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On a Linear Equation Arising in Isometric
Embedding of Torus-like Surface
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Abstract The solvability of a linear equation and the regularity of the solution are
discussed. The equation is arising in a geometric problem which is concerned with the
realization of Alexandroff’s positive annul in R?.
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1 Introduction

Let T be an annul, T' = {(z1,x2) | 1 € [, 7], 2 € [0,1]}, and (7, g) is a smooth (analytic)
nonnegative annul
7T — R, g=di,

where 7, g are defined in 7" and satisfy Alexandroff’s assumption:
/ Kdg=4m and K =0, VK #0 onJT, (1.1)
T

where K is Gaussian curvature. In what follows, we call the annul 7 Alexandroff’s positive
annul. And (1.1) is called Alexandroff condition.

In the perturbation of isometric embedding of di? in R?, d(7+ 7)? = di + g, the linearized
problem is to find the deformation vector field equation

dr-d7 =g, (1.2)

where ¢ is a symmetric tensor of second order.

In the present paper, we will give the necessary and sufficient condition for equation (1.2)
to be solvable. Set o1 = S x {0}, 02 = S? x {1}, and

1 ; .
?{ m@lqﬂ — Oaqi + Thq1p — Th,qor)da’ =0, j=1,2. (1.3)

Denote

P 2 .
w(p) = / ——(D1q2i — O2q1; + Thiqup — T¥iqor)da’,
po \/ |9|
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where p, po € 0;. Then
> ik 1 ik
5z'7°(9 (q1eve = qarrn) + Swy/lgl g Vk) =0, (1.4)
oj
where v = (v1,12) is the unit outwards normal of 97
Theorem 1.1 Let 7 € C®(T, R®) be an Alezandroff’s positive annul and ¢ € C*(T) a
symmetric tensor of second order. Then the necessary and sufficient condition for (1.2) to

admit a solution 7 € C(T) is that (1.3)—(1.4) are valid. Moreover, the solution is unique up

to a rigid motion of .
In what follows, we will use the notation in [13].

Remark 1.1 In Theorem 1.1, if the given 7 and the tensor ¢ are analytic, so is the solution

.
T.

2 Geometric and Analysis Preliminaries

Before solving equation (1.2), we need several lemmas.

Lemma 2.1 (see [1]) If (1.1) is fulfilled, then each component of #(OT) is a planar curve
l; which is determined completely by its metric, and lies on the tangential plane of ¥(OT)P;.

Lemma 2.2 (see [11]) Let M be a nonnegative compact surface which is of no planar point,
OM = Ul; , where each l; is a planar curve, P; is the plane tangential to M along l;. Then M
18 infinitesimal rigid.

Suppose that 7: [—7, 7] x [0, 1] is a smooth isometric embedding of a positive annul which
satisfies Alexandroff’s assumption. In the geodesic coordinate based on 9T : t = 0, the metric
is of form:

g =dt* + B%ds?, (s,t) € [-m, 7] x [0,1], B(s,0) =1, By(s,0) =k, >0, (2.1)

where B is a smooth periodic function of s. Near ¢t = 1, all arguments are similar, so ignored.
Under the present circumstance I's, = '3, = I'%, = 0, where 1 and 2 stand for s and t. Consider
the Gauss-Codazzi system
0oL — M =T1,L —T},M —T% N,
0oM — 0N = —MT1,, (2.2)
NL — M? = KB?%s,

where

Bs Bt
B’ B’
Lemma 2.3 Suppose that 7: [—m, @] x [0,1] s a smooth isometric embedding of a positive

I} = I, = ', = —BB;.

annul which satisfies Alexandroff’s assumption. Then the coefficients of the second fundamental
form of ¥, L, M and N satisfy

K

L:M:07 atL: V KtBtu N = Fa
t

att=0andt=1.
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Proof When t =0, K = L = M = 0. Differentiation of the third expression of (2.2) with
respect to t, combined with the first, yields

NathatK, 8tL:BtN, ast = 0.

Hence

K
N = F‘f and O,L = \/K.B;.
t

Since L=M =0ont=0andt=1, we have 017 = 0, i.e., on dy, 7 is constant, where 71 is

the normal of the surface 7.

Remark 2.1 In fact, at £ = 0 and ¢ = 1, all the coefficients of the second fundamental form
hij, t, j =1, 2 and their derivatives of all orders are determined by the metric.

Lemma 2.4 On oy, k=1,2, we have
7{ Vgl g*0i7 = 0.
ok

Proof Set 7= A x 7, where A is an arbitrary constant vector. Then

(91?2 A x 61F1

fq:o
Ok

T = (g" 0T - O + gH O T - DoF)ONT 4 (gM2ONT - O1F + gP2ONT - OoF)OoF + (7 - O1 7)1,

and

‘We have

i.e.,

0T = A-ii\/gg7 07 + (7t - O 7)i.

Noting that A-iiisa constant, we have
A ﬁ?{ V0glg¥oir + (it - 0,7)7t = 0.
Ok
Projection to the plane where dy, lies yields

A ﬁ]f Vgl g? o7 = 0.
o

At the same time, we introduce a class of weighted Sobolev space H'. Denote by Cl (T') the
space of all functions u € C1(T) with u being constant on OT. Define a norm

2
uS
Jully = [ i+ s+ < (23)

where u(t) is a smooth function of ¢, as 0 < t < 1, u > 0; and near t = 0, p = ¢; near t = 1,
uw=1-—t.
H' is the completion of C*(T') equipped with the norm defined above || - [| 1. By Lemma

2.3, we have
HW%%/W%M+w. (2.4)
T
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Lemma 2.5 H! is a Banach space, and H! — HY(T). By embedding theorem, the embed-
ding H' — L*(T) is compact.

Proof It suffices to prove that it is sequence compact. Assume that there exists a Cauchy
sequence u™ in H'. Then u" is a Cauchy sequence in H' too. Therefore there exists u € H*

ug
\/ﬁ
follows we will illustrate /fiv = us. By |[u™ — u||gr — 0 we have |[u} — /L2 — 0. It implies

such that [|u"™ — ul|g1 — 0. Similarly, there exists v € L? such that || %= — v||z2 — 0. In what
uy
VB .
implies \/itv = ug. It is easily checked that such u € H.

from ||== — v[[z2 — O that |[u} — \/mv[z2 — 0. By the uniqueness of limit, it immediately

Lemma 2.6 Ifuc H' andu=0 ont=0, thenﬂ:%eL?

Proof For any u e C!, i = fol ut(x, Ct)d(,

< ([t coac)’
= ([ etz coac)’
< [ ctac [ Hutecopac

1
—o /0 CHug(, )P

o= ([ 1) < ﬁ(/oléédéf/|ut<x,<t>|2dt)5
= ﬁ(/()lcédc/:/oc |ut(x,z)|2dz)%

< 2fjulo-

Then

Since C! is dense in H !, the lemma is proved.

To discuss the regularity of solution later, we need two lemmas as follows. Consider a class
of mixed type equations in 2-dimensional Euclidean space

Lu = a®®uy + 20 ugy + a'tug, + brug + b2uy + cu = f. (2.5)

Set ¢ = det(a¥), G = S! x (=1,1). Denote Sy = GN{p =0}, G1 = GN{p > 0}. Assume
that

D¢ #0, a“¢;p; =0, on Y. (2.6)
[5] defines a kind of characteristic numbers similar to Fichera numbers Dy, (o = 1,2)
, 1a¥ ¢ic;
D:'f(bli——] )
1=~ o ggp
, 3a7 dig;
D:'f(bli——] )
2 =ipf (V0 = 595

where ¢ = 1,2 stand for = and t. Moreover the signs of D, (a = 1,2) are invariant under the

regular transformation of variables. [6, 7] prove the H'- (L2-) hypoellipticity.



On an Equation Arising in Isometric Embedding 31

Lemma 2.7 If the coefficients and f are C*°, and D1 > 0, then there is a neighborhood of
(z,t) € Yo, o(x,t) such that any solution u in H'(o(x,t)) is C°.
3 Fundamental Equation

Having the geometric and analysis preliminaries, we will derive the fundamental equation.
The process is due to Weyl [10] (or see [9, 11]). Here we use Yau’s notation in [12] (also in [13]).
Choose the local coordinate (x1,z2) on T, and assume

q= qijdxidxj,

where ¢;; = qj;, and
d7 = o;Fdz’, d7 = 9;7da’.

We always denote |g| = det(gi;).
Then equation (1.2) can be rewritten as

7 0T = qu1, (3.1)
T+ OaT + Oo7 - O1T = 2q12,
82F' 82? = (g22. (33)

To solve (3.1)—(3.3), we shall introduce a new variable. Let 77 be the normal of the surface 7

and 1
w = —(82F 817?— 817? 82?) (35)

VIl

Note that u;dx; = -d7T is a globally defined 1-form on 7. We can check easily that w is a
globally defined function on 7. Moreover, w satisfies

iV |g| w + 2q12 = 2097 - N T,
|g| w — 2(]12 = —26177- (927_"
Therefore {u1,u2, w} determines {0;7,027}. In fact, by (3.1)—(3.3) and (3.6)—(3.7), we have
S g L1 in - "
T = g”quaﬂ” =+ 511)\/ |g| 92 ;T + un,
. (3.8)
827? = g”quaiF— §w |g| g“@ﬁ+ ’UQﬁ.

The functions ui, ue and w will be new dependent variables and we proceed to find the dif-
ferential equations which they satisfy. These could be derived as the integrable condition for
these equations to be integrable.

Differentiating (3.7) with respect to 21, we have

\/ |g| 8111) + 81\/ |g| w = 281(]12 — 28117?' 827?— 2817? 8127?. (39)
Differentiating (3.1) with respect to 2, we get

O127 - 1T + O17 - 0127 = (92(]11. (310)
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Combining (3.10) with (3.9), we obtain

1
8111) = —| | 81\/ |g w + 2 81(]12 - 82(]11) + 2(8127" 817’ - 8117” 827'))
g

Similarly, we obtain

Y. |g| w + 2(81(]22 — 82(]12) + 2(8227?' OWT — 0127 - 827?))

1
ow = ——(
V19l
Note that for any i = 1, 2,

Oiv/
|g F%z + FQN

Vldl

and (h/) is the inverse of (h;;). Then a straightforward calculation, using the Gauss equation,

gives
Ow = —2K+/|g| h%u; + c1,
_ (3.11)
Dow = 2K +/|g| h*u; + co,
where 5
¢ = (01G2i — O2q1i + ng‘]lk - Flftik)' (3.12)

Vgl

Note that ¢;dz® is a globally defined 1-form in T. From (3.11), we can solve for u; and usy in
_V |g|h2i8iw Y |g|h2icl-,
2 2
_ \/2|g| hYidw + \/2|9| Rlic,

Hence, in order to solve for 7, we need only to solve for w. Now we derive an equation for w.

terms of w and obtain

(3.13)

Differentiating (3.4) appropriately and taking the difference, we get
(91’(1,2 — 62’(1,1 = 81ﬁ . 627_"— 82ﬁ . (917_"

Using Weingarten equation, by a straightforward calculation, we obtain

L((91’&2 — 8211,1) =Hw+ F, (314)

VIl

where H is the mean curvature of the convex surface and F is given by

1 .
E = \/m(hgihl hzlqM), (3.15)

where
hi = gjkh’k’ia Zv] - 17 2.
The expression in the left-hand side of (3.14) and also E in (3.15) are globally defined in T

We should note that (3.11) and (3.15) form the system for u;, us and w. (3.8) is an integrable
system, and the integrable condition can be obtained by inserting (3.13) into (3.14):

1

—ﬁai(\/m BT 0w) — 2Hw = ———0,(\/Tg] h¥ic;) + 2E. (3.16)
g

Vlal
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Set
Lw = —LBZ-(\/ lg| WY 9,w) — 2Hw.

Vlal

The operator L is invariant under the change of coordinates and is elliptic in 7" and degenerate
on JT. It is also formally self-adjoint.

4 The Solvability and Regularity

We will find the necessary condition of solvability.
The proof for necessity of Theorem 1.1 Under the coordinate of (2.1), by Lemma 2.3
and the first equation of (3.11), we have 0;w = ¢1 on oi. By periodicity, we have

7{’6 ¢ =0, (4.1)

where oy, is defined by o1 = S x {0}, 0o = S? x {1}. Solving d1w = ¢; on o}, we see that w
is unique up to a constant. By the first equation of (3.8), we have

i 1 in o .
f (g”qu(?ﬁ—l- §w\/ lg| g% 0,7 + uln) = 0.
Ok

Projection to the plane where dy, lies yields

N o
7{ 9”(11‘7'51'7‘+§w lg g*'0;7 = 0. (4.2)
ok

By Lemma 2.4,
7{ Vgl g*0i7 = 0.
Ok

(4.1)—(4.2) is the form of (1.3)—(1.4) under the coordinate (2.1).
By Lemma 2.2, we can obtain the uniqueness part of the theorem above.

The proof for sufficiency of Theorem 1.1 In what follows, we will prove the sufficiency
part of the theorem. The proof is split into three steps:

(1) Introduce a boundary value problem for equation (3.16), and find the conjugate problem;

(2) Prove that the problem is of Fredholm type;

(3) Compute the kernel of conjugate problem, and prove that the right-hand side of (3.16)
is perpendicular to the kernel which guarantees the existence of the solution, and the solution
generates 7.

Here and thereafter, the integration on 7' is with respect to the metric g. Without loss of
generality, suppose that c; = 0 on o}, otherwise replace w with w — ¢, where ¢ is such a smooth
function on oy, that 9;¢ =¢;, k,j =1,2.

Step 1 Boundary value problem and adjoint problem
The boundary value problem

Lw=F, weH"'

f varl hij(?jwyi =0, k=1,2,
ok
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where v = (v1,12) is the unit outward norm of 7. Here

F= 9 (/19| h¥ (c; — 9;6)) + 2F — 2H . (4.4)

\/_

We claim that problem (4.3) is self-adjoint, i.e., its adjoint problem is
Lu=G, wue H L

7{\/|g|hijajw/i20, k=1,2.
ok

(4.5)

In fact, suppose w,u € C?(T) and w, u are constants on 97T, then integral by parts yields

/Lw~u—Lu-w_/ 9i(\/1g| ¥ 0;w - u) — 0;(\/|g| h* Oju - w)
T \/
- / <\/|g|h2ﬂ‘ajw-u—\/|g|h2jaju~w>
oT

=0.
Hence the adjoint problem of (4.3) is (4.5).

Step 2 Fredholm properties
In H', we consider the bilinear form

Q(u,w) = /Thijajwaiu +(AN—2H)w - u, (4.6)

where A = 2max H 4+ 1. Then
T

Q(u,u) = Cllull .- (4.7)

The weak solution form of equation (4.3) is
Q(u,w)z/ fu, YueH?', (4.8)
T

where f = F + Aw. By Riesz representation theorem, for any f € L2, there exists a w € H?,
i.e., there exists a bounded operator (L + )~ : L2 — H!, and because H! — L2 is compact
embedding, (L + \)~! :L? — L? is a compact operator. Then (L + Nw — Aw = F, ie.
(I =ML+ X)"Yw=(L+\)"'F. Hence L is of Fredholm type.

Step 3 The solvability
To prove that equation (4.3) is solvable, it suffices to verify that F' is perpendicular to the

kernel of its adjoint problem. Since the problem is self-adjoint, we need only to compute the
kernel of (4.3). Recall that ¢;; = 0, and

f vV |g| hijajwyi = % UV + UVg = 0. (49)
e

Ok

Then fgk 0;7dz® = 0, and the generated 9;7 and 97 by (3.8) could generate 7 by d7 = 9;7d .
By Lemmas 2.1 and 2.2, 7 is infinitesimal rigid. Such a 7 must come from the rigid motion of

7

:/fxf'—i—B,
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where A and B are constant vectors. By (3.5), we have

w=2A4" %(mfxaﬁ) =24 7.
g

Therefore, (4.3) possesses a solution w, if

/T (_ ﬁai(\/mh”(cj — 9;¢)) +2E — 2H¢)A’.ﬁ: 0

for any constant ff, or simply

1 i S _
/T(—mai(\/ﬁh (¢j = 0;0)) + 2B = 2Ho) -7 = 0. (4.10)

Note that the expression in the parenthesis in (4.10) is an invariant scalar function on T'.
Hence we need to verify

/T h(c; — 0;0)0:7 + (2E — 2H )i = 0. (4.11)
By the Weingarten equation, we have
he;0;i = —h9c;hE O = —hYc;hyg™ oL = —c;g" o).
Hence, (4.11) becomes
/T —g"(cj — 0;0)0;7 + (2E — 2H¢)ii = 0. (4.12)
Inserting (3.12) into (4.12), we have

2 iy 2 y
———=0"(O1q2j — Ooq1)0i7 — ——=g" (T, q11. — T} ;qor)0;7 + 2E7
/T varl Vgl ! ’

= / —g"0;00;7 + 2H ¢ (4.13)
T
We concentrate on the first integral of the left-hand side of (4.13). An integration by parts
shows
/ 209 (013 — a1,
- —= 1G25 — 02q15)0;
7 /19l
2 y o i
=/ ——(01(9"0;7)q2j — 92(9" 0iT)q1;) +/ 29" 0;1(q1jv2 — qojv1)
VA or
=I+ / 29" 9 (q1v2 — 42511),
ar
where

2 . ’ 2 o
I= / —=((g"”01ir)qz; — 9" O2irquy) + / ——(019" 0i7q2; — 029" 0;T'q1;) (4.14)
T Ty gl

and

/ —gijaj@?ﬁ—i- 2H¢ﬁ = —/ \ |g| qﬁgij&-ﬁ/j.
T oT
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With the Gauss equation and the identity
g = —g"T}, — ¢'T},,

a straightforward calculation shows that the integral in (4.14) is just the opposite of the sum
of the last integral in the right-hand side of (4.13). Hence (4.13) is equivalent to

/ Vgl

YL g™ 0,7 Tvj + g0, 7(q1jv2 — q2;11) = 0.
Noting the choice of ¢, we see that the equation above is nothing else but (3.5).
Therefore, we have proven (4.10) and the existence of the solution. Such a solution w
generates u; and ug by (3.11). By (3.8), they generate 71 and 7. In what follows, we prove
% 817?(1:171 + 827?(1.%2 =0
Ok
in the coordinate of (2.3). In fact,

\/mh%a ( +¢) \/mh%

satisfies

f uyp = f \ |g| hijajd)l/i =0. (415)

% 81Fd$1+agfd$2 :f LT
Ok Ok

i L1 i = L
f (g”quﬁir—i— 5(]5 |g|92 Bir—i-uln)
Ok

ﬁ% U1
Ok

207

Therefore,

where we use (4.2). Thus, by d7 = 9;,7dz’, ¥ € H' is generated.

In what follows, we will use the results in [7, 8] to deal with the regularity of solution.

In the previous discussion, we use the geodesic coordinate based on any component o of
OT. Then the first fundamental form is

I = B%ds* +dt?.
(3.16) can be rewritten as
F= %(81( K@?alw) - 81( KB?‘%“’)
~0(B Kﬂgz orw) + 0 (B K]jgz Opw) ) +2Huw. (4.16)

As we knew, the solution to (4.16) suffices w € H'.
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To improve the regularity, we introduce an auxiliary function w, w = Kw + ¢, where w = ¢
on oy, ¢ € C(T) or ¢ € C¥. We will illustrate the L?-boundedness of @ (see [7]). Because
Kw=w-—¢, VK #0 and w ~ waqb, by Lemma 2.6, we have w € L2.

Next we consider the equation satisfied by w:

Lw=LKw+ ¢)=F, (4.17)

i.e.

~ N N

F = -5 (Ko + 20Ky + @00 K) + al (KB)(
K@lgw + 51K62w + BgKalw + w@ng)

Koy + w0, K)

KBQ(
(al (KB) (KOs + 002K ) + 05 (I?B) (Kowi + aalK))

+ == (K822w+282K82w+w622K)+ 62( L )(K82w+w82K)+2KHw

KB?

where

~ 1 y

F= mai(\/ lg| B (¢; — 0;¢)) — 2B +2H ¢
is the function of (g;;), ¢ and 7. Note that d1¢ = ¢; on oy, and F is smooth or analytic if (g;;),
¢ and 7 are smooth or analytic. Now we compute D3 in (4.17), where D3 is the characteristic

number defined in [5]:

D3 = inf (b — —82a22)

[ex2

= inf ( B 2]\?125 h 581(1%3) +2K3232K+ a2(KLB) gaz(%))
*inflaz—L
o 2 B2

where we use Lemma 2.3.
By Lemmas 2.6 and 2.7, if (¢;j) and 7 are smooth, then w € C* and therefore w € C*°; if
¢ and 7 are analytic, then w € C¥. Thus 7 € C*(C%). We complete the proof of Theorem 1.1.
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