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1 Introduction

Let T be an annul, T = {(x1, x2) | x1 ∈ [−π, π], x2 ∈ [0, 1]}, and (~r, g) is a smooth (analytic)

nonnegative annul

~r : T → R3, g = d~r2,

where ~r, g are defined in T and satisfy Alexandroff’s assumption:

∫

T

Kdg = 4π and K = 0, ∇K 6= 0 on ∂T, (1.1)

where K is Gaussian curvature. In what follows, we call the annul ~r Alexandroff’s positive

annul. And (1.1) is called Alexandroff condition.

In the perturbation of isometric embedding of d~r2 in R3, d(~r+~τ )2 = d~r2 +g, the linearized

problem is to find the deformation vector field equation

d~r · d~τ = q, (1.2)

where q is a symmetric tensor of second order.

In the present paper, we will give the necessary and sufficient condition for equation (1.2)

to be solvable. Set σ1 = S1 × {0}, σ2 = S2 × {1}, and

∮

σj

1√
|g|

(∂1q2i − ∂2q1i + Γk
2iq1k − Γk

1iq2k)dxi = 0, j = 1, 2. (1.3)

Denote

w(p) =

∫ p

p0

2√
|g|

(∂1q2i − ∂2q1i + Γk
2iq1k − Γk

1iq2k)dxi,
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where p, p0 ∈ σj . Then
∮

σj

∂i~r
(
gik(q1kν2 − q2kν1) +

1

2
w

√
|g| gikνk

)
= 0, (1.4)

where ν = (ν1, ν2) is the unit outwards normal of ∂T .

Theorem 1.1 Let ~r ∈ C∞(T, R3) be an Alexandroff’s positive annul and q ∈ C∞(T ) a

symmetric tensor of second order. Then the necessary and sufficient condition for (1.2) to

admit a solution ~τ ∈ C∞(T ) is that (1.3)–(1.4) are valid. Moreover, the solution is unique up

to a rigid motion of ~r.

In what follows, we will use the notation in [13].

Remark 1.1 In Theorem 1.1, if the given ~r and the tensor q are analytic, so is the solution

~τ .

2 Geometric and Analysis Preliminaries

Before solving equation (1.2), we need several lemmas.

Lemma 2.1 (see [1]) If (1.1) is fulfilled, then each component of ~r(∂T ) is a planar curve

li which is determined completely by its metric, and lies on the tangential plane of ~r(∂T )Pi.

Lemma 2.2 (see [11]) Let M be a nonnegative compact surface which is of no planar point,

∂M = ∪ li , where each li is a planar curve, Pi is the plane tangential to M along li. Then M

is infinitesimal rigid.

Suppose that ~r : [−π, π] × [0, 1] is a smooth isometric embedding of a positive annul which

satisfies Alexandroff’s assumption. In the geodesic coordinate based on ∂T : t = 0, the metric

is of form:

g = dt2 + B2ds2, (s, t) ∈ [−π, π] × [0, 1], B(s, 0) = 1, Bt(s, 0) = kg > 0, (2.1)

where B is a smooth periodic function of s. Near t = 1, all arguments are similar, so ignored.

Under the present circumstance Γ1
22 = Γ2

22 = Γ2
12 = 0, where 1 and 2 stand for s and t. Consider

the Gauss-Codazzi system

∂2L − ∂1M = Γ1
12L − Γ1

11M − Γ2
11N,

∂2M − ∂1N = −MΓ1
12,

NL − M2 = KB2s,

(2.2)

where

Γ1
11 =

Bs

B
, Γ1

12 =
Bt

B
, Γ2

11 = −BBt.

Lemma 2.3 Suppose that ~r : [−π, π] × [0, 1] is a smooth isometric embedding of a positive

annul which satisfies Alexandroff’s assumption. Then the coefficients of the second fundamental

form of ~r, L, M and N satisfy

L = M = 0, ∂tL =
√

KtBt, N =

√
Kt

Bt

,

at t = 0 and t = 1.
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Proof When t = 0, K = L = M = 0. Differentiation of the third expression of (2.2) with

respect to t, combined with the first, yields

N∂tL = ∂tK, ∂tL = BtN, as t = 0.

Hence

N =

√
Kt

Bt

and ∂tL =
√

KtBt .

Since L = M = 0 on t = 0 and t = 1, we have ∂1~n = 0, i.e., on δk, ~n is constant, where ~n is

the normal of the surface ~r.

Remark 2.1 In fact, at t = 0 and t = 1, all the coefficients of the second fundamental form

hij , i, j = 1, 2 and their derivatives of all orders are determined by the metric.

Lemma 2.4 On σk, k = 1, 2, we have
∮

σk

√
|g| g2i∂i~r = 0.

Proof Set ~τ = ~A × ~r, where ~A is an arbitrary constant vector. Then

∂1~τ = ~A × ∂1~r1

and ∮

σk

~τ1 = 0.

We have

∂1~τ = (g11∂1~τ · ∂1~r + g21∂1~τ · ∂2~r)∂1~r + (g12∂1~τ · ∂1~r + g22∂1~τ · ∂2~r)∂2~r + (~n · ∂1~τ )~n,

i.e.,

∂1~τ = ~A · ~n√g g2i∂i~r + (~n · ∂1~τ)~n.

Noting that ~A · ~n is a constant, we have

~A · ~n
∮

σk

√
|g|g2i∂i~r + (~n · ∂1~τ )~n = 0.

Projection to the plane where δk lies yields

~A · ~n
∮

σk

√
|g| g2i∂i~r = 0.

At the same time, we introduce a class of weighted Sobolev space H̃1. Denote by C̃1(T ) the

space of all functions u ∈ C1(T ) with u being constant on ∂T . Define a norm

‖u‖2

H̃1
=

∫

T

u2
t +

u2
s

µ(t)
+ u2 < ∞, (2.3)

where µ(t) is a smooth function of t, as 0 < t < 1, µ > 0; and near t = 0, µ = t; near t = 1,

µ = 1 − t.

H̃1 is the completion of C̃1(T ) equipped with the norm defined above ‖ · ‖
H̃1 . By Lemma

2.3, we have

‖u‖2

H̃1
≈

∫

T

hijuiuj + u2. (2.4)
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Lemma 2.5 H̃1 is a Banach space, and H̃1 →֒ H1(T ). By embedding theorem, the embed-

ding H̃1 →֒ L2(T ) is compact.

Proof It suffices to prove that it is sequence compact. Assume that there exists a Cauchy

sequence un in H̃1. Then un is a Cauchy sequence in H1 too. Therefore there exists u ∈ H1

such that ‖un − u‖H1 → 0. Similarly, there exists v ∈ L2 such that ‖ un
s√
µ
− v‖L2 → 0. In what

follows we will illustrate
√

µ v = us. By ‖un − u‖H1 → 0 we have ‖un
s − us‖L2 → 0. It implies

from ‖ un
s√
µ
− v‖L2 → 0 that ‖un

s − √
µ v‖L2 → 0. By the uniqueness of limit, it immediately

implies
√

µ v = us. It is easily checked that such u ∈ H̃1.

Lemma 2.6 If u ∈ H1 and u = 0 on t = 0, then ũ = u
t
∈ L2.

Proof For any u ∈ C̃1, ũ =
∫ 1

0
ut(x, ζt)dζ,

|ũ|2 ≤
( ∫ 1

0

|ut(x, ζt)|dζ
)2

=
( ∫ 1

0

ζ−
1

4 ζ
1

4 |ut(x, ζt)|dζ
)2

≤
∫ 1

0

ζ−
1

2 dζ

∫ 1

0

ζ
1

2 |ut(x, ζt)|2dζ

= 2

∫ 1

0

ζ
1

2 |ut(x, ζt)|2dζ.

Then

‖ũ‖0 =
(∫∫

|ũ|2
) 1

2 ≤
√

2
( ∫ 1

0

ζ
1

2 dζ

∫∫
|ut(x, ζt)|2dt

) 1

2

=
√

2
( ∫ 1

0

ζ−
1

2 dζ

∫ π

−π

∫ ζ

0

|ut(x, z)|2dz
) 1

2

≤ 2‖ut‖0.

Since C̃1 is dense in H̃1, the lemma is proved.

To discuss the regularity of solution later, we need two lemmas as follows. Consider a class

of mixed type equations in 2-dimensional Euclidean space

Lu = a22utt + 2a12uxt + a11uxx + b1ut + b2ux + cu = f. (2.5)

Set φ = det(aij), G = S1 × (−1, 1). Denote Σ0 = G ∩ {φ = 0}, G+ = G ∩ {φ > 0}. Assume

that

Dφ 6= 0, aijφiφj = 0, on Σ0. (2.6)

[5] defines a kind of characteristic numbers similar to Fichera numbers Dα (α = 1, 2)

D1 = inf
Σ0

(
biφi −

1

2

a
ij
j φiφj

|dφ|2
)
,

D2 = inf
Σ0

(
biφi −

3

2

a
ij
j φiφj

|dφ|2
)
,

where i = 1, 2 stand for x and t. Moreover the signs of Dα (α = 1, 2) are invariant under the

regular transformation of variables. [6, 7] prove the H1- (L2-) hypoellipticity.



On an Equation Arising in Isometric Embedding 31

Lemma 2.7 If the coefficients and f are C∞, and D1 > 0, then there is a neighborhood of

(x, t) ∈ Σ0, o(x, t) such that any solution u in H1(o(x, t)) is C∞.

3 Fundamental Equation

Having the geometric and analysis preliminaries, we will derive the fundamental equation.

The process is due to Weyl [10] (or see [9, 11]). Here we use Yau’s notation in [12] (also in [13]).

Choose the local coordinate (x1, x2) on T , and assume

q = qijdxidxj ,

where qij = qji, and

d~r = ∂i~rdxi, d~τ = ∂i~τdxi.

We always denote |g| = det(gij).

Then equation (1.2) can be rewritten as

∂1~r · ∂1~τ = q11, (3.1)

∂1~r · ∂2~τ + ∂2~r · ∂1~τ = 2q12, (3.2)

∂2~r · ∂2~τ = q22. (3.3)

To solve (3.1)–(3.3), we shall introduce a new variable. Let ~n be the normal of the surface ~r

ui = ~n · ∂i~τ, i = 1, 2 (3.4)

and

w =
1√
|g|

(∂2~r · ∂1~τ − ∂1~r · ∂2~τ ). (3.5)

Note that uidxi = ~n · d~τ is a globally defined 1-form on T . We can check easily that w is a

globally defined function on T . Moreover, w satisfies

√
|g|w + 2q12 = 2∂2~r · ∂1~τ , (3.6)

√
|g|w − 2q12 = −2∂1~r · ∂2~τ . (3.7)

Therefore {u1, u2, w} determines {∂1~τ , ∂2~τ}. In fact, by (3.1)–(3.3) and (3.6)–(3.7), we have

∂1~τ = gijq1j∂i~r +
1

2
w

√
|g| g2i∂i~r + u1~n,

∂2~τ = gijq2j∂i~r −
1

2
w

√
|g| g1i∂i~r + u2~n.

(3.8)

The functions u1, u2 and w will be new dependent variables and we proceed to find the dif-

ferential equations which they satisfy. These could be derived as the integrable condition for

these equations to be integrable.

Differentiating (3.7) with respect to x1, we have

√
|g| ∂1w + ∂1

√
|g|w = 2∂1q12 − 2∂11~r · ∂2~τ − 2∂1~r · ∂12~τ . (3.9)

Differentiating (3.1) with respect to x2, we get

∂12~r · ∂1~τ + ∂1~r · ∂12~τ = ∂2q11. (3.10)
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Combining (3.10) with (3.9), we obtain

∂1w =
1√
|g|

(−∂1

√
|g|w + 2(∂1q12 − ∂2q11) + 2(∂12~r · ∂1~τ − ∂11~r · ∂2~τ )).

Similarly, we obtain

∂2w =
1√
|g|

(−∂2

√
|g|w + 2(∂1q22 − ∂2q12) + 2(∂22~r · ∂1~τ − ∂12~r · ∂2~τ )).

Note that for any i = 1, 2,
∂i

√
|g|√
|g|

= Γ1
1i + Γ2

2i,

and (hij) is the inverse of (hij). Then a straightforward calculation, using the Gauss equation,

gives

∂1w = −2K
√
|g|h2iui + c1,

∂2w = 2K
√
|g|h1iui + c2,

(3.11)

where

ci =
2√
|g|

(∂1q2i − ∂2q1i + Γk
2iq1k − Γk

1iq2k). (3.12)

Note that cidxi is a globally defined 1-form in T . From (3.11), we can solve for u1 and u2 in

terms of w and obtain

u1 =

√
|g|
2

h2i∂iw −
√
|g|
2

h2ici,

u2 = −
√
|g|
2

h1i∂iw +

√
|g|
2

h1ici.

(3.13)

Hence, in order to solve for ~τ , we need only to solve for w. Now we derive an equation for w.

Differentiating (3.4) appropriately and taking the difference, we get

∂1u2 − ∂2u1 = ∂1~n · ∂2~τ − ∂2~n · ∂1~τ .

Using Weingarten equation, by a straightforward calculation, we obtain

1√
|g|

(∂1u2 − ∂2u1) = Hw + E, (3.14)

where H is the mean curvature of the convex surface and E is given by

E =
1√
|g|

(hi
2q1i − hi

1q2i), (3.15)

where

h
j
i = gjkhki, i, j = 1, 2.

The expression in the left-hand side of (3.14) and also E in (3.15) are globally defined in T .

We should note that (3.11) and (3.15) form the system for u1, u2 and w. (3.8) is an integrable

system, and the integrable condition can be obtained by inserting (3.13) into (3.14):

− 1√
|g|

∂i(
√
|g|hij∂jw) − 2Hw = − 1√

|g|
∂i(

√
|g|hijcj) + 2E. (3.16)
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Set

Lw = − 1√
|g|

∂i(
√
|g|hij∂jw) − 2Hw.

The operator L is invariant under the change of coordinates and is elliptic in T and degenerate

on ∂T . It is also formally self-adjoint.

4 The Solvability and Regularity

We will find the necessary condition of solvability.

The proof for necessity of Theorem 1.1 Under the coordinate of (2.1), by Lemma 2.3

and the first equation of (3.11), we have ∂1w = c1 on σk. By periodicity, we have

∮

σk

c1 = 0, (4.1)

where σk is defined by σ1 = S1 × {0}, σ2 = S2 × {1}. Solving ∂1w = c1 on σk, we see that w

is unique up to a constant. By the first equation of (3.8), we have

∮

σk

(
gijq1j∂i~r +

1

2
w

√
|g| g2i∂i~r + u1~n

)
= 0.

Projection to the plane where δk lies yields

∮

σk

gijq1j∂i~r +
1

2
w

√
|g| g2i∂i~r = 0. (4.2)

By Lemma 2.4, ∮

σk

√
|g| g2i∂i~r = 0.

(4.1)–(4.2) is the form of (1.3)–(1.4) under the coordinate (2.1).

By Lemma 2.2, we can obtain the uniqueness part of the theorem above.

The proof for sufficiency of Theorem 1.1 In what follows, we will prove the sufficiency

part of the theorem. The proof is split into three steps:

(1) Introduce a boundary value problem for equation (3.16), and find the conjugate problem;

(2) Prove that the problem is of Fredholm type;

(3) Compute the kernel of conjugate problem, and prove that the right-hand side of (3.16)

is perpendicular to the kernel which guarantees the existence of the solution, and the solution

generates ~τ .

Here and thereafter, the integration on T is with respect to the metric g. Without loss of

generality, suppose that cj = 0 on σk, otherwise replace w with w−φ, where φ is such a smooth

function on σk that ∂jφ = cj , k, j = 1, 2.

Step 1 Boundary value problem and adjoint problem

The boundary value problem

Lw = F, w ∈ H̃1,
∮

σk

√
|g|hij∂jwνi = 0, k = 1, 2,

(4.3)
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where ν = (ν1, ν2) is the unit outward norm of ∂T . Here

F = − 1√
|g|

∂i(
√
|g|hij(cj − ∂jφ)) + 2E − 2Hφ. (4.4)

We claim that problem (4.3) is self-adjoint, i.e., its adjoint problem is

Lu = G, u ∈ H̃1,
∮

σk

√
|g|hij∂juνi = 0, k = 1, 2.

(4.5)

In fact, suppose w, u ∈ C2(T ) and w, u are constants on ∂T , then integral by parts yields
∫

T

Lw · u − Lu · w =

∫

T

1√
|g|

(∂i(
√

|g|h2j∂jw · u) − ∂i(
√
|g|h2j∂ju · w)

=

∫

∂T

(
√
|g|h2j∂jw · u −

√
|g|h2j∂ju · w)

= 0.

Hence the adjoint problem of (4.3) is (4.5).

Step 2 Fredholm properties

In H̃1, we consider the bilinear form

Q(u, w) =

∫

T

hij∂jw∂iu + (λ − 2H)w · u, (4.6)

where λ = 2 max
T

H + 1. Then

Q(u, u) ≥ C‖u‖2

H̃1
. (4.7)

The weak solution form of equation (4.3) is

Q(u, w) =

∫

T

fu, ∀u ∈ H̃1, (4.8)

where f = F + λw. By Riesz representation theorem, for any f ∈ L2, there exists a w ∈ H̃1,

i.e., there exists a bounded operator (L + λ)−1 : L2 7→ H̃1, and because H̃1 →֒ L2 is compact

embedding, (L + λ)−1 :L2 7→ L2 is a compact operator. Then (L + λ)w − λw = F , i.e.

(I − λ(L + λ)−1)w = (L + λ)−1F . Hence L is of Fredholm type.

Step 3 The solvability

To prove that equation (4.3) is solvable, it suffices to verify that F is perpendicular to the

kernel of its adjoint problem. Since the problem is self-adjoint, we need only to compute the

kernel of (4.3). Recall that qij = 0, and

∮

σk

√
|g|hij∂jwνi =

∮

σk

u2ν1 + u1ν2 = 0. (4.9)

Then
∮

σk
∂i~τdxi = 0, and the generated ∂1~τ and ∂2~τ by (3.8) could generate ~τ by d~τ = ∂i~τdxi.

By Lemmas 2.1 and 2.2, ~r is infinitesimal rigid. Such a ~τ must come from the rigid motion of

~r:

~τ = ~A × ~r + ~B,
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where ~A and ~B are constant vectors. By (3.5), we have

w = 2 ~A · 1√
|g|

(∂1~r × ∂2~r) = 2 ~A · ~n.

Therefore, (4.3) possesses a solution w, if

∫

T

(
− 1√

|g|
∂i(

√
|g|hij(cj − ∂jφ)) + 2E − 2Hφ

)
~A · ~n = 0

for any constant ~A, or simply
∫

T

(
− 1√

|g|
∂i(

√
|g|hij(cj − ∂jφ)) + 2E − 2Hφ

)
· ~n = 0. (4.10)

Note that the expression in the parenthesis in (4.10) is an invariant scalar function on T .

Hence we need to verify
∫

T

hij(cj − ∂jφ)∂i~n + (2E − 2Hφ)~n = 0. (4.11)

By the Weingarten equation, we have

hijcj∂i~n = −hijcjh
k
i ∂k~r = −hijcjhilg

lk∂k~r = −cjg
jk∂k~r.

Hence, (4.11) becomes

∫

T

−gij(cj − ∂jφ)∂i~r + (2E − 2Hφ)~n = 0. (4.12)

Inserting (3.12) into (4.12), we have
∫

T

− 2√
|g|

gij(∂1q2j − ∂2q1j)∂i~r −
2√
|g|

gij(Γk
2jq1k − Γk

1jq2k)∂i~r + 2E~n

=

∫

T

−gij∂jφ∂i~r + 2Hφ~n. (4.13)

We concentrate on the first integral of the left-hand side of (4.13). An integration by parts

shows

−
∫

T

2√
|g|

gij(∂1q2j − ∂2q1j)∂i~r

=

∫

T

2√
|g|

(∂1(g
ij∂i~r)q2j − ∂2(g

ij∂i~r)q1j) +

∫

∂T

2gij∂i~r(q1jν2 − q2jν1)

= I +

∫

∂T

2gij∂i~r(q1jν2 − q2jν1),

where

I =

∫

T

2√
|g|

((gij∂1ir)q2j − gij∂2irq1j) +

∫

T

2√
|g|

(∂1g
ij∂i~rq2j − ∂2g

ij∂i~rq1j) (4.14)

and ∫

T

−gij∂jφ∂i~r + 2Hφ~n = −
∫

∂T

√
|g|φgij∂i~rνj .
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With the Gauss equation and the identity

∂kgij = −gilΓj
kl − gjlΓi

kl,

a straightforward calculation shows that the integral in (4.14) is just the opposite of the sum

of the last integral in the right-hand side of (4.13). Hence (4.13) is equivalent to

∫

∂T

√
|g|
2

φgij∂i~rνj + gij∂i~r(q1jν2 − q2jν1) = 0.

Noting the choice of φ, we see that the equation above is nothing else but (3.5).

Therefore, we have proven (4.10) and the existence of the solution. Such a solution w

generates u1 and u2 by (3.11). By (3.8), they generate ~τ1 and ~τ2. In what follows, we prove

∮

σk

∂1~τdx1 + ∂2~τdx2 = 0

in the coordinate of (2.3). In fact,

u1 =

√
|g|
2

h2i∂i(w + φ) −
√
|g|
2

h2ici

satisfies ∮

σk

u1 =

∮

σk

√
|g|hij∂jφνi = 0. (4.15)

Therefore,

∮

σk

∂1~τdx1 + ∂2~τdx2 =

∮

σk

∂1~τ

=

∮

σk

(
gijq1j∂i~r +

1

2
φ
√
|g|g2i∂i~r + u1~n

)

= ~n

∮

σk

u1

= 0,

where we use (4.2). Thus, by d~τ = ∂i~τdxi, ~τ ∈ H1 is generated.

In what follows, we will use the results in [7, 8] to deal with the regularity of solution.

In the previous discussion, we use the geodesic coordinate based on any component σk of

∂T . Then the first fundamental form is

I = B2ds2 + dt2.

(3.16) can be rewritten as

F =
1

B

(
∂1

(
B

N

KB2
∂1w

)
− ∂1

(
B

M

KB2
∂2w

)

−∂2

(
B

M

KB2
∂1w

)
+ ∂2

(
B

N

KB2
∂2w

))
+ 2Hw. (4.16)

As we knew, the solution to (4.16) suffices w ∈ H̃1.
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To improve the regularity, we introduce an auxiliary function w̃, w = Kw̃ +φ, where w = φ

on σk, φ ∈ C∞(T ) or φ ∈ Cω. We will illustrate the L2-boundedness of w̃ (see [7]). Because

Kw̃ = w − φ, ∇K 6= 0 and w̃ ∼ w−φ
t

, by Lemma 2.6, we have w̃ ∈ L2.

Next we consider the equation satisfied by w̃:

Lw = L(Kw̃ + φ) = F, (4.17)

i.e.,

F̃ =
N

KB2
(K∂11w̃ + 2∂1K∂1w̃ + w̃∂11K) +

1

B
∂1

( N

KB

)
(K∂1w̃ + w̃∂1K)

− 2
M

KB2
(K∂12w̃ + ∂1K∂2w̃ + ∂2K∂1w̃ + w̃∂12K)

− 1

B

(
∂1

( M

KB

)
(K∂2w̃ + w̃∂2K) + ∂2

( N

KB

)
(K∂1w̃ + w̃∂1K)

)

+
L

KB2
(K∂22w̃ + 2∂2K∂2w̃ + w̃∂22K) +

1

B
∂2

( L

KB

)
(K∂2w̃ + w̃∂2K) + 2KHw̃,

where

F̃ =
1√
|g|

∂i(
√

|g|hij(cj − ∂jφ)) − 2E + 2Hφ

is the function of (qij), φ and ~r. Note that ∂1φ = c1 on σk, and F̃ is smooth or analytic if (qij),

φ and ~r are smooth or analytic. Now we compute D3 in (4.17), where D3 is the characteristic

number defined in [5]:

D3 = inf
σi

(
b2 − 3

2
∂2a22

)

= inf
σi

(
− 2

M∂1K

KB2
− K

B
∂1

( M

KB

)
+ 2

L

KB2
∂2K +

K

B
∂2

( L

KB

)
− 3

2
∂2

( L

B2

))

= inf
σi

1

2

∂2L

B2

> 0,

where we use Lemma 2.3.

By Lemmas 2.6 and 2.7, if (qij) and ~r are smooth, then w̃ ∈ C∞ and therefore w ∈ C∞; if

q and ~r are analytic, then w ∈ Cω. Thus ~τ ∈ C∞(Cω). We complete the proof of Theorem 1.1.
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Math. Ann., 59, 1904, 20–76.

[3] Morrey, C. B. and Nirenberg, N., On the analyticity of the solution to linear elliptic system of partial
differential equations, Comm. Pure. Appl. Math., 10, 1957, 271–290.

[4] Gu, C. H. and Hong, J. X., Some developments of the theory of mixed PDEs, Part. Diff. Eqs. Chin., 288,
1992, 55–66.

[5] Hong, J. X., BVPs for differential operators with characteristic degenerate surfaces, Chin. Ann. Math.,
5B(3), 1984, 277–292.

[6] Hong, J. X., Microanalysis on a class of multicharacteristic operators, Acta Math. Sinica, 28, 1985, 23–32.

[7] Hong, J. X., L
2-hypoellipticity for a class of operators mixed type, Chin. Ann. Math., 9B(2), 1988, 184–

188.



38 C. H. Li

[8] Li, C. H., The analyticity of the solution to a class of degenerate elliptic equation, to appear.

[9] Nirenberg, L., In nonlinear problems, R. E. Langer (ed.), University of Wisconsin Press, Madison, 1963,
177–193.

[10] Nirenberg, L., The Weyl problem and Minkowski problem in differential geometry in the large, Comm.

Pure. Appl. Math., 6, 1953, 103–156.
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