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1 Introduction

The motion of an ideal fluid can be described by the following compressible Navier-Stokes

equations

∂tρ̃ + div(ρ̃ ũ) = 0, (1.1)

∂t(ρ̃ ũ) + div(ρ̃ ũ ⊗ ũ) + ∇P̃ (ρ̃) = µ̃∆ũ + (µ̃ + ξ̃)∇div ũ. (1.2)

Here x ∈ R
d, d = 2 or 3, t > 0, the unknowns ρ̃ and ũ denote the fluid density and velocity,

respectively. µ̃ and ξ̃ are constant viscous coefficients satisfying µ̃ > 0 and 2µ̃ + dξ̃ ≥ 0. P̃ (ρ̃)

is the pressure-density function and here we consider the isentropic case

P̃ (ρ̃) = aρ̃ γ , a > 0, γ > 1. (1.3)

The purpose of this paper is to derive the incompressible Navier-Stokes equations from the

compressible one (1.1)–(1.2). For this end, we first give some formal analysis. We introduce
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the incompressible limit scaling as follows:

ρǫ(x, t) = ρ̃
(
x,

t

ǫ

)
, uǫ(x, t) =

1

ǫ
ũ
(
x,

t

ǫ

)
,

and we assume that the viscosity coefficients µ̃ and ξ̃ are small constants and scale like

µ̃ = ǫµ, ξ̃ = ǫξ,

where ǫ ∈ (0, 1) is a small parameter. For simplicity we assume here that µ and ξ are positive

constants independent of ǫ. The case when µ and ξ are dependent on ǫ and converge to some

positive constants as ǫ goes to 0 can be treated similarly.

With the preceding scalings and using the expression of the pressure (1.3), the compressible

Navier-Stokes equations (1.1)–(1.2) take the form

∂tρ
ǫ + div(ρǫuǫ) = 0, (1.4)

∂t(ρ
ǫuǫ) + div(ρǫuǫ ⊗ uǫ) +

a∇(ρǫ)γ

ǫ2
= µ∆uǫ + (µ + ξ)∇divuǫ. (1.5)

Replacing ǫ by
√

aγ ǫ, we can always assume a = 1
γ
. Formally if we let ǫ → 0, we obtain

from the momentum equation (1.5) that ρǫ converges to some function ρ(t) ≥ 0. If we further

assume that the initial data ρǫ
0 is of order 1+O(ǫ) (this can be guaranteed by the initial energy

bound (1.11) below), then we can expect that ρ = 1. Thus the continuity equation (1.4) gives

divu = 0. Therefore, we obtain the following incompressible Navier-Stokes equations

∇ · u = 0, x ∈ R
d, t > 0, (1.6)

∂tu + (u · ∇)u − µ∆u + ∇p = 0, x ∈ R
d, t > 0. (1.7)

In the present paper, we will give a rigorous proof that the weak solution to compressible

Navier-Stokes equations (1.4)–(1.5) with general initial data converges to, as the small param-

eter ǫ goes to 0, the strong solution of the incompressible Navier-Stokes equations (1.6)–(1.7).

Before stating our results, we give some notations used in the sequel. We denote the space

L
q
2(R

d) by

L
q
2(R

d) = {f ∈ Lloc(R
d) : f1{|f |≥1} ∈ Lq, f1{|f |≤1} ∈ L2}.

C or CT denotes various positive constants independent of ǫ and CT may depend on T . For

convenience we denote
∫

f =
∫

Rd fdx and W s,r for the standard Sobolev space. For any vector

field v, we denote by Pv and Qv respectively the divergence-free part of v and the gradient

part of v, namely, Qv = ∇∆−1(divv) and Pv = v − Qv.

Firstly, we recall the local existence of strong solution to the incompressible Navier-Stokes

equations (1.6)–(1.7).

Proposition 1.1 (see [8, 13]) Assume that the initial data u(x, t = 0) = u0(x) satisfies

u0 ∈ Hs, s > 1 + d
2 , ∇ · u0 = 0. Then there exist a T ∗ ∈ (0,∞) (T ∗ = +∞ if d = 2) and a

unique solution u ∈ L∞
loc([0, T ∗), Hs) to the incompressible Navier-Stokes equations (1.6)–(1.7)

satisfying, for any 0 < T < T ∗, ∇ · u = 0 and

sup
0≤t≤T

(‖u‖Hs + ‖∂tu‖Hs−1 + ‖∇p‖Hs + ‖∂t∇p‖Hs−1) ≤ C(T ) (1.8)
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for some positive constant C(T ), depending only upon T .

We prescribe the initial conditions for (1.4)–(1.5)

ρǫ|t=0 = ρǫ
0(x), ρǫuǫ|t=0 = ρǫ

0(x)uǫ
0(x) ≡ mǫ

0(x), (1.9)

and assume that

ρǫ
0 ≥ 0, ρǫ

0 − 1 ∈ L
γ
2 , ρǫ

0|uǫ
0|2 ∈ L1, mǫ

0 = 0 for a.e. ρǫ
0 = 0. (1.10)

The initial conditions also satisfy the following uniform bound

∫ [1

2
ρǫ
0|uǫ

0|2 +
a

ǫ2(γ − 1)
((ρǫ

0)
γ − 1 − γ(ρǫ

0 − 1))
]
dx ≤ C. (1.11)

We also need to impose the following conditions on the solution (ρǫ, uǫ) at infinity

ρǫ → 1 as |x| → +∞, uǫ → 0 as |x| → +∞.

Under the above assumptions, we have the following result on the global existence of weak

solutions to the compressible Navier-Stokes equations (1.4)–(1.5).

Proposition 1.2 (see [4, 9, 10]) Let γ > d
2 . Suppose that the initial data (ρǫ

0, m
ǫ
0) satisfy

the assumptions (1.10)–(1.11). Then the compressible Navier-Stokes equations (1.4)–(1.5) with

initial condition (1.9) enjoy at least one global weak solution (ρǫ, uǫ) satisfying

(1) ρǫ − 1 ∈ L∞(0,∞; Lγ
2) ∩ C([0,∞), Lr

2) for all 1 ≤ r < γ, uǫ ∈ (0, T ; H1) for all

T ∈ (0,∞), ρǫ|uǫ|2 ∈ L∞(0,∞; L1);

(2) the energy inequality

Eǫ(t) + µ

∫ t

0

∫
|∇uǫ(x, s)|2 + (µ + ξ)

∫ t

0

∫
|divuǫ(x, s)|2 ≤ Eǫ(0) (1.12)

holds with the finite total energy

Eǫ(t) ≡
∫ [1

2
ρǫ|uǫ|2 +

a

ǫ2(γ − 1)
((ρǫ)γ − 1 − γ(ρǫ − 1))

]
dx; (1.13)

(3) the continuity equation is satisfied in the sense of renormalized solutions, i.e.,

∂tb(ρ
ǫ) + div(b(ρǫ)uǫ) + (b′(ρǫ)ρǫ − b(ρǫ))divuǫ = 0 (1.14)

for any b ∈ C1(R) such that b′(z) is a constant for z large enough;

(4) the equations (1.4)–(1.5) hold in D′((0,∞) × R
d).

The initial energy bound (1.11) implies that ρǫ
0 is of order 1 + O(ǫ). We write ρǫ = 1 + ǫϕǫ

and denote

Πǫ(x, t) =
1

ǫ

√
2a

γ − 1
((ρǫ)γ − 1 − γ(ρǫ − 1)) .

We use the above approximation because we can not obtain any bound for ϕǫ in L∞(0, T ; L2)

directly if γ < 2. The main results of this paper can be stated as follows.
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Theorem 1.1 Suppose that the conditions in Proposition 1.2 hold. Moreover, we assume

that
√

ρǫ
0 uǫ

0 converges strongly in L2 to ũ0, and Πǫ(x, t = 0) = Πǫ
0 converges strongly in L2 to

some ϕ0. Let u be the smooth solution to the incompressible Navier-Stokes equations defined

on [0, T ∗) with u0 = P ũ0. Then, for any 0 < T < T ∗, the global weak solution (ρǫ, uǫ) of the

compressible Navier-Stokes equations (1.4)–(1.5) established in Proposition 1.2 satisfies

(1) ρǫ converges strongly to 1 in C([0, T ]; Lγ(Rd));

(2) ∇uǫ converges strongly to ∇u in L2(0, T ; L2(Rd));

(3) P (
√

ρǫ uǫ) converges strongly to u in L∞(0, T ; L2(Rd));

(4)
√

ρǫ uǫ converges strongly to u in Lr(0, T ; L2
loc(R

d)) for all 1 ≤ r < +∞.

Remark 1.1 The assumption that Πǫ
0 converges strongly in L2 to some ϕ0 in fact implies

that ϕǫ
0 converges strongly to ϕ0 in L

γ
2 .

The proof of above result is based on the modulated energy method, motivated by Y. Brenier

[1], Strichartz’s estimate of linear wave equation and the weak convergence method. The idea of

modulated energy method is to modulate the energy of the equations by test functions which are

solutions of the limiting equations. Compared with the results in [6, 7, 11, 15], where the limiting

equations are incompressible Euler equations and their analyses depend on the smallness of µ

and ξ, here we must deal with the diffusion term very carefully. Our new ingredient of this

paper is that we will modulate the partial energy instead of the total energy as usual case. The

dissipative effect of viscous term is also exploited carefully. On the other hand, because there is

an initial layer, oscillation appears and propagates with the solution. We will use Strichartz’s

estimate of linear wave equation to deal with such oscillation. Finally, the weak convergence

method and refined energy analysis are used to obtain the desired convergence results.

There are many results on the low Mach number limit (incompressible limit) of compressible

Navier-Stokes equations, for which we just mention a few. The smooth solution case was inves-

tigated by D. Hoff [5]. P. L. Lions and N. Masmoudi [9] studied the limit of the weak solution

of compressible Navier-Stokes equations to the weak solution of incompressible Navier-Stokes

equations in the whole space and bounded domain cases. N. Masmoudi [11] considered the

incompressible, inviscid convergence of weak solution of compressible Navier-Stokes equations

to the strong solution of the Euler equations in the whole space and the torus. See also B.

Desjardins and E. Grenier [3] for the weak solution in the whole space case and R. Danchin

[2] in the critical space case. The interested reader can refer to the survey paper [12] for more

relative results.

2 Proof of Theorem 1.1

We shall prove our convergence results by the combining of the modulated energy method,

Strichartz’s estimate of linear wave equation and the weak convergence method.

We divide the proof into four steps.

Step 1 Basic energy estimates and compact arguments

By the assumptions on the initial data we obtain, from the energy inequality (1.12), that
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the total energy Eǫ(t) has a uniform upper bound for a.e. t ∈ [0, T ], T > 0. This uniform bound

of Eǫ(t) implies that ρǫ|uǫ|2 and 1
ǫ2

((ρǫ)γ − 1− γ(ρǫ − 1)) are bounded in L∞(0, T ; L1) and ∇uǫ

is bounded in L2(0, T ; L2). From these facts we can obtain that

ρǫ → 1 strongly in C([0, T ], Lγ), (2.1)

and uǫ is bounded in L2(0, T ; L2) by following the same arguments as that in [3, 9], and we will

not repeat it here.

Notice the fact that ρǫ|uǫ|2 is bounded in L∞(0, T ; L1) implies the following convergence

(up to the extraction of a subsequence ǫn):

√
ρǫ uǫ converges weakly- ∗ to some J in L∞(0, T ; L2(Rd)).

Our main task in this section is to show that J = u in some sense, where u is the strong

solution to the incompressible Navier-Stokes equations (1.6)–(1.7).

Step 2 Description and cancelation of oscillations

In order to describe the oscillation involved by the initial data, we use some ideas introduced

in [11, 14] and the dispersion property of the linear wave equation (see [3, 11]).

We introduce the following group defined by L (τ) = eτL, τ ∈ R, where L is the operator

defined on D × (D′)d by

L

(
φ

v

)
=

(
−divv

−∇φ

)
.

Then, it is easy to check that eτL is an isometry on each Hs × (Hs)d for all s ∈ R and for all

τ ∈ R. Denote (
φ(τ)
v(τ)

)
= eτL

(
φ

v

)
.

Then we have
∂φ

∂τ
= −divv,

∂v

∂τ
= −∇φ.

Thus, ∂2φ
∂τ2 − ∆φ = 0.

Let (φǫ, gǫ = ∇qǫ) be the solution of the following system

∂φǫ

∂t
= −1

ǫ
divgǫ, φǫ|t=0 = Πǫ

0, (2.2)

∂gǫ

∂t
= −1

ǫ
∇φǫ, gǫ|t=0 = Q(

√
ρǫ
0 uǫ

0). (2.3)

Our main idea is to use φǫ and gǫ as test functions and plug them into the total energy Eǫ(t)

to cancel the oscillation. In order to make the computation go smoothly, we introduce the

following regularization for the initial data, Πǫ,δ
0 = Πǫ

0 ∗χδ, Qδ(
√

ρǫ
0 uǫ

0) = Q(
√

ρǫ
0 uǫ

0) ∗χδ, and

denote by (φǫ,δ, gǫ,δ = ∇qǫ,δ) the corresponding solution to the equations (2.2)–(2.3) with initial

data φǫ,δ|t=0 = Πǫ,δ
0 , gǫ,δ|t=0 = Qδ(

√
ρǫ
0 uǫ

0). Here χ ∈ C∞
0 (Rd) is the Friedrich’s mollifier, i.e.,∫

χ = 1 and χδ(x) = 1
δd χ(x

δ
). Since the equations (2.2)–(2.3) are linear, it is easy to verify that

φǫ,δ = φǫ ∗ χδ, gǫ,δ = gǫ ∗ χδ.
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Using the Strichartz estimate of linear wave equation (see [3, 11]), we have

∥∥∥∥
(

φǫ,δ

∇qǫ,δ

)∥∥∥∥
Ll(R,W s,q(Rd))

≤ Cǫ
1
l

∥∥∥∥
(

Πǫ,δ
0

Qδ(
√

ρǫ
0 uǫ

0)

)∥∥∥∥
Hs+σ(Rd)

(2.4)

for all l, q > 2 and σ > 0 such that

2

q
= (d − 1)

(1

2
− 1

l

)
, σ =

d + 1

d − 1
.

The estimate (2.4) implies that for all fixed δ and for all s ∈ R, we have

φǫ,δ, gǫ,δ → 0, in Ll(R, W s,q(Rd)), as ǫ → 0. (2.5)

Step 3 The modulated energy functional and uniform estimate

We first recall the energy inequality to the compressible Navier-Stokes equations (1.4)–(1.5)

for almost all t,

1

2

∫
[ρǫ(t)|uǫ|2(t) + (Πǫ(x, t))2] + µ

∫ t

0

∫
|∇uǫ(x, s)|2 + (µ + ξ)

∫ t

0

∫
|divuǫ(x, s)|2

≤ 1

2

∫
[ρǫ

0|uǫ
0|2 + (Πǫ

0)
2]. (2.6)

The conservation of energy for the incompressible Navier-Stokes equations (1.6)–(1.7) reads

1

2

∫
|u|2(t) + µ

∫ t

0

∫
|∇u|2 =

1

2

∫
|u0|2. (2.7)

From system (2.2)–(2.3), we obtain

1

2

∫
[|φǫ,δ|2 + |gǫ,δ|2](t) =

1

2

∫
[|φǫ,δ|2 + |gǫ,δ|2](0) (2.8)

for all t.

Using φǫ,δ as a test function and noticing ρǫ = 1 + ǫϕǫ, we obtain the following weak

formulation of the continuity equation (1.4):

∫
φǫ,δ(t)ϕǫ(t) +

1

ǫ

∫ t

0

∫
[div(∇qǫ,δ)ϕǫ − ρǫuǫ · ∇φǫ,δ] =

∫
φǫ,δ(0)ϕǫ

0. (2.9)

Similarly, using u and gǫ,δ = ∇qǫ,δ as a test function to the momentum equation (1.5) respec-

tively, we get

∫
(ρǫuǫ · u)(t) +

∫ t

0

∫
[ρǫuǫ · (u · ∇u − µ∆u + ∇p)]

−
∫ t

0

∫
(ρǫuǫ ⊗ uǫ) · ∇u + µ

∫ t

0

∫
∇uǫ · ∇u

=

∫
ρǫ
0u

ǫ
0 · u0 (2.10)
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and
∫

(ρǫuǫ · ∇qǫ,δ)(t) +

∫ t

0

∫
ρǫuǫ

(1

ǫ
∇φǫ,δ

)
−

∫ t

0

∫
(ρǫuǫ ⊗ uǫ) · ∇gǫ,δ

+

∫ t

0

∫
[µ∇uǫ · ∇gǫ,δ + (µ + ξ)divuǫdivgǫ,δ] −

∫ t

0

∫ (1

ǫ
ϕǫ +

γ − 1

2
(Πǫ)2

)
divgǫ,δ

=

∫
ρǫ
0u

ǫ
0 · gǫ,δ(0). (2.11)

Summing up (2.6)–(2.8), plugging (2.9)–(2.11) into the result, and using the fact divu = 0,

we can deduce the following inequality by the straightforward computations:

1

2

∫
{|
√

ρǫ uǫ − u − gǫ,δ|2(t) + (Πǫ − φǫ,δ)2(t)}

+
µ

2

∫ t

0

∫
|∇uǫ −∇u|2 +

µ

2

∫ t

0

∫
|∇uǫ|2

+
µ

2

∫ t

0

∫
|∇u|2 + (µ + ξ)

∫ t

0

∫
|divuǫ(x, t)|2

≤
∫

[(
√

ρǫ − 1)
√

ρǫ uǫ · (u + gǫ,δ)](t) −
∫

[(Πǫ − ϕǫ)φǫ,δ](t)

+

∫ t

0

∫
[ρǫuǫ · (u · ∇u − µ∆u + ∇p)]

−
∫ t

0

∫
(ρǫuǫ ⊗ uǫ) · ∇u −

∫ t

0

∫
(ρǫuǫ ⊗ uǫ) · ∇gǫ,δ

+

∫ t

0

∫
[µ∇uǫ · ∇gǫ,δ + (µ + ξ)divuǫdivgǫ,δ]

−γ − 1

2

∫ t

0

∫
(Πǫ)2divgǫ,δ −

∫
[(
√

ρǫ − 1)
√

ρǫ uǫ · (u + gǫ,δ)](0)

+

∫
(Πǫ

0 − ϕǫ
0)φ

ǫ,δ(0) +
1

2

∫
{|√ρǫ uǫ − u − gǫ,δ|2(0) + (Πǫ

0 − φǫ,δ(0))2}. (2.12)

We first deal with the right-hand side of the inequality (2.12). Denoting zǫ,δ =
√

ρǫ uǫ −u−
gǫ,δ, we have

∫ t

0

∫
[ρǫuǫ · (u · ∇u − µ∆u + ∇p)] −

∫ t

0

∫
(ρǫuǫ ⊗ uǫ) · ∇u

= −
∫ t

0

∫
(zǫ,δ ⊗ zǫ,δ) · ∇u + µ

∫ t

0

∫
∇uǫ · ∇u

+

∫ t

0

∫
(ρǫ −√

ρǫ )uǫ · (u · ∇u) −
∫ t

0

∫
gǫ,δ · ∇u zǫ,δ

+

∫ t

0

∫
(
√

ρǫ uǫ − u) · ∇u · zǫ,δ − µ

∫ t

0

∫
(ρǫ − 1)uǫ∆u

+

∫ t

0

∫
ρǫuǫ · ∇p −

∫ t

0

∫
(
√

ρǫ uǫ − u) · ∇
(u2

2

)
. (2.13)

Plugging (2.13) into inequality (2.12), we obtain

‖zǫ,δ(t)‖2
L2 + ‖Πǫ(x, t) − φǫ,δ(t)‖2

L2 + µ

∫ t

0

∫
|∇uǫ −∇u|2 + 2(µ + ξ)

∫ t

0

∫
|divuǫ(x, t)|2



24 L. Hsiao, Q. C. Ju and F. C. Li

≤ ‖zǫ,δ(0)‖2
L2 + ‖Πǫ

0 − φǫ,δ(0)‖2
L2 + 2C

∫ t

0

‖zǫ,δ(s)‖2
L2‖∇u(s)‖L∞ds

+2R
ǫ,δ
1 (t) + 2Rǫ

2(t) + 2Rǫ
3(t), (2.14)

where

R
ǫ,δ
1 (t) =

∫
[(
√

ρǫ − 1)
√

ρǫ uǫ · (u + gǫ,δ)](t) −
∫

[(Πǫ − ϕǫ)φǫ,δ](t)

−
∫ t

0

∫
(ρǫuǫ ⊗ uǫ) · ∇gǫ,δ − γ − 1

2

∫ t

0

∫
(Πǫ)2divgǫ,δ

−
∫ t

0

∫
[µ∇uǫ · ∇gǫ,δ + (µ + ξ)divuǫdivgǫ,δ]

−
∫

[(
√

ρǫ − 1)
√

ρǫ uǫ · (u + gǫ,δ)](0) +

∫
[(Πǫ − ϕǫ)φǫ,δ](0)

+

∫ t

0

∫
(ρǫ −

√
ρǫ )uǫ · (u · ∇u)

−
∫ t

0

∫
gǫ,δ · ∇u zǫ,δ +

∫ t

0

∫
(
√

ρǫ uǫ − u) · ∇u · zǫ,δ,

Rǫ
2(t) = − µ

∫ t

0

∫
(ρǫ − 1)uǫ∆u +

∫ t

0

∫
ρǫuǫ · ∇p,

Rǫ
3(t) = −

∫ t

0

∫
(
√

ρǫ uǫ − u) · ∇
(u2

2

)
.

Step 4 Convergence of the modulated energy functional

To show the convergence of the modulated energy functional and to finish our proof, we

need to deal with the reminders R
ǫ,δ
1 (t), Rǫ

2(t) and Rǫ
3(t). First, by using inequality (2.5), the

assumptions on the initial data, the strong convergence of ρǫ and the estimate on
√

ρǫ uǫ, it is

easy to know that R
ǫ,δ
1 (t) converges to 0 for almost all t, uniformly in t when ǫ goes to 0.

Next, the term Rǫ
2(t) can be treated as follows:

Rǫ
2(t) = −µ

∫ t

0

∫
ǫϕǫuǫ∆u +

∫ t

0

∫
ρǫuǫ · ∇p

= −ǫµ

∫ t

0

∫
ϕǫuǫ∆u + ǫ

∫
[(ϕǫp)(t) − (ϕǫp)(0)] − ǫ

∫ t

0

∫
ϕǫ∂tp

≤ CT ǫ,

where we have used the inequality (1.8) and (2.1).

From the fact divu = 0, the strong convergence of ρǫ, the estimate on uǫ and the inequality

(1.8), the term Rǫ
3(t) enjoys the following estimate:

Rǫ
3(t) = −

∫ t

0

∫
(
√

ρǫ uǫ − u) · ∇
(u2

2

)

=

∫ t

0

∫ √
ρǫ (

√
ρǫ − 1)uǫ · ∇

(u2

2

)
−

∫ t

0

∫
ρǫuǫ · ∇

(u2

2

)
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=

∫ t

0

∫ √
ρǫ (

√
ρǫ − 1)uǫ · ∇

(u2

2

)
+ ǫ

∫ t

0

∫
ϕǫ∂t

(u2

2

)

− ǫ

∫ [(
ϕǫ

(u2

2

))
(t) −

(
ϕǫ

(u2

2

))
(0)

]

≤ CT ǫ.

Thus, by Gronwall inequality, we deduce that, for almost all t ∈ (0, T ),

‖zǫ,δ(t)‖2
L2 + ‖Πǫ(t) − φǫ,δ(t)‖2

L2

≤ C
[
‖zǫ,δ(0)‖2

L2 + ‖Πǫ
0 − φǫ,δ(0)‖2

L2 + CT ǫ + sup
0≤s≤t

R
ǫ,δ
1 (t)

]
, (2.15)

where C = exp{C
∫ t

0
‖∇u‖2

L∞ds}. Then, letting ǫ go to 0, we obtain

‖J − u‖2
L∞(0,T ;L2) ≤ C lim

ǫ→0
[‖zǫ,δ(t)‖L∞(0,T ;L2) + ‖Πǫ(t) − φǫ,δ(t)‖2

L∞(0,T ;L2)]

≤ CC[‖J0 − u0 − Q(J0) ∗ χδ‖2
L2 + ‖ϕ0 − ϕ0 ∗ χδ‖2

L2]. (2.16)

Hence we deduce J = u in L∞(0, T ; L2) by letting δ go to 0. Moreover, inequalities (2.14)–(2.16)

imply directly that ∇uǫ converges strongly to ∇u in L2(0, T ; L2(Rd)) as ǫ goes to 0.

Noticing

lim
ǫ→0

‖P (
√

ρǫ uǫ) − u‖L∞(0,T ;L2) ≤ CC lim
δ→0

[‖J0 − u0 − Q(J0) ∗ χδ‖2
L2 + ‖ϕ0 − ϕ0 ∗ χδ‖2

L2 ] = 0,

we have the uniform convergence (in t) of P (
√

ρǫ uǫ) to u in L2(Rd).

Finally, we show the local strong convergence of
√

ρǫ uǫ to u in Lr(0, T ; L2(Ω)) for all

1 ≤ r < +∞ on any bounded domain Ω ⊂ R
d. In fact, for all t, we have

‖√ρǫ uǫ − u‖L2(Ω) ≤ ‖√ρǫ uǫ − u − gǫ,δ‖L2(Ω) + ‖gǫ,δ‖L2(Ω)

≤ ‖
√

ρǫ uǫ − u − gǫ,δ‖L2(Ω) + ‖gǫ,δ‖Lq(Ω)

for any q > 2. Using the estimate (2.5), we can take the limit on ǫ and then on δ as above to

obtain that
√

ρǫ uǫ converges to u in Lr(0, T ; L2(Ω)). Thus we complete our proof.
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