndxdτ

≤ γ
2np

t
(1 + M)

∫∫

Qn

(u − kn)2+dxdτ, (2.6)

where M = t
ρp ‖u‖

p−2
∞,Qn

+ t‖u‖Θ
∞,Qn

. Hence, as in [2, Proposition 3.1], we can obtain

‖u( · , t)‖∞,B ρ
2

≤ γt−
N+p

κ

(

∫ t

0

∫

Bρ

udxdτ
)

p
κ

(2.7)

for all 0 < t < T , Bρ ⊂ R
N , ρ = R(t). By virtue of (2.7) and the definition of 〈u〉t, we get

‖u( · , t)‖∞,B ρ
2

≤ γt−
N+p

κ

(

∫ t

0

∫

BR(t)

udxdτ
)

p
κ

≤ γt−
N
κ R(t)

p
κ

(N−θ)〈u〉
p
κ

t . (2.8)

Lemma 2.1 is proved.

We now estimate |Duq|ν in (1.6).

For λ ∈ (0, p), σ > 0, define

H(λ, σ) =
λ

p − λ
[pσ − (p − 1)] − 1.

Lemma 2.2 Assume that the assumptions of Lemma 2.1 are fulfilled and that H > 0 and

θH < p + θ(p − 2). Then we have for all Bρ ⊂ R
N , 0 < t < T , R(t) ≤ ρ ≤ 1,

∫ t

0

∫

B ρ
2

|Duσ|λdxdτ ≤ γG(t){Γ
p
κ

(N−θ)H〈u〉
pH
κ

t t
1− θH

p+θ(p−2) }1−λ
p , (2.9)

where G(t) = sup
0<τ<t

‖u( · , τ)‖1,Bρ
, γ = γ(N, p, q, ν, λ, σ, θ).

Proof Let R(t) ≤ ρ ≤ 1, and ζ = ζ(x) be a smooth cutoff function in Bρ such that

0 ≤ ζ(x) ≤ 1 in Bρ, ζ(x) = 1 in B ρ
2
, |Dζ| ≤

γ

ρ
.

Choose as a testing in (1.6) φ = tβurζp, where β > 0 and r > 0 are to be chosen. After standard

calculations, we can obtain

1

r + 1

∫

Bρ(t)

τβur+1ζpdx + r

∫ t

0

∫

Bρ

|Du|pτβur−1ζpdxdτ

−
β

r + 1

∫ t

0

∫

Bρ

τβ−1ur+1ζpdxdτ + p

∫ t

0

∫

Bρ

|Du|p−2Du · Dζτβurζp−1dxdτ

=

∫ t

0

∫

Bρ

|Duq|ντβurζpdxdτ. (2.10)
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By Young inequality, we have

∣

∣

∣
p

∫ t

0

∫

Bρ

|Du|p−2Du · Dζτβurζp−1dxdτ
∣

∣

∣

≤
r

3

∫ t

0

∫

Bρ

|Du|pτβur−1ζpdxdτ + γ

∫ t

0

∫

Bρ

τβur+p−1|Dζ|pdxdτ, (2.11)

∫ t

0

∫

Bρ

|Duq|ντβurζpdxdτ

≤
r

3

∫ t

0

∫

Bρ

|Du|pτβur−1ζpdxdτ + γ

∫ t

0

∫

Bρ

τβuΘ+r+1ζpdxdτ. (2.12)

Noting that
∫

Bρ

τβur+1ζpdx ≥ 0,

from (2.10)–(2.12) and (2.1), we get

∫ t

0

∫

Bρ

|Du|pτβur−1ζpdxdτ ≤ γ

∫ t

0

∫

Bρ

τβ−1ur+1ζpdxdτ + γ

∫ t

0

∫

Bρ

τβur+p−1|Dζ|pdxdτ

+ γ

∫ t

0

∫

Bρ

τβuΘ+r+1ζpdxdτ

≤ γ

∫ t

0

∫

Bρ

τβ−1ur+1(1 + τρ−pup−2 + τuΘ)dxdτ

≤ γ

∫ t

0

∫

Bρ

τβ−1ur+1dxdτ , I1. (2.13)

By Lemma 2.1, we may further bound I1 above by

I1 ≤ γG(t)

∫ t

0

τβ−1‖u( · , τ)‖r
∞,Bρ

dτ ≤ γG(t)Γ
p
κ

(N−θ)r〈u〉
p
κ

r

t t
β− θr

p+θ(p−2) , I2, (2.14)

provided

β >
θr

p + θ(p − 2)
. (2.15)

Next by Hölder inequality and (2.13)–(2.14), we have

∫ t

0

∫

Bρ

|Duσ|λζpdxdτ ≤ γ
(

∫ t

0

∫

Bρ

|Du|pτβur−1ζpdxdτ
)

λ
p
(

∫ t

0

∫

Bρ

u1+H− rλ
p−λ τ− λβ

p−λ dxdτ
)1−λ

p

≤ γI
λ
p

2

(

∫ t

0

∫

Bρ

u1+H− rλ
p−λ τ− λβ

p−λ dxdτ
)1−λ

p

. (2.16)

Assume from now on that

H ≥
rλ

p − λ
. (2.17)

Then, we get

∫ t

0

∫

Bρ

u1+H− rλ
p−λ τ− λβ

p−λ dxdτ ≤ G(t)

∫ t

0

‖u( · , τ)‖
H− rλ

p−λ

∞,Bρ
τ− λβ

p−λ dxdτ

≤ γG(t)Γ
p
κ

(N−θ)(H− rλ
p−λ

)〈u〉
p
κ
(H− rλ

p−λ
)

t tα, (2.18)
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provided

α = 1 −
θΘ

p + θ(p − 2)
−

λ

p − λ

(

β −
rθ

p + θ(p − 2)

)

> 0. (2.19)

Substituting I2 and (2.18) into (2.16), we get (2.9). We now show that β and r can be chosen,

such that (2.15), (2.17) and (2.19) hold.

If θ = 0, then (2.15) and (2.19) follow from 0 < β < p−λ
λ

.

Assume that θ > 0, and fix arbitrarily

0 < β <
p − λ

λ
. (2.20)

We write (2.19) as

r >
[p − λ

λ

( θH

p + θ(p − 2)
− 1

)

+ β
]p + θ(p − 2)

θ
, z1, (2.21)

and combine (2.15) and (2.17) in the form

r < min
{p + θ(p − 2)

θ
β,

p − λ

λ
H

}

, z2. (2.22)

It is easy to check that z1 < z2, as a consequence of the assumption θH < p + θ(p − 2) and

(2.20). Since we can fix r > 0 such that r ∈ (z1, z2), Lemma 2.2 is proved.

From now on, we choose specially the constant Γ appearing in the definition of R(t) as

Γ = C[µ]
p−2

p+θ(p−2) , (2.23)

where C > 0 will be chosen below as a function of N, p, q, ν and θ. Obviously we may assume

[µ] > 0 throughout.

Remark 2.1 By definition, it holds that 〈u〉t ≤ [u]t. Moreover, using Lemma 2.1 to

estimate the integrals over Bρ with 0 < ρ < R(τ), appearing in the definition of [u]t, we find

also

[u]t ≤ 〈u〉t + γ(C)[µ]
N
κ

(p−2)〈u〉
p
κ

t , 0 < t < T,

where T is chosen as in Lemma 2.1, and we have used (2.23) too.

Lemma 2.3 Let u ≥ 0 be a uniformly continuous and bounded solution to (1.1) in ST∗ .

Then if θ[qν − (p − 1)] < (p − ν), there exists a T0 > 0, T0 = T0(N, p, q, ν, θ, [µ]), such that

[u]t ≤ γ[µ], 0 < t < T0,

and (2.1)–(2.2) hold for all 0 < t < T0, where γ = γ(N, p, q, ν, θ).

Proof Define

t0 = sup{0 < T < T ∗ | (2.1) holds, where Γ is given by (2.23)}.

Choose 0 < t < t0, and let Bρ(x0) ⊂ R
N be any ball with radius R(t) ≤ ρ ≤ 1, centered at an

arbitrarily fixed x0 ∈ R
N . Let ζ = ζ(x) be a smooth cutoff function in Bρ such that

ζ(x) ≡ 1 in B ρ
2
, |Dζ| ≤

γ

ρ
.
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We find after straightforward calculations that

∫

B ρ
2

u(x, t)dx ≤

∫

Bρ

dµ +
γ

ρ

∫ t

0

∫

Bρ

|Du|p−1dxdτ +

∫ t

0

∫

Bρ

|Duq|νdxdτ.

Multiplying both sides of above inequality by ρθ|Bρ|
−1, we find by using Lemma 2.2 that

ρθ

∮

B ρ
2

u(x, t)dx ≤ 2N [µ] + γ〈u〉t{A(C, 〈u〉t) + B(C, t, 〈u〉t)} (2.24)

for all 0 < t < t0, R(t) ≤ ρ ≤ 1. Here

A(C, 〈u〉t) = C− p+θ(p−2)
κ

{〈u〉t
[µ]

}

p−2
κ

,

B(C, t, 〈u〉t) = {Γ
p
κ

(N−θ)Θ〈u〉
pΘ
κ

t t
1− θΘ

p+θ(p−2) }1− ν
p ,

where C is the constant in (2.23).

(2.24) implies

〈u〉t ≤ γ1[µ] + γ2〈u〉t{A(C, 〈u〉t) + B(C, t, 〈u〉t)}, (2.25)

where γ2 depends on the same quantities determining the constants γ in Lemma 2.1 and Lemma

2.2, but it does not depend on C. Next we define

t1 = sup{0 < t < T ∗ | 〈u〉t ≤ 4γ1[µ]},

t2 = sup{0 < t < T ∗ | B(C, t, 〈u〉t) < δ},

where the (small) constant δ > 0 is to be chosen. Note that t1 and t2 are well-defined because

the stipulated assumptions make sure that 〈u〉t is continuous in [0, T ∗], and that the exponent

of t in B is positive. Let

t3 = min{t0, t1, t2}.

Then for all 0 < t < t3, since γ1 and γ2 do not depend on C, we have

γ2A(C, 〈u〉t) ≤ γ2C
− p+θ(p−2)

κ (4γ1)
p−2

κ ≤
1

4
, (2.26)

provided C is suitably chosen. Then, if we also choose δ < (4γ2)
−1, we have

γ2B(C, t, 〈u〉t) ≤
1

4
. (2.27)

From (2.25)–(2.27), we obtain

〈u〉t ≤ 2γ1[µ], 0 < t < t3. (2.28)

Now we choose 0 < T0 ≤ t3 to get

[u]t ≤ 2γ1[µ] + γ(C)[µ]
N
κ

(p−2)[µ]
p
κ ≤ γ[µ], 0 < t < T0 ≤ t3.

Here we have used Remark 2.1 and (2.28).
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Finally, we show that a quantitative estimate below T0 ≤ t3 with T0 as above can be found.

As a matter of fact, for 0 < t < T0 ≤ t3 ≤ t0 and x ∈ R
N , Lemma 2.1 together with (2.28)

implies

Γ−pt
θ(p−2)

p+θ(p−2) up−2(x, t) + tuΘ(x, t) ≤ γC− p
κ
[p+θ(p−2)] + γ(B(C, t, 〈u〉t))

p
p−ν

≤ γ(C− p
κ

[p+θ(p−2)] + δ
p

p−ν ) ≤
1

2
, (2.29)

if C is chosen large enough, and then δ in the definition of t2 is chosen small enough. Let us

remark that this can be done safely, as the constant γ in (2.29) is known a priori, and, especially,

it does not depend on C or δ. Therefore (2.1) and (2.2) hold for 0 < t < T0. Lemma 2.3 is

proved.

3 Proof of Theorem 1.1

Consider the family of approximating problem

unt − div(|Dun|
p−2Dun) = min(|Duq

n|
ν , n), in R

N × (0,∞), (3.1)

un(x, 0) = u0n(x), x ∈ R
N , (3.2)

where

u0n ≥ 0, u0n ∈ C∞(RN ) ∩ L∞(RN ),

lim
n→∞

∫

RN

u0nη(x)dx =

∫

RN

η(x)dµ, ∀ η(x) ∈ C1
0 (RN ).

We can assume without loss of generality that [u0n] ≤ γ(N)[µ]. By the result of [5] and [6], there

exists a solution un ∈ C(ST )∩L∞(ST )∩Lp(0, T ; W 1,p(RN )) to (3.1)–(3.2). Let us remark that

the estimates in Section 2 can applied to un, because it is a continuous and bounded solution

to (3.1). We consider the strip ST0 = R
N × (0, T0), where T0 is defined as in Lemma 2.3. By

Lemmas 2.1 and 2.3, we have

‖un‖∞,K ≤ γ(K, [µ]) (3.3)

for any compact set K ⊂ ST0 . By the mentioned a priori estimates and standard calculations,

we find
∫

BR

uh+1
n (x, t)dx +

∫ t

0

∫

BR

|Du
h+p−1

p
n |pdxdτ ≤ γ(R, [µ], h), t ∈ (0, T0).

Hence

‖Du
h+p−1

p
n ‖p,K ≤ γ(K, [µ], h), ∀h ≥ 0. (3.4)

Note that T0 and the bounds in (3.3) and (3.4) do not depend on n. As a consequence of the

quoted result of [5], there is a subsequence of {un}, which is denoted by {un} again, and a

function u ∈ C(ST0) ∩ L
p
loc((0, T0); W

1,p
loc (RN )), such that in each compact set K contained in

ST0 ,

un → u, uniformly on K, (3.5)

Dun ⇀ Du, weakly in Lp(K) (3.6)

as n → ∞. We now prove

Dun → Du, strongly in Lp(K). (3.7)
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Let ϕ ∈ C1
0 (ST0), ϕ ≥ 0. We can assume without loss of generality that unt ∈ L2(ST0),

otherwise we can use Steklov averages approximation. Multiplying (3.1) by (un − um)ϕ and

integrating it over ST0 , we have
∫∫

ST0

ϕunt(un − um)dxdt +

∫∫

ST0

ϕ|Dun|
p−2Dun(Dun − Dum)dxdt

+

∫∫

ST0

|Dun|
p−2Dun · Dϕ(un − um)dxdt

=

∫∫

ST0

min{|Duq
n|

ν , n}(un − um)ϕdxdt. (3.8)

Adding (3.8) to the similar equality obtained by interchanging un and um, we find

∣

∣

∣

∫∫

ST0

φ(|Dun|
p−2Dun − |Dum|p−2Dum)(Dun − Dum)dxdt

∣

∣

∣

≤ γ

∫∫

ST0

{|φt||um − un| + |Dφ|(|Dum|p−1 + |Dun|
p−1)

+ |φ|(|Duq
m|ν + |Duq

n|
ν)}|un − um|dxdt. (3.9)

Note that

(|Dun|
p−2Dun − |Dum|p−2Dum)(Dun − Dum) ≥ γ|Dun − Dum|p (3.10)

for some γ > 0. We may derive (3.7) from (3.5), (3.6), (3.9) and (3.10). Moreover, from (3.5)

and (3.7), we can obtain

|Duq
n|

ν → |Duq|ν , as n → ∞.

Now, it follows from a standard limiting process, that u satisfies (1.6).

Finally we prove (1.7). For any η ∈ C1
0 (RN ), by Lemma 2.2,

∫

RN

|un(x, t) − un(x, 0)|ηdx ≤

∫∫

ST0

|Dun|
p−1|Dη|dxdt +

∫∫

ST0

|Duq
n|

νηdxdt

≤ γ1t
1

p+θ(p−2) + γ2t
[1− θΘ

p+θ(p−2)
] p−ν

p → 0, as t → 0, (3.11)

where γ1 and γ2 do not depend on t. By (3.2), (3.5) and (3.11), we have
∫

RN

u(x, t)η(x)dx −

∫

RN

η(x)dµ

≤

∫

RN

|u(x, t) − un(x, t)|η(x)dx +

∫

RN

|un(x, t) − un(x, 0)|η(x)dx

+
∣

∣

∣

∫

RN

un(x, 0)η(x)dx −

∫

RN

η(x)dµ
∣

∣

∣
→ 0, as n → ∞, t → 0.

This implies (1.7). Then the existence of solution to (1.1)–(1.2) is proved.

4 Proof of Theorem 1.2

Lemma 4.1 Let u be a continuous nonnegative supersolution of (1.3) with p ≥ 2, and

u( · , t) → µ as t → 0, in sense of measures, with

µ(Bρ(0)) ≥ ερN−θ, 0 < ρ < σ, (4.1)
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where σ > 0, ε > 0 and 0 ≤ θ ≤ N are given. Then

u(x, t) ≥ γ0ε
p

p+θ(p−2) t
− θ

p+θ(p−2) , (4.2)

where |x| ≤ γ0ε
p− 2

p+θ(p−2) t
1

p+θ(p−2) < σ, γ0t = ε−(p−2)ρp+θ(p−2), γ0 = γ0(N, p, θ), t < T .

Proof If p > 2, it is well-known that the solution of (1.3) satisfies Harnack inequality (see

[5, Theorem 7.1])

∮

Bρ(0)

u(x, τ)dx ≤ γ
{(ρp

t

)
1

p−2

+
( t

ρp

)
N
p
[

inf
|x|<ρ

u(x, t + τ)
]

κ
p
}

, (4.3)

where κ = N(p − 2) + p, 0 < 2τ < t < T , ρ > 0. Hence, letting τ → 0 and choosing

γ0t = ε−(p−2)ρp+θ(p−2), γ0 suitably small, we get (4.2). If p = 2, (4.3) follows from the Harnack

inequality for nonnegative solutions to the heat equation in ST (see [7]).

Remark 4.1 By comparison principle, Lemma 4.1 holds for the solution of (1.1)–(1.2).

Proof of Theorem 1.2 We may assume θ > 0, qν > p − 1 and x0 = 0. From now on, all

the balls are understood to be centered at 0.

Let ξ ∈ C1
0 (Bρ(0)) be a cutoff function in Bρ, ξ = 1 in B ρ

2
, |Dξ| ≤ γ

ρ
. The next calculations

are formal, in which the solution u of (1.1) is required to be strictly positive and ut ∈ L2
loc(ST ).

They can be rigorous by replacing u with u + ǫ and letting ǫ → 0, and ut ∈ L2
loc(ST ) can be

made by Steklov average technic. We choose φ = us−1ξb in (1.6), where s ∈ (0, 1) and b is large

enough, to obtain, ∀ 0 < t0 < t < T ,

1

s

∫

Bρ

us(x, t)ξbdx +

∫ t

t0

∫

Bρ

bξb−1us−1|Du|p−2Du · Dξdxdτ

=
1

s

∫

Bρ

us(x, t0)ξ
bdx + (1 − s)

∫ t

t0

∫

Bρ

us−2|Du|pξbdxdτ +

∫ t

t0

∫

Bρ

ξbus−1|Duq|νdxdτ.

By Young inequality, we get

1

s

∫

Bρ

us(x, t)ξbdx ≥
1

s

∫

Bρ

us(x, t0)ξ
bdx −

γ

ρp

∫ t

t0

∫

Bρ

ξb−pup+s−2dxdτ

+

∫ t

t0

∫

Bρ

ξbus−1|Duq|νdxdτ. (4.4)

Noting that [u]t < ∞, we have
∫

Bρ

u(x, t)dx ≤ γρN−θ, 0 < t < t∗, 0 < ρ < 1 (4.5)

for a suitable t∗ > 0. Define

A(t) = {x ∈ Bρ | u(x, t) > ωρ−θ}, E(t) = Bρ \ A(t),

where ω > 0 is to be chosen. Hence, for 0 < t < t∗, (4.5) implies

|A(t)| ≤ γω−1|Bρ|, 0 < t < t∗, 0 < ρ < 1.

As a consequence,

|E(t) ∩ B ρ
2
| ≥

1

2
|B ρ

2
|, 0 < t < t∗, 0 < ρ < 1,
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if ω is large enough.

We need the following result, which is proved in [8, Lemma 5.1].

Let v ∈ W 1
m(Bρ), v ≥ 0, m ≥ 1. Then for all measurable sets Σ ⊂ B ρ

2
, v ≡ 0 in Σ, we have

∫

Bρ

vm(x)G(|x|)dx ≤ γ(N, m)
(

ρN+1|Σ|−1G(0)G−1
(ρ

2

))m
∫

Bρ

|Dv(x)|mG(|x|)dx,

where G : [0, ρ) → (0,∞) is nonincreasing.

Let v = (u − ωρ−θ)r
+, r = q + s−1

ν
, m = ν, Σ = E(t) ∩ B ρ

2
, G(|x|) = ξp(x). We find

γ

∫ t

t0

∫

Bρ

|Dur|νξpdxdτ ≥ ρ−ν

∫ t

t0

∫

Bρ

(u − ωρ−θ)rν
+ ξpdxdτ (4.6)

for 0 < t0 < t < t∗, 0 < ρ < 1. Moreover, we note that (4.2) implies

u(x, τ) ≥ 2ωρ−θ,
t

2
< τ < t, |x| ≤ γ0ρ for ρ = ρ(t) = P0t

1
p+θ(p−2) , (4.7)

provided P0 > 0 is fixed and large enough (in (4.7), γ0 depends on P0). From now on, we choose

ρ as in (4.7). We also redefine t∗ to ensure ρ < 1 for t < t∗. Thus straightforward calculations

lead us to

γ

∫

Bρ

(u(x, τ) − ωρ−θ)rν
+ ξpdx ≥

∫

Bρ

urν(x, τ)ξpdx,
t

2
< τ < t < t∗. (4.8)

Combining (4.4), (4.6) and (4.8), we find
∫

Bρ

us(x, z)ξbdx −

∫

Bρ

us
(

x,
t

2

)

ξbdx ≥ −
γ

ρp

∫ z

t
2

∫

Bρ

ξb−pup+s−2dxdτ

+ γρ−ν

∫ z

t
2

∫

Bρ

uν(q+ s−1
ν

)ξbdxdτ for
t

2
< z < t.

Using Young inequality, we get
∫

Bρ

us(x, z)ξbdx −

∫

Bρ

us
(

x,
t

2

)

ξbdx≥−γ1ρ
− p(νq+s−1)−ν(p+s−2)

νq−p+1 +N
(

z −
t

2

)

+ γ2ρ
−ν

∫ z

t
2

∫

Bρ

uν(q+ s−1
ν

)ξbdxdτ for
t

2
< z < t. (4.9)

Note that
∫

Bρ
us(x, z)ξbdx is a supersolution of the following problem:

y′ = γ2ρ
−(ν+N(qν−1)

s
)y

νq+s−1
s − γ1ρ

−p(νq+s−1)−ν(p+s−2)
νq−p+1 +N , in

( t

2
, t

)

,

y
( t

2

)

=

∫

Bρ

us
(

x,
t

2

)

ξbdx.

Hence, it follows (see [9, Lemma 4.1]) that
∫

Bρ

us
(

x,
t

2

)

ξbdx ≤ γ2 max{ρ
sν

qν−1+N t−
s

qν−1 , ρ
(ν−p(νq+s−1)−ν(p+s−2)

qν−(p−1)
) s

νq+s−1+N}. (4.10)

On the other hand, by (4.7) we have
∫

Bρ

us
(

x,
t

2

)

ξpdx ≥ γ0ρ
−sθ+N (4.11)



On the Cauchy Problem of Evolution p-Laplacian Equation 13

for small t and ρ = ρ(t) defined in (4.7). Let t → 0. (4.10) and (4.11) imply ν < p, and

θ ≤ min
{ (p − ν)+

νq − p + 1
,−

ν

qν + s − 1
+

p(νq + s − 1) − ν(p + s − 2)

(qν − (p − 1))(νq + s − 1)

}

. (4.12)

Since − ν
qν+s−1 + p(νq+s−1)−ν(p+s−2)

(qν−(p−1))(νq+s−1) is increasing in s ∈ (0, 1) and equals to (p−ν)+
νq−p+1 as s = 1,

(4.12) implies

θ(qν − p + 1) < (p − ν)+.

5 Proof of Theorem 1.3

First we prove the sup estimate.

Lemma 5.1 Let u be a continuous nonnegative subsolution of (1.4) in ST∗ . Also assume

that a time 0 < T < T ∗ is given, so that

Γ−pt
θ(p−2)

p+θ(p−2) ‖u( · , t)‖p−2
∞,RN + t‖u( · , t)‖q−1

∞,RN ≤ 1, 0 < t < T. (5.1)

Then

‖u( · , t)‖∞,RN ≤ γt
− θ

p+θ(p−2) Γ
p
κ

(N−θ)〈u〉
p
κ

t , 0 < t < T, (5.2)

where γ = γ(N, p, q).

Proof As in [2, Proposition 3.1], we can obtain

‖u( · , t)‖∞,B ρ
2

≤ γt−
N+p

κ

(

∫ t

0

∫

Bρ

udxdτ
)

p
κ

(5.3)

for all 0 < t < T , Bρ ⊂ R
N , ρ = R(t). By virtue of (5.3) and the definition of 〈u〉t, we get

‖u( · , t)‖∞,B ρ
2

≤ γt−
N+p

κ

(

∫ t

0

∫

BR(t)

udxdτ
)

p
κ

≤ γt−
N
κ R(t)

p
κ

(N−θ)〈u〉
p
κ

t . (5.4)

This implies (5.2).

Lemma 5.2 Assume that the assumptions of Lemma 5.1 are fulfilled. Then for all Bρ ⊂

R
N , 0 < t < T , R(t) ≤ ρ ≤ 1, we have

∫ t

0

∫

B ρ
2

|Du|p−1dxdτ ≤ γG(t){Γ
p
κ
(N−θ)(p−2)〈u〉t

p(p−2)
κ t

1− θ(p−2)
p+θ(p−2) }

1
p , (5.5)

where G(t) = sup
0<τ<t

‖u( · , τ)‖1,Bρ
, γ = γ(N, p, q, θ).

Proof Let R(t) ≤ ρ ≤ 1. Similar to the argument in Lemma 2.2, we get

∫ t

0

∫

Bρ

|Du|pτβur−1ζpdxdτ ≤ γ

∫ t

0

∫

Bρ

τβ−1ur+1ζpdxdτ + γ

∫ t

0

∫

Bρ

τβur+p−1|Dζ|pdxdτ

+ γ

∫ t

0

∫

Bρ

τβuq+rζpdxdτ

≤ γ

∫ t

0

∫

Bρ

τβ−1ur+1(1 + τρ−pup−2 + τuq−1)dxdτ

≤ γ

∫ t

0

∫

Bρ

τβ−1ur+1dxdτ , I1. (5.6)
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By Lemma 5.1, we may further bound I1 above by

I1 ≤ γG(t)

∫ t

0

τβ−1‖u( · , τ)‖r
∞,Bρ

dτ ≤ γG(t)Γ
p
κ
(N−θ)r〈u〉

p
κ

r

t t
β− θr

p+θ(p−2) , I2, (5.7)

provided

β >
θr

p + θ(p − 2)
. (5.8)

Next by Hölder inequality and (5.6)–(5.7), we have

∫ t

0

∫

Bρ

|Du|p−1ζpdxdτ

≤ γ
(

∫ t

0

∫

Bρ

|Du|pτβur−1ζpdxdτ
)

p−1
p

(

∫ t

0

∫

Bρ

u(p−1)(1−r)τ−(p−1)βdxdτ
)

1
p

≤ γI
p−1

p

2

(

∫ t

0

∫

Bρ

u(p−1)(1−r)τ−(p−1)βdxdτ
)

1
p

. (5.9)

From now on, we assume

p − 2 > r(p − 1). (5.10)

Then, we get

∫ t

0

∫

Bρ

u(p−1)(1−r)τ−β(p−1)dxdτ ≤ G(t)

∫ t

0

‖u( · , τ)‖
(p−2)−r(p−1)
∞,Bρ

τ−β(p−1)dxdτ

≤ γG(t)Γ
p
κ
(N−θ)(p−2−r(p−1))〈u〉

p
κ

(p−2−r(p−1))
t tα, (5.11)

provided

α = 1 −
θ(p − 2)

p + θ(p − 2)
− (p − 1)(β −

rθ

p + θ(p − 2)
) > 0. (5.12)

Substituting I2 and (5.11) into (5.9), we get (5.5). We now show that β, r can be chosen, such

that (5.8), (5.10) and (5.12) hold.

If θ = 0, (5.8) and (5.12) follow from 0 < β < 1
p−1 .

Assume that θ > 0 and arbitrarily fix

0 < β <
1

p − 1
. (5.13)

We write (5.12) as

r >
[ 1

p − 1

( θ(p − 2)

p + θ(p − 2)
− 1

)

+ β
]p + θ(p − 2)

θ
, z1, (5.14)

and we combine (5.8) and (5.10) in the form

r < min
{p + θ(p − 2)

θ
β,

p − 2

p − 1

}

, z2. (5.15)

It is easy to check that z1 < z2, as a consequence of assumption (5.13). Since we can fix r > 0

such that r ∈ (z1, z2), Lemma 5.2 is proved.
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Lemma 5.3 Let u ≥ 0 be a uniformly continuous and bounded solution to (1.1) in ST∗ .

Then if q < p − 1 + p
θ
, there exists a T0 > 0, T0 = T0(N, p, q, θ, [µ]), such that

[u]t ≤ γ[µ], 0 < t < T0,

and (5.1)–(5.2) hold for all 0 < t < T0, where γ = γ(N, p, q, θ).

Proof Define

t0 = sup{0 < T < T ∗ | (5.1) holds, where Γ is given by (2.23)}.

Choose 0 < t < t0, and let Bρ(x0) ⊂ R
N be any ball with radius R(t) ≤ ρ ≤ 1, centered at an

arbitrarily fixed x0 ∈ R
N . Let ζ = ζ(x) be a smooth cutoff function in Bρ such that

ζ(x) ≡ 1 in B ρ
2
, |Dζ| ≤

γ

ρ
.

After straightforward calculations, we find
∫

B ρ
2

u(x, t)dx ≤

∫

Bρ

dµ +
γ

ρ

∫ t

0

∫

Bρ

|Du|p−1dxdτ +

∫ t

0

∫

Bρ

uqdxdτ.

Multiplying both sides of above inequality by ρθ|Bρ|
−1 and using Lemma 5.1 and Lemma 5.2,

we find

ρθ

∮

B ρ
2

u(x, t)dx ≤ 2N [µ] + γ〈u〉t{A(C, 〈u〉t) + B(C, t, 〈u〉t)} (5.16)

for all 0 < t < t0, R(t) ≤ ρ ≤ 1. Here

A(C, 〈u〉t) = C− p+θ(p−2)
κ

{〈u〉t
[µ]

}

p−2
κ

,

B(C, t, 〈u〉t) = Γ
p
κ
(N−θ)(q−1)〈u〉

p(q−1)
κ

t t
1−

θ(q−1)
p+θ(p−2) ,

where C is the constant in (2.23).

(5.16) implies

〈u〉t ≤ γ1[µ] + γ2〈u〉t{A(C, 〈u〉t) + B(C, t, 〈u〉t)}, (5.17)

where γ2 depends on the same quantities determining the constants γ in Lemmas 5.1 and 5.2,

but it does not depend on C. Hence similarly to the argument in Lemma 2.3, we can prove

Lemma 5.3.

Similar to the proof of Theorem 1.1, we can prove Theorem 1.3.

6 Proof of Theorem 1.4

We may assume θ > 0, q > p − 1 and x0 = 0. From now on, all the balls are understood to

be centered at 0.

Let ξ ∈ C1
0 (Bρ(0)) be a cutoff function in Bρ, ξ = 1 in B ρ

2
, |Dξ| ≤ γ

ρ
. We choose φ = us−1ξb

in the definition of the solution of (1.4), where s ∈ (0, 1) and b is large enough, to obtain,

∀ 0 < t0 < t < T ,

1

s

∫

Bρ

us(x, t)ξbdx ≥
1

s

∫

Bρ

us(x, t0)ξ
bdx −

γ

ρp

∫ t

t0

∫

Bρ

ξb−pup+s−2dxdτ

+

∫ t

t0

∫

Bρ

ξbuq+s−1dxdτ. (6.1)
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Using Young inequality, we get

∫

Bρ

us(x, z)ξbdx −

∫

Bρ

us
(

x,
t

2

)

ξbdx

≥ −γ1ρ
N− p(q+s−1)

q−p+1

(

z −
t

2

)

+ γ2

∫ z

t
2

∫

Bρ

uq+s−1ξbdxdτ for
t

2
< z < t. (6.2)

Note that
∫

Bρ
us(x, z)ξbdx is a supersolution of the following problem

y′ = γ2ρ
−N(q−1)

s y
q+s−1

s − γ1ρ
N− p(q+s−1)

q−p+1 , in
( t

2
, t

)

,

y
( t

2

)

=

∫

Bρ

us
(

x,
t

2

)

ξbdx.

Hence it follows (see [9, Lemma 4.1]) that

∫

Bρ

us
(

x,
t

2

)

ξbdx ≤ γ2 max{ρN t−
s

q−1 , ρN− ps
q−p+1 }. (6.3)

On the other hand, by (4.7), we have

∫

Bρ

us
(

x,
t

2

)

ξpdx ≥ γ0ρ
−sθ+N (6.4)

for small t and ρ = ρ(t) defined in (4.7). Let t → 0. (6.3) and (6.4) imply

θ ≤ min
{p + θ(p − 2)

q − 1
,

p

q − (p − 1)

}

.

This implies

θ(q − p + 1) ≤ p.
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