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1 Introduction and Main Results

In this note we consider the existence (and nonexistence) of solutions to the Cauchy problem

uy — div(|Du|P~2Du) = |[Du?”, in Sy =RYN x (0,7), T >0, (1.1)
u(z,0) = pu, xRN, (1.2)

where p > 2,0 <v <p, qu>p—1, N > 1, and p is a nonnegative Radon measure in RY.
Equation (1.1) is a class of degenerate parabolic equation with nonlinear forcing term. They
appear in the theory of non-Newtonian fluids. The main feature of this class of equation is
the interplay between the degeneracy in the principal part of the equation and the nonlinear
forcing term, where the latter depends on the space gradient of a power of the solution.

In this paper, our interest is mainly focussed on the optimal condition of initial data p, for
the existence of solutions of (1.1)—(1.2).

It is well-known (see, e.g., [1]) that for the Cauchy problem of p-Laplacian equation

ug — div(|Du[P~?Du) =0, in St (1.3)

to have a solution, the optimal condition on initial data is
Supp’f'_f‘Z/ |dp| < oo
p=ry B,

for some v > 0, Kk = N(p — 2) + p. For the Cauchy problem of p-Laplacian equation with
strongly nonlinear sources

uy — div(|Du|P~2Du) = u?, in Sp =R x (0,7), p > 2 (1.4)
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to have a nonnegative solution, the optimal condition on measure initial data is

sup 7{ du < o0,
z€RN JB,(x)

where 1 < ¢ < p—1+ & is assumed (see [2]). The problem of existence of solution to (1.4) with
v a measure and g > p — 1 + £ was still open. In this paper, by introducing Morrey norms as
in [4], we first investigate the existence of nonnegative solution to Cauchy problem (1.1)—(1.2).
Here we do not place any restriction on the growth condition of u. Next using the same method,
we give a sufficient condition to ensure the existence of solution to (1.4) corresponding to data
measure in the case ¢ > p — 1+ £. Moreover, we prove also that the sufficient condition is
actually optimal for the existence of solution to (1.4) and (1.2).

For the Porous Medium equation with nonlinear forcing term, similar problems were con-
sidered by D. Andreucci and E. DiBenedetto (see [3, 4]). Here we use some ideas in [4].

Since equation (1.1) is a degenerate parabolic equation, problem (1.1)-(1.2) does not in
general have classical solutions. We now define the weak solution to (1.1)—(1.2).

Definition 1.1 A nonnegative measurable function u(x,t) defined in St is said to be a
weak solution to problem (1.1)—(1.2), if

u € Lis(S7) N C((0,T); L (RY)),
|Dul” € Lio(Sr),  |Dul” € Ly (ST), (1.5)
/ / {~u¢; + |DulP2DuD¢}dxdt = / / | Duf|” pdxdt (1.6)
ST ST
for all ¢ € CL(St). Moreover,
lim u(z, t)n(x)de = / n(x)du (1.7)
t—0 JpN RN

for all mp € C3(RY).

Weak subsolution (resp. supersolution) is defined in the same way except that the = in
(1.6) is replaced by < (resp. >) and ¢ is taken to be nonnegative.

We introduce the following notation as in [4].

Let 4 be a nonnegative Radon measure in RV, and v € LS. (Sr), u > 0 with Sp =
RY x (0,T), T > 0. Let also 0 < # < N be given. We use the following notations throughout
the paper:

[u] = sup sup p’ ]{ du,
zeRN 0<p<1 B,(x)

[ul¢ = sup [u(-,7)], 0<t<T,
o<r<t

where we let )
f dp = —/ dup, |E| = lebesgue-measure of F.
E E| Jg
First we state our existence theorem.

Theorem 1.1 Let [u] < oo with Olqv — (p — 1)] < (p — v). Then there exists a solution u
to (1.1)(1.2) defined in St, = RN x (0,Tp) ,where Ty = To(N,p,q,v,0,[u]), such that for all
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0<t<Ty,

[ule < (], (1.8)
(- )|y < 7~ 77752 [11] (1.9)

fOT some 7y = V(vaaquve)'

Next we prove that the critical threshold for # in Theorem 1.1 is actually optimal for the
existence of solutions in the class considered here.

Theorem 1.2 Let v € [1,00) and u be a solution to (1.1) in RN x (0,T) such that [u], < oo,
0<t<T and
1(By(xo)) > ep™ ™", 0<p<e,

where € > 0, zg € RY are given. Then Olqv — (p —1)] < (p — v) 4.

The problem of existence of solutions in the limiting case Olgv — (p — 1)] = (p — v) is still
open.

It is known (see [2]) that any initial datum g to a nonnegative solution of (1.4) with ¢ <
p— 1+ & must fulfill the following necessary condition:

1(B,) < vp".

Using the techniques introduced in the proof of Theorem 1.1, we can prove the following theo-
rem.

Theorem 1.3 Let [u] < 00, ¢ <p—1+74. Then there exists a solution u to (1.4) and (1.2)
defined in St, = RN x (0,Ty), where Ty = To(N,p, q, 0, [1]), such that for all 0 <t < Tp,

[ule < (], (1.10)

-, )looyr < 7 759 1] (1.11)

for some v =~(N,p,q.0).
The following theorem shows that the bound ¢ < p — 1 + £ in Theorem 1.3 is optimal.
Theorem 1.4 Let u be a nonnegative solution to (1.4) in Sy such that [u], < oo, t € (0,T)

and
w(By(xo)) > ep" =", 0<p<e,
where € > 0, 9 € RY are given. Then 0(q —p+1) < p.
Throughout the paper, we use v;(a1,as,--- ,a,) to denote positive constants that can be
determined a priori and only depend on specified quantities a1, ag, - , ay,.
This paper is organized as follows. In Section 2, we collect the a priori estimates needed

to prove Theorem 1.1, whose proof is given in Section 3. Theorem 1.2 is proven in Section 4.
Theorems 1.3 and 1.4 are proven in Sections 5 and 6.

2 Some Estimates

For technical convenience, we need to define, for u € LS (Sp+), u > 0, with Sp. = RY x
(0,77),

(W= sup sup s ' ulr)dy, R =Tl
0<T<txeRN R(7)<p<1 B,(z
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for all 0 < ¢ < T*, where I is a positive constant which can be chosen a priori (as a function of
N, p, q, 0 and [p]). We also need to assume that

T* is chosen so that R(T™*) = 1.

Finally we define the constants
v
k=N(p—2)+p, 9=}:[pq—(p—1)]—1-

We can check at once that the assumption flgr — (p — 1)] < (p — v) may be written as
00 < p+0(p—2), and that © > 0 follows from our assumptions.
First we prove sup estimate.

Lemma 2.1 Let u be a continuous nonnegative subsolution of (1.1) in St-. Also assume
that a time 0 <T < T* s given, so that

0(p—2)
TPt [lu( -, )2 2y + tlu(- DS gn <1, 0<t<T. (2.1)

Then
P

Ju(-,)lloopy <At FFEBTEN -0 E 0 <t<T, (2.2)
whelre ’Y = ")/(N7p’ q7 V)'

Proof Fix a ball B, C RY, and 0 < ¢ < T with R(t) < p. Let k > 0 be chosen and for
n=20,1,2,---, set

B p ot 1 \» B k
=5t g =5 (gm) b =k g
B, =B, (x), Qn=DB,x(ty,t), 0<t,<t<T.
Let &, (z,t) be a smooth cutoff function in @, such that

n 2mp 2"
&n=1o0nQnyi1, 0<i§~y T |D€n|§v7

After a Steklov averaging process, from Definition 1.1, we obtain

1
1 / (1 — k)2 €242 + / / 1) PR dadr
2 /B,

// (v — kny1) 5” 1§ntdxd7+// |Dufl” (u — kpy1)+E0dT
—p// (U — kpy1)+ €27 DulP~2 Du - D, dxdr. (2.3)

By Young inequality, we have

\p / / (u = knt1)+&5 [ DulP~Du - DgndxdT]

1
Sg// |D(u — kpy1)+ |P§ded7+7—|\u|\oan // — kpy1) 3 dadr. (2.4)

Note that if § > k;,, then
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if kpy1 < wu <2k, then
(1= k)] > (= i) (s — k)2~ > 27 (D020 (e,

Thus we have

1
/ /Q D} (k) dadr < 5 [ [ 1D( = ki) PEhdadr
p

+7|u|OOQn/Q max{ljgn(%pw)

Hu — kp)3€bdzdr. (2.5)
Collecting (2.3)—(2.5), we have

sup / (= kny1)2€7] dex—l—// (u — Eny1) 4 |PERddr

0<r<t
<7— (1+ M) // u — k)% dadr, (2.6)
where M = HuHOO o, T tHuHOG)onn. Hence, as in [2, Proposition 3.1], we can obtain

(] / udedr ) (2.7)

forall 0 <t < T, B, CRY, p= R(t). By virtue of (2. 7) and the definition of (u);, we get

[uCs O)lloc, 4

b
A

/ / udxdr C <t R RE)FN O () (2.8)
Br(t)

[uC-s Olloc, B, <

Lemma 2.1 is proved.

We now estimate |Du?]” in (1.6).
For A € (0,p), 0 > 0, define

H(\ o) = Z%A[pa— (p—1)] - 1.

Lemma 2. 2 Assume that the assumptions of Lemma 2.1 are fulfilled and that H > 0 and

OH < p+0(p—2). Then we have for all B, CRY, 0 <t <T, R(t) <p<1,
H
/ / |Du” Pdadr < AGE{TEN=OH ()= =it 175 (2.9)
By

where G(t) = sup ||u(-,7)

o<r<t
Proof Let R(t) < p <1, and { = {(x) be a smooth cutoff function in B, such that

v =7(N,p,q,v,\0,0).

0<¢(x)<1in B, ((&)=1inBs, |D<.
p

Choose as a testing in (1.6) ¢ = t?u"(P, where 3 > 0 and r > 0 are to be chosen. After standard
calculations, we can obtain

1 t
/ Tﬁu”‘lcpdx—i-r// | Du|PrPu" 1 ¢Pdadr
r+1 B, (t)

// Pl T+1dexd7+p// |DuP~2Du - D¢rPur P~ dadr
B, B,

T—i—l

= /0 /B | Dud|” 7P ¢Pdadr. (2.10)
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By Young inequality, we have

t
‘p / / |Du|P*2Du-DcTﬁu’“gP*dxdT‘
0JB,

t t
Sz// |Du|p7'ﬁurflcpdxd7'—|—'y// Py P D¢ |Pdadr, (2.11)
3 Jo B, 0B,
t
/ / | Dud | P ¢Pdadr
0B,
ro [t t
<= / / | DulPrPu"~1¢Pdadr + v / / TPuOFrHcPdadr. (2.12)
3JoJB, 0/B,

Noting that
/ TﬁuTHde:v >0,
B

P

from (2.10)—(2.12) and (2.1), we get

// | DulPrPur~ 1de3:d7'<’y// -1 T+1<pdxd7’—|—”y// Py P DePdadr
—l—”y// TPuPTr P dadr
0JB,

t
< 7// PN 1 4 rpPuP 2 + 7u®)dadr
B

t
< 7// Py dedr £ 14, (2.13)
0B,
By Lemma 2.1, we may further bound I; above by
t P r
L <96@) [ 77 a7, dr S AGEUEC O @) 21, (2a)
0
provided

Or
8> ————— . 2.15
p+0(p—2) (3:19)

Next by Holder inequality and (2.13)—(2.14), we have

1—2

// |Du"| CPdadr <~ // |Du|p7ﬁ " 1dexd7' // X kdxdT) ’
1+H— -3

<fyIp // HH= 2N "dIdT) . (2.16)

Assume from now on that

H > 2.17
> (2.17)
Then, we get
t . t _&
// u pfw—%dxdrgc(t)/ -, I 5 5 dadr
0J/B, 0

r D(H - A

<AGOTEN O (g FHITF e (1)
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provided

7S] A 0
—1- _ (g _
p+0p—2) p—A p+0(p—2
Substituting Iy and (2.18) into (2.16), we get (2.9). We now show that § and r can be chosen,
such that (2.15), (2.17) and (2.19) hold.
If § = 0, then (2.15) and (2.19) follow from 0 < 3 < 22,
Assume that 6 > 0, and fix arbitrarily

)) > 0. (2.19)

- A
0<B< pT. (2.20)
We write (2.19) as
p—A 0H p+0(p—2) A

r>| S (p+9(p_2) 1)+ =2, (2.21)

and combine (2.15) and (2.17) in the form

. +6(p—2 —-A

r<m1n{p (6‘p )ﬂ,p)\ H}éZQ. (2.22)

It is easy to check that z; < 29, as a consequence of the assumption 6H < p + 6(p — 2) and
(2.20). Since we can fix r > 0 such that r € (21, z2), Lemma 2.2 is proved.

From now on, we choose specially the constant I' appearing in the definition of R(t) as
p—2
I = C[u]7roo->, (2.23)
where C' > 0 will be chosen below as a function of N, p, ¢, and 6. Obviously we may assume

[¢] > 0 throughout.

Remark 2.1 By definition, it holds that (u); < [u];. Moreover, using Lemma 2.1 to
estimate the integrals over B, with 0 < p < R(7), appearing in the definition of [u];, we find
also

P
A

[ue < {wde + (O] = PP )y, 0<t<T,
where T is chosen as in Lemma 2.1, and we have used (2.23) too.

Lemma 2.3 Let u > 0 be a uniformly continuous and bounded solution to (1.1) in Sp=.
Then if Olqv — (p — 1)] < (p — v), there exists a Ty > 0, Ty = To(N, p, q,v, 0, [u]), such that

[uly <~p), 0<t< Ty,

and (2.1)—(2.2) hold for all 0 < t < Ty, where v = v(N,p,q,v,0).
Proof Define

to = sup{0 < T < T* | (2.1) holds, where T" is given by (2.23)}.

Choose 0 < t < tg, and let B,(z¢) C RY be any ball with radius R(t) < p < 1, centered at an
arbitrarily fixed xo € RY. Let ¢ = ((z) be a smooth cutoff function in B, such that

¢(x)=1in Bs, |D¢| <2,
: p
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We find after straightforward calculations that

/i

L
2

t t
u(;v,t)d:tg/ du—l—l// |Du|p_1dxd7+// |Dufl” dzdr.
B, pJoJB, 0JB,

Multiplying both sides of above inequality by p?|B,|~!, we find by using Lemma 2.2 that

pgji u(e, t)de < 2V[u] + v (u)e{A(C, (u)e) + B(C,t, (u)e)}

£
2

for all 0 < t < tp, R(t) < p < 1. Here

in)
B(C,t, (u)y) = {DEWN=00 () v {1~ praG-2 )15

where C' is the constant in (2.23).
(2.24) implies
(w)e < mp] + 72 (u)e{A(C, (u)i) + B(C,t, (u)i)},

(2.24)

(2.25)

where 2 depends on the same quantities determining the constants v in Lemma 2.1 and Lemma

2.2, but it does not depend on C. Next we define

= supf0 < £ < T* | (u)e < dful},
to =sup{0 <t <T" | B(C,t,(u);) < 4},

where the (small) constant ¢ > 0 is to be chosen. Note that ¢; and t2 are well-defined because
the stipulated assumptions make sure that (u); is continuous in [0, 7*], and that the exponent

of t in B is positive. Let
t3 = min{to, tl, tg}.

Then for all 0 < ¢ < t3, since v; and v do not depend on C', we have

p+0(p—2)

YA(C, (u)) < 3C™ 5 (4m)*F <

]

1

provided C' is suitably chosen. Then, if we also choose § < (4v2)~ !, we have

72B(Cat7< > ) <

=

From (2.25)—(2.27), we obtain
(u)y < 2y1[p], 0 <t <ts.
Now we choose 0 < Ty < t3 to get
[ule < 2] +AC) =D [ <Alul, 0<t<To <ty

Here we have used Remark 2.1 and (2.28).

(2.26)

(2.27)

(2.28)
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Finally, we show that a quantitative estimate below Tj < t3 with T as above can be found.
As a matter of fact, for 0 < t < Ty < t3 < tp and € RY, Lemma 2.1 together with (2.28)
implies

p

(p—2)
PR U2 (3, ) + tu® (x,1) < ACEPHE2] 4y (B(C, ¢, (u)y)) 77

< y(C RO 4 555 < 2 (2.29)

N | =

if C' is chosen large enough, and then § in the definition of ¢5 is chosen small enough. Let us
remark that this can be done safely, as the constant 7 in (2.29) is known a priori, and, especially,
it does not depend on C or d. Therefore (2.1) and (2.2) hold for 0 < ¢t < Tp. Lemma 2.3 is
proved.

3 Proof of Theorem 1.1

Consider the family of approximating problem

tUns — div(|Du,|P~2Duy) = min(|Dul|”,n), in RY x (0,00),

un(x,0) = ugp(x), x€ RY,

—
E‘.O
[N
S~—

where
Uon >0, upn € C(RY) N L= (RY),

lim uopn(z)dz = / n(z)du, VYn(r) € C3RY).
oo RN RN

We can assume without loss of generality that [ug,] < v(N)[u]. By the result of [5] and [6], there

exists a solution u,, € C(S7)NL>(S7)NLP(0,T; WEP(RN)) to (3.1)-(3.2). Let us remark that

the estimates in Section 2 can applied to u,, because it is a continuous and bounded solution

0 (3.1). We consider the strip S7, = RY x (0,Tp), where T is defined as in Lemma 2.3. By

Lemmas 2.1 and 2.3, we have

[tnloo, e < V(K [1]) (3.3)

for any compact set K C Sp,. By the mentioned a priori estimates and standard calculations,
we find

t h+p—1
[t [ [ bt pasdr < ), te 070
BR 0 BR

Hence
htp—1

Note that Ty and the bounds in (3.3) and (3.4) do not depend on n. As a consequence of the
quoted result of [5], there is a subsequence of {u,}, which is denoted by {u,} again, and a
function uw € C(St,) N L}, .((0,Tp); V[/lif (R™)), such that in each compact set K contained in
STO )

U, — u, uniformly on K, (3.5)
Du,, = Du, weakly in LP(K)

as n — o0o. We now prove
Du,, — Du, strongly in LP(K). (3.7)



10 M. Y. Chen and J. N. Zhao

Let » € C}(S7,), » > 0. We can assume without loss of generality that u,; € L*(St,),
otherwise we can use Steklov averages approximation. Multiplying (3.1) by (u, — um )¢ and
integrating it over St,, we have

// Ot (Uy — Uy, )dzdt + // ©| Dty |P~2 Dy (Dutyy, — Dy, )dazdt
Sty Sty

+ // | Dty [P2 Dy, - Do (g, — iy, )daxdt
Sty
= / min{|Dud |”, n}(u, — um )pdadt. (3.8)
Sty
Adding (3.8) to the similar equality obtained by interchanging u,, and w.,, we find

‘ / (| Dt [P~2 Dy, — | Dty |P~2 Dty ) (Dittyy — Dty )daedlt
S,

S’Y// {I¢t]ltm — un| + |DG|(| Dty [P~ + [Duun [P
Sty
+Ql(1Dug, [ + [Dug [”) Hup — i |dadt. (3.9)
Note that
(|Dun|P2Duy — | Dty [P~ 2 Dty ) (D, — Dtiyy) > | Dty — Dty |P (3.10)

for some v > 0. We may derive (3.7) from (3.5), (3.6), (3.9) and (3.10). Moreover, from (3.5)
and (3.7), we can obtain
|Dul|” — |Dull”, asn — occ.

Now, it follows from a standard limiting process, that u satisfies (1.6).
Finally we prove (1.7). For any n € C}(RY), by Lemma 2.2,

/ [tn (2,t) — un(z,0)|nde < // | Duy, [P~ 1|Dn|dxdt+// | Dud |¥ndadt
RN

< yltﬁe(r' D 4yt =) 5 0, ast—0, (3.11)

where 1 and 2 do not depend on t. By (3.2), (3.5) and (3.11), we have
| et = [ )i
< [ttt = e ln@ds + [ funlet) = o0 n(e)da
+‘/}RNunxO da:—/ (a:)d,u’—%), asn — 0o, t — 0.
This implies (1.7). Then the existence of solution to (1.1)—(1.2) is proved.

4 Proof of Theorem 1.2

Lemma 4.1 Let u be a continuous nonnegative supersolution of (1.3) with p > 2, and
u(,t) — p as t — 0, in sense of measures, with

w(B,(0)) >epN 7l 0<p<o, (4.1)
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where 0 >0, e >0 and 0 < 0 < N are given. Then

u(z,t) > ye PG t p+9(9p*2) , (4.2)

where |x| < vype?™ e T P o, Yot = e~ P2 ppt0(=2) vy — (N, p,0), t <T.

Proof If p > 2, it is well-known that the solution of (1.3) satisfies Harnack inequality (see
[5, Theorem 7.1])

§, o reni < {(5)7 5 () [t wier )]} w3)

where kK = N(p—2)+p, 0 < 271 < t < T, p > 0. Hence, letting 7 — 0 and choosing
yot = e~ (P=2) pP+0(P=2) 4 suitably small, we get (4.2). If p = 2, (4.3) follows from the Harnack
inequality for nonnegative solutions to the heat equation in St (see [7]).

Remark 4.1 By comparison principle, Lemma 4.1 holds for the solution of (1.1)—(1.2).

Proof of Theorem 1.2 We may assume 6 > 0, qv > p — 1 and 2o = 0. From now on, all
the balls are understood to be centered at 0.

Let £ € C}(B,(0)) be a cutoff function in B,, £ =1 in By, |D¢| < 2. The next calculations
are formal, in which the solution u of (1.1) is required to be strictly positive and u¢ € L _(St).
They can be rigorous by replacing u with v 4 € and letting ¢ — 0, and u; € L%OC(ST) can be
made by Steklov average technic. We choose ¢ = u*~1£? in (1.6), where s € (0,1) and b is large
enough, to obtain, VO < tog <t < T,

/
S B
1/
S B

By Young inequality, we get

g/
SJB

t
u®(z, 1) de + / / b DulP 72 Du - Dédadr
to Bp

P

t t
u®(x,to)€bdx + (1 — s)/ / w2 Du|PEbdadr —I—/ / w1 Dul|V dadr.
to/ B, toJ/ B,

P

s b 1
u®(x,t)’dr > ;/

B,

t
—I—// w1 Dul|V dadr. (4.4)
to Bp

t
us(:v,to)ﬁbd:v—l// ebmPuPte 2 dadr
pp to Bp

P

Noting that [u]; < oo, we have

/ u(z,t)de <yp™ 70 0<t<t, 0<p<l1 (4.5)
B

P

for a suitable ¢, > 0. Define
A(t) = {z € B, |ula,t) > wp™"},  E(t) = B, \ A(t),
where w > 0 is to be chosen. Hence, for 0 <t < t,, (4.5) implies
JA@#)| <yw Y B,l, 0<t<t,, 0<p<l.

As a consequence,

|B§|, O0<t<ty,, 0<p<l,
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if w is large enough.
We need the following result, which is proved in [8, Lemma 5.1].
Let v € WL (B,), v >0, m > 1. Then for all measurable sets & C By, v=0in X, we have

[, @6 <50 (e (5)) [ ipe@r e,

P

where G : [0, p) — (0, 00) is nonincreasing.
Let v=(u—wp ), r=q+=, m=v, L=E({)N Bg, G(|z|) = €P(z). We find

v

¢ ¢
7/ / |Du"|"¢Pdadr > p_”/ / (u—wp™ ) ePdadr (4.6)
t() Bp tO Bp

for 0 < top <t <ts, 0<p<1. Moreover, we note that (4.2) implies

t
u(e,m) 2 wp™’, S <T <t Jal Sqop for p=p(t) = Pt (4.7)

provided Py > 0 is fixed and large enough (in (4.7), 70 depends on Fy). From now on, we choose
p as in (4.7). We also redefine ¢* to ensure p < 1 for ¢ < t*. Thus straightforward calculations

lead us to
g/
BP

Combining (4.4), (4.6) and (4.8), we find

t z
/ u®(x, 2)E0dx —/ u® (:v, —)ﬁbdx > —l/ / PPt 2 dadr
B B, 2 PP Je B,

z . t
+ Vp_y/ / u”(‘”Tl){bdxdT for 3 <z <t
37 By

t
(w(z,7) —wp ) ePda > / u" (z, 7)Pde, g <7< t <t (4.8)
BP

P

Using Young inequality, we get
t (vgts—1)—v(pts—2) t
/ u (2, 2)da — / w (@, 5 )ghde > —yp RSN (2 )
B

M B, 2

z s— t
+ 72p7”/ / u”(q+71)§bdxd7 for 3 <z <t (4.9)
$JB,

Note that pr u®(z, 2)€%dz is a supersolution of the following problem:

y = Fyzpi(l,‘i»N(qls/fl))ywH»ssfl _ le_r'(vq+s:qll;i(lp+s—2) +N7 ‘o (%,t),
t t

y(—) :/ us(x,—)dex.
2 5, 2

Hence, it follows (see [9, Lemma 4.1]) that
t sv s _pvgts—1)—v(pts—2) s
/B u* (2,5 )€ <y max{paET Ny w0 EEEREEE  mE Ny (410)
P

On the other hand, by (4.7) we have

t
/ v ("” 5)5”0@ > y0p~ "N (4.11)
B

P
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for small ¢ and p = p(t) defined in (4.7). Let ¢ — 0. (4.10) and (4.11) imply v < p, and

9<mm{ p—v)y v +p(Vq+S—1)—V(p+s—2)} (4.12)
- vg—p+1 quts—1  (qv—(p-1)(wg+s—1)
Since — -5 p((ql;qj(;ill));(l;(éfssjﬁ) is increasing in s € (0,1) and equals to % as s =1,

(4.12) implies
Olqv —p+1) <(p—v)+.
5 Proof of Theorem 1.3

First we prove the sup estimate.

Lemma 5.1 Let u be a continuous nonnegative subsolution of (1.4) in St-. Also assume
that a time 0 <T < T* s given, so that

0(p—2)
TPt [|u( -, 1) |22 20 + tlu(-, )| Chy <1, 0<t<T. (5.1)

Then

P
K

u( )]l sorny <yt Fro DEN=0 ()5 0 <t <T, (5.2)

where v = (N, p,q).

Proof Asin [2, Proposition 3.1], we can obtain

t p
JuC Ollzy <9t ([ [ udoar)” (53)
2 0/B,

forall 0 <t < T, B, CRY, p= R(t). By virtue of (5.3) and the definition of (u);, we get

t P
u(- )l <At Mt (// udxdT) "< yt*%R(t)%(N*"Nmt%. (5.4)
2 0 JBr)

This implies (5.2).

Lemma 5.2 Assume that the assumptions of Lemma 5.1 are fulfilled. Then for all B, C
RN, 0<t<T, R(t)<p<1, we have

0(p—2)

A== ) }%7 (5.5)

p(p—2)
K

t
[ ] 1pup-tdsdr <56 rEc 0w ),
0JBp
2

where G(t) = sup |lu(-,7)ll.B,, v =7(N,p,q,0).
0<T<t

Proof Let R(t) < p < 1. Similar to the argument in Lemma 2.2, we get

t t t
// | DulPrPum=1¢Pdadr < 'y// A=ty Pdadr + ”y// Py P DePdadr
0B, 0JB, 0/B,

t
—I—”y// Tﬁuq+rcpdxd7
0J/B,

t
< 7// Tﬁ_luTH(l +7p PuP—? —i—Tuq_l)dxdT
0JB,

t
< 7// Py dedr £ 14, (5.6)
0JB,
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By Lemma 5.1, we may further bound I; above by

t
I <1G(t) / (-, 1) 5, A7 < AGEOTEN - ) E e 21, (5.7)
0
provided
Or
8> ——————::. 5.8
p+0(p—2) 58)

Next by Holder inequality and (5.6)—(5.7), we have

t
/ / |DulP~t¢Pdadr
0./B,
t =1 1
SW(// |Du|pTﬁuT_1de:vdT) ! (// u(p_l)(l_T)T_(p_l)ﬁdxdT)p
0/B, 0/B,
p=1 t 1
<7L7 (// u(p_l)(l_r)T_(p_l)dedT)p. (5.9)
0./B,

From now on, we assume

p—2>r(p—1). (5.10)

Then, we get

t t
// wP= D= 2=Br=1) qdr < G(t)/ [l ,7')HngQ)fr(pfl)T_ﬁ(p_l)dxdT
0J/B, 0 e
< ,YG(t)F%(Nfe)(p72fr(p71))<u>t%(20*2*7"(20*1))ta, (5'11)

provided
O(p—2) rf

=T e _(p_l)(ﬁ_pﬂ%(p—?)

Substituting I and (5.11) into (5.9), we get (5.5). We now show that 3, r can be chosen, such
that (5.8), (5.10) and (5.12) hold.

If 6 =0, (5.8) and (5.12) follow from 0 < § < ﬁ.

Assume that # > 0 and arbitrarily fix

) > 0. (5.12)

1
—_— 1
O<B<p_1 (5.13)

We write (5.12) as

" {pi 1 (p i(z(;zg) - 1) +6}W =2 (5.14)

and we combine (5.8) and (5.10) in the form

_(p+0(p—2) p—2}A

< , = 2. 5.15
r mln{ 9 Ié; p— Z9 (5.15)
It is easy to check that z; < zq, as a consequence of assumption (5.13). Since we can fix r > 0
such that r € (#1, z2), Lemma 5.2 is proved.
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Lemma 5.3 Let u > 0 be a uniformly continuous and bounded solution to (1.1) in St«.
Then if ¢ < p—1+ %, there exists a To > 0, Ty = To(N,p, q,0,[u]), such that

[uls <~lu], 0<t<Tp,
and (5.1)—(5.2) hold for all 0 < t < Ty, where v = v(N,p,q,0).
Proof Define
to = sup{0 < T < T* | (5.1) holds, where T" is given by (2.23)}.

Choose 0 < t < tg, and let B,(z¢) C RY be any ball with radius R(t) < p < 1, centered at an
arbitrarily fixed zp € RY. Let ¢ = ((z) be a smooth cutoff function in B, such that

C(x)=1 inBs, |D¢<2.
: p

After straightforward calculations, we find

t t
/ u(x,t)dxﬁ/ du—|—1// |Du|p*1dxd7'+// uldzdr.
B B, P JoJB, 0/B,

Multiplying both sides of above inequality by p?|B,|~! and using Lemma 5.1 and Lemma 5.2,

£
2

we find
o 7{? u(e, )dz < 2] + 7 () {A(C, u)e) + B(C 1, (ue)} (5.16)

for all 0 < t < tg, R(t) < p < 1. Here

AC g = o= {1
p(g—1) 0(qg—1

B(C.t, (uhy) = DEO-00-1) 1 252 =525ty

where C' is the constant in (2.23).
(5.16) implies
(u)e <Ml +72(u)e{ A(C, {u)e) + B(C, 1, (u)¢)}, (5.17)
where 2 depends on the same quantities determining the constants v in Lemmas 5.1 and 5.2,
but it does not depend on C'. Hence similarly to the argument in Lemma 2.3, we can prove
Lemma 5.3.
Similar to the proof of Theorem 1.1, we can prove Theorem 1.3.

6 Proof of Theorem 1.4

We may assume 6 > 0, ¢ > p — 1 and z¢g = 0. From now on, all the balls are understood to
be centered at 0.

Let ¢ € C}(B,(0)) be a cutoff function in B,, { =1 in Be, |D¢| < 2. We choose ¢ = us~1gb
in the definition of the solution of (1.4), where s € (0,1) and b is large enough, to obtain,
Vo<to<t<T,

1 1 i
—/ u®(x,t)edr > —/ u®(z,t0)€E0dx — l// Py 2dadr
S B, S B, pp to B,

t
+ / / eyt dadr. (6.1)
to Bp
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Using Young inequality, we get

/B,, u®(z, 2)E0dx — /Bp u® (x, g){bdx

p(g+s— t z t
> —y1pN " e (z - 5) + ”yz/ / ul™5 7 ¢bdgdr  for 3 <#< t. (6.2)
5 /B

Note that fB u®(z, 2)E%dz is a supersolution of the following problem
P

_ N(g—1) g+s—1 _plats—1)

plats—1) t
Y =vp 7y = —mp" eri, in (E’t)’

(3) - [, (e )etar

Hence it follows (see [9, Lemma 4.1]) that

On

for

t s ps
/ v (‘T 5)5bdx < ypmax{pMNt~ a1, pN e}, (6.3)
BP
the other hand, by (4.7), we have
t
/ v (w ‘)5pdw > yop~ 0N (6.4)
B, 2

small ¢ and p = p(t) defined in (4.7). Let ¢ — 0. (6.3) and (6.4) imply

egmin{p+9(p—2) P )}'

¢g—1 ’qg—(p—1

This implies

Og—p+1)<p.
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